-
1
-
-
0025787738
-
Isolation and characterization of an Ehrlichia sp. from a patient diagnosed with human ehrlichiosis
-
1757540
-
J.E.Dawson, B.E.Anderson, D.B.Fishbein, J.L.Sanchez, C.S.Goldsmith, K.H.Wilson, C.W.Duntley. Isolation and characterization of an Ehrlichia sp. from a patient diagnosed with human ehrlichiosis. J Clin Microbiol 1991; 29:2741–5; PMID:1757540
-
(1991)
J Clin Microbiol
, vol.29
, pp. 2741-2745
-
-
Dawson, J.E.1
Anderson, B.E.2
Fishbein, D.B.3
Sanchez, J.L.4
Goldsmith, C.S.5
Wilson, K.H.6
Duntley, C.W.7
-
2
-
-
0025789921
-
Ehrlichia chaffeensis, a new species associated with human ehrlichiosis
-
1757557
-
B.E.Anderson, J.E.Dawson, D.C.Jones, K.H.Wilson. Ehrlichia chaffeensis, a new species associated with human ehrlichiosis. J Clin Microbiol 1991; 29:2838–42; PMID:1757557
-
(1991)
J Clin Microbiol
, vol.29
, pp. 2838-2842
-
-
Anderson, B.E.1
Dawson, J.E.2
Jones, D.C.3
Wilson, K.H.4
-
3
-
-
0023097769
-
Human infection with Ehrlichia canis, a leukocytic rickettsia
-
3029590
-
K.Maeda, N.Markowitz, R.C.Hawley, M.Ristic, D.Cox, J.E.McDade. Human infection with Ehrlichia canis, a leukocytic rickettsia. N Engl J Med 1987; 316:853–6; PMID:3029590; http://dx.doi.org/10.1056/NEJM198704023161406
-
(1987)
N Engl J Med
, vol.316
, pp. 853-856
-
-
Maeda, K.1
Markowitz, N.2
Hawley, R.C.3
Ristic, M.4
Cox, D.5
McDade, J.E.6
-
4
-
-
0037240533
-
Ehrlichia chaffeensis: a prototypical emerging pathogen
-
12525424
-
C.D.Paddock, J.E.Childs. Ehrlichia chaffeensis:a prototypical emerging pathogen. Clin Microbiol Rev 2003; 16:37–64; PMID:12525424; http://dx.doi.org/10.1128/CMR.16.1.37-64.2003
-
(2003)
Clin Microbiol Rev
, vol.16
, pp. 37-64
-
-
Paddock, C.D.1
Childs, J.E.2
-
5
-
-
43249100986
-
Ehrlichia chaffeensis: a prevalent, life-threatening, emerging pathogen
-
discussion 82-4, 17060980
-
D.H.Walker, N.Ismail, J.P.Olano, J.W.McBride, X.J.Yu, H.M.Feng. Ehrlichia chaffeensis:a prevalent, life-threatening, emerging pathogen. Trans Am Clin Climatol Assoc 2004; 115:375–82; discussion 82-4; PMID:17060980
-
(2004)
Trans Am Clin Climatol Assoc
, vol.115
, pp. 375-382
-
-
Walker, D.H.1
Ismail, N.2
Olano, J.P.3
McBride, J.W.4
Yu, X.J.5
Feng, H.M.6
-
6
-
-
84877829941
-
Microbial quest for food in vivo: 'nutritional virulence' as an emerging paradigm
-
23490329
-
Y.Abu Kwaik, D.Bumann. Microbial quest for food in vivo:'nutritional virulence' as an emerging paradigm. Cell Microbiol 2013; 15:882–90; PMID:23490329; http://dx.doi.org/10.1111/cmi.12138
-
(2013)
Cell Microbiol
, vol.15
, pp. 882-890
-
-
Abu Kwaik, Y.1
Bumann, D.2
-
7
-
-
84945255271
-
Molecular pathogenesis of Ehrlichia chaffeensis infection
-
26488275
-
Y.Rikihisa. Molecular pathogenesis of Ehrlichia chaffeensis infection. Annu Rev Microbiol 2015; 69:283–304; PMID:26488275; http://dx.doi.org/10.1146/annurev-micro-091014-104411
-
(2015)
Annu Rev Microbiol
, vol.69
, pp. 283-304
-
-
Rikihisa, Y.1
-
8
-
-
0030959591
-
Ehrlichia chaffeensis inclusions are early endosomes which selectively accumulate transferrin receptor
-
9119487
-
R.E.Barnewall, Y.Rikihisa, E.H.Lee. Ehrlichia chaffeensis inclusions are early endosomes which selectively accumulate transferrin receptor. Infect Immun 1997; 65:1455–61; PMID:9119487
-
(1997)
Infect Immun
, vol.65
, pp. 1455-1461
-
-
Barnewall, R.E.1
Rikihisa, Y.2
Lee, E.H.3
-
9
-
-
0033009747
-
Human granulocytic ehrlichiosis agent and Ehrlichia chaffeensis reside in different cytoplasmic compartments in HL-60 cells
-
10024584
-
J.Mott, R.E.Barnewall, Y.Rikihisa. Human granulocytic ehrlichiosis agent and Ehrlichia chaffeensis reside in different cytoplasmic compartments in HL-60 cells. Infect Immun 1999; 67:1368–78; PMID:10024584
-
(1999)
Infect Immun
, vol.67
, pp. 1368-1378
-
-
Mott, J.1
Barnewall, R.E.2
Rikihisa, Y.3
-
10
-
-
33947101530
-
Degradation of p22phox and inhibition of superoxide generation by Ehrlichia chaffeensis in human monocytes
-
17087735
-
M.Lin, Y.Rikihisa. Degradation of p22phox and inhibition of superoxide generation by Ehrlichia chaffeensis in human monocytes. Cell Microbiol 2007; 9:861–74; PMID:17087735; http://dx.doi.org/10.1111/j.1462-5822.2006.00835.x
-
(2007)
Cell Microbiol
, vol.9
, pp. 861-874
-
-
Lin, M.1
Rikihisa, Y.2
-
11
-
-
33645760951
-
Comparative genomics of emerging human ehrlichiosis agents
-
16482227
-
J.C.Hotopp, M.Lin, R.Madupu, J.Crabtree, S.V.Angiuoli, J.A.Eisen, R.Seshadri, Q.Ren, M.Wu, T.R.Utterback, Comparative genomics of emerging human ehrlichiosis agents. PLoS Genet 2006; 2:e21; PMID:16482227; http://dx.doi.org/10.1371/journal.pgen.0020021
-
(2006)
PLoS Genet
, vol.2
, pp. 21
-
-
Hotopp, J.C.1
Lin, M.2
Madupu, R.3
Crabtree, J.4
Angiuoli, S.V.5
Eisen, J.A.6
Seshadri, R.7
Ren, Q.8
Wu, M.9
Utterback, T.R.10
-
12
-
-
0013865801
-
Functions of lysosomes
-
5322983
-
C.De Duve, R.Wattiaux. Functions of lysosomes. Annu Rev Physiol 1966; 28:435–92; PMID:5322983; http://dx.doi.org/10.1146/annurev.ph.28.030166.002251
-
(1966)
Annu Rev Physiol
, vol.28
, pp. 435-492
-
-
De Duve, C.1
Wattiaux, R.2
-
13
-
-
77956404377
-
Eaten alive: a history of macroautophagy
-
20811353
-
Z.Yang, D.J.Klionsky. Eaten alive:a history of macroautophagy. Nat?Cell Biol 2010; 12:814–22; PMID:20811353; http://dx.doi.org/10.1038/ncb0910-814
-
(2010)
Nat?Cell Biol
, vol.12
, pp. 814-822
-
-
Yang, Z.1
Klionsky, D.J.2
-
14
-
-
81055144784
-
Autophagy: renovation of cells and tissues
-
22078875
-
N.Mizushima, M.Komatsu. Autophagy:renovation of cells and tissues. Cell 2011; 147:728–41; PMID:22078875; http://dx.doi.org/10.1016/j.cell.2011.10.026
-
(2011)
Cell
, vol.147
, pp. 728-741
-
-
Mizushima, N.1
Komatsu, M.2
-
15
-
-
84888380983
-
The autophagosome: origins unknown, biogenesis complex
-
C.A.Lamb, T.Yoshimori, S.A.Tooze. The autophagosome:origins unknown, biogenesis complex. Nat Rev Mol Cell Biol 2013; 14:759–74; PMID:24201109; http://dx.doi.org/10.1038/nrm3696
-
(2013)
Nat Rev Mol Cell Biol
, vol.14
, pp. 1109-1174
-
-
Lamb, C.A.1
Yoshimori, T.2
Tooze, S.A.3
-
16
-
-
80054025654
-
The role of atg proteins in autophagosome formation
-
21801009
-
N.Mizushima, T.Yoshimori, Y.Ohsumi. The role of atg proteins in autophagosome formation. Annu Rev Cell Dev Biol 2011; 27:107–32; PMID:21801009; http://dx.doi.org/10.1146/annurev-cellbio-092910-154005
-
(2011)
Annu Rev Cell Dev Biol
, vol.27
, pp. 107-132
-
-
Mizushima, N.1
Yoshimori, T.2
Ohsumi, Y.3
-
17
-
-
59249089394
-
Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG
-
18843052
-
E.Itakura, C.Kishi, K.Inoue, N.Mizushima. Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG. Mol Biol Cell 2008; 19:5360–72; PMID:18843052; http://dx.doi.org/10.1091/mbc.E08-01-0080
-
(2008)
Mol Biol Cell
, vol.19
, pp. 5360-5372
-
-
Itakura, E.1
Kishi, C.2
Inoue, K.3
Mizushima, N.4
-
18
-
-
0032545292
-
A new protein conjugation system in human. The counterpart of the yeast Apg12p conjugation system essential for autophagy
-
9852036
-
N.Mizushima, H.Sugita, T.Yoshimori, Y.Ohsumi. A new protein conjugation system in human. The counterpart of the yeast Apg12p conjugation system essential for autophagy. J Biol Chem 1998; 273:33889–92; PMID:9852036; http://dx.doi.org/10.1074/jbc.273.51.33889
-
(1998)
J Biol Chem
, vol.273
, pp. 33889-33892
-
-
Mizushima, N.1
Sugita, H.2
Yoshimori, T.3
Ohsumi, Y.4
-
19
-
-
0034329418
-
LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing
-
11060023
-
Y.Kabeya, N.Mizushima, T.Ueno, A.Yamamoto, T.Kirisako, T.Noda, E.Kominami, Y.Ohsumi, T.Yoshimori. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 2000; 19:5720–8; PMID:11060023; http://dx.doi.org/10.1093/emboj/19.21.5720
-
(2000)
EMBO J
, vol.19
, pp. 5720-5728
-
-
Kabeya, Y.1
Mizushima, N.2
Ueno, T.3
Yamamoto, A.4
Kirisako, T.5
Noda, T.6
Kominami, E.7
Ohsumi, Y.8
Yoshimori, T.9
-
20
-
-
0025363276
-
Studies on the mechanisms of autophagy: formation of the autophagic vacuole
-
2351689
-
W.A.Dunn, Jr. Studies on the mechanisms of autophagy:formation of the autophagic vacuole. J Cell Biol 1990; 110:1923–33; PMID:2351689; http://dx.doi.org/10.1083/jcb.110.6.1923
-
(1990)
J Cell Biol
, vol.110
, pp. 1923-1933
-
-
Dunn, W.A.1
-
21
-
-
0032555641
-
Isolation and characterization of rat liver amphisomes. Evidence for fusion of autophagosomes with both early and late endosomes
-
9705327
-
T.O.Berg, M.Fengsrud, P.E.Stromhaug, T.Berg, P.O.Seglen. Isolation and characterization of rat liver amphisomes. Evidence for fusion of autophagosomes with both early and late endosomes. J Biol Chem 1998; 273:21883–92; PMID:9705327; http://dx.doi.org/10.1074/jbc.273.34.21883
-
(1998)
J Biol Chem
, vol.273
, pp. 21883-21892
-
-
Berg, T.O.1
Fengsrud, M.2
Stromhaug, P.E.3
Berg, T.4
Seglen, P.O.5
-
22
-
-
0031031041
-
The autophagic and endocytic pathways converge at the nascent autophagic vacuoles
-
9008703
-
W.Liou, H.J.Geuze, M.J.Geelen, J.W.Slot. The autophagic and endocytic pathways converge at the nascent autophagic vacuoles. J Cell Biol 1997; 136:61–70; PMID:9008703; http://dx.doi.org/10.1083/jcb.136.1.61
-
(1997)
J Cell Biol
, vol.136
, pp. 61-70
-
-
Liou, W.1
Geuze, H.J.2
Geelen, M.J.3
Slot, J.W.4
-
23
-
-
0020402944
-
Uptake and degradation of proteins by isolated rat liver lysosomes. Suggestion of a microautophagic pathway of proteolysis
-
6755063
-
J.Ahlberg, L.Marzella, H.Glaumann. Uptake and degradation of proteins by isolated rat liver lysosomes. Suggestion of a microautophagic pathway of proteolysis. Lab Invest 1982; 47:523–32; PMID:6755063
-
(1982)
Lab Invest
, vol.47
, pp. 523-532
-
-
Ahlberg, J.1
Marzella, L.2
Glaumann, H.3
-
24
-
-
67650258765
-
In vitro reconstitution of fusion between immature ?autophagosomes and endosomes
-
19337031
-
J.Morvan, R.Kochl, R.Watson, L.M.Collinson, H.B.Jefferies, S.A.Tooze?. In vitro reconstitution of fusion between immature ?autophagosomes and endosomes. Autophagy 2009; 5:676–89; PMID:19337031; http://dx.doi.org/10.4161/auto.5.5.8378
-
(2009)
Autophagy
, vol.5
, pp. 676-689
-
-
Morvan, J.1
Kochl, R.2
Watson, R.3
Collinson, L.M.4
Jefferies, H.B.5
Tooze, S.A.6
-
25
-
-
34848886914
-
Autophagosome formation: core machinery and adaptations
-
17909521
-
Z.Xie, D.J.Klionsky. Autophagosome formation:core machinery and adaptations. Nat Cell Biol 2007; 9:1102–9; PMID:17909521; http://dx.doi.org/10.1038/ncb1007-1102
-
(2007)
Nat Cell Biol
, vol.9
, pp. 1102-1109
-
-
Xie, Z.1
Klionsky, D.J.2
-
26
-
-
84898611787
-
Autophagosomes, phagosomes, autolysosomes, phagolysosomes, autophagolysosomes … wait, I'm confused
-
24657946
-
D.J.Klionsky, E.L.Eskelinen, V.Deretic. Autophagosomes, phagosomes, autolysosomes, phagolysosomes, autophagolysosomes … wait, I'm confused. Autophagy 2014; 10:549–51; PMID:24657946; http://dx.doi.org/10.4161/auto.28448
-
(2014)
Autophagy
, vol.10
, pp. 549-551
-
-
Klionsky, D.J.1
Eskelinen, E.L.2
Deretic, V.3
-
27
-
-
70350450808
-
The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin-coated bacteria
-
19820708
-
T.L.Thurston, G.Ryzhakov, S.Bloor, N.von Muhlinen, F.Randow. The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin-coated bacteria. Nat Immunol 2009; 10:1215–21; PMID:19820708; http://dx.doi.org/10.1038/ni.1800
-
(2009)
Nat Immunol
, vol.10
, pp. 1215-1221
-
-
Thurston, T.L.1
Ryzhakov, G.2
Bloor, S.3
von Muhlinen, N.4
Randow, F.5
-
28
-
-
70349652310
-
Listeria monocytogenes ActA-mediated escape from autophagic recognition
-
19749745
-
Y.Yoshikawa, M.Ogawa, T.Hain, M.Yoshida, M.Fukumatsu, M.Kim, H.Mimuro, I.Nakagawa, T.Yanagawa, T.Ishii, Listeria monocytogenes ActA-mediated escape from autophagic recognition. Nat Cell Biol 2009; 11:1233–40; PMID:19749745; http://dx.doi.org/10.1038/ncb1967
-
(2009)
Nat Cell Biol
, vol.11
, pp. 1233-1240
-
-
Yoshikawa, Y.1
Ogawa, M.2
Hain, T.3
Yoshida, M.4
Fukumatsu, M.5
Kim, M.6
Mimuro, H.7
Nakagawa, I.8
Yanagawa, T.9
Ishii, T.10
-
29
-
-
68349143052
-
Shigella phagocytic vacuolar membrane remnants participate in the cellular response to pathogen invasion and are regulated by autophagy
-
19683680
-
N.Dupont, S.Lacas-Gervais, J.Bertout, I.Paz, B.Freche, G.T.Van Nhieu, F.G.Van Der Goot, P.J.Sansonetti, F.Lafont. Shigella phagocytic vacuolar membrane remnants participate in the cellular response to pathogen invasion and are regulated by autophagy. Cell Host Microbe 2009; 6:137–49; PMID:19683680; http://dx.doi.org/10.1016/j.chom.2009.07.005
-
(2009)
Cell Host Microbe
, vol.6
, pp. 137-149
-
-
Dupont, N.1
Lacas-Gervais, S.2
Bertout, J.3
Paz, I.4
Freche, B.5
Van Nhieu, G.T.6
Van Der Goot, F.G.7
Sansonetti, P.J.8
Lafont, F.9
-
30
-
-
74049126112
-
The adaptor protein p62/SQSTM1 targets invading bacteria to the autophagy pathway
-
19812211
-
Y.T.Zheng, S.Shahnazari, A.Brech, T.Lamark, T.Johansen, J.H.Brumell. The adaptor protein p62/SQSTM1 targets invading bacteria to the autophagy pathway. J Immunol 2009; 183:5909–16; PMID:19812211; http://dx.doi.org/10.4049/jimmunol.0900441
-
(2009)
J Immunol
, vol.183
, pp. 5909-5916
-
-
Zheng, Y.T.1
Shahnazari, S.2
Brech, A.3
Lamark, T.4
Johansen, T.5
Brumell, J.H.6
-
31
-
-
10944253145
-
Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages
-
15607973
-
M.G.Gutierrez, S.S.Master, S.B.Singh, G.A.Taylor, M.I.Colombo, V.Deretic. Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell 2004; 119:753–66; PMID:15607973; http://dx.doi.org/10.1016/j.cell.2004.11.038
-
(2004)
Cell
, vol.119
, pp. 753-766
-
-
Gutierrez, M.G.1
Master, S.S.2
Singh, S.B.3
Taylor, G.A.4
Colombo, M.I.5
Deretic, V.6
-
32
-
-
21344472825
-
Autophagy induction favours the generation and maturation of the Coxiella-replicative vacuoles
-
15953030
-
M.G.Gutierrez, C.L.Vazquez, D.B.Munafo, F.C.Zoppino, W.Beron, M.Rabinovitch, M.I.Colombo. Autophagy induction favours the generation and maturation of the Coxiella-replicative vacuoles. Cell Microbiol 2005; 7:981–93; PMID:15953030; http://dx.doi.org/10.1111/j.1462-5822.2005.00527.x
-
(2005)
Cell Microbiol
, vol.7
, pp. 981-993
-
-
Gutierrez, M.G.1
Vazquez, C.L.2
Munafo, D.B.3
Zoppino, F.C.4
Beron, W.5
Rabinovitch, M.6
Colombo, M.I.7
-
33
-
-
84856010816
-
Selective subversion of autophagy complexes facilitates completion of the Brucella intracellular cycle
-
22264511
-
T.Starr, R.Child, T.D.Wehrly, B.Hansen, S.Hwang, C.Lopez-Otin, H.W.Virgin, J.Celli. Selective subversion of autophagy complexes facilitates completion of the Brucella intracellular cycle. Cell Host Microbe 2012; 11:33–45; PMID:22264511; http://dx.doi.org/10.1016/j.chom.2011.12.002
-
(2012)
Cell Host Microbe
, vol.11
, pp. 33-45
-
-
Starr, T.1
Child, R.2
Wehrly, T.D.3
Hansen, B.4
Hwang, S.5
Lopez-Otin, C.6
Virgin, H.W.7
Celli, J.8
-
34
-
-
84883401064
-
Francisella tularensis harvests nutrients derived via ATG5-independent autophagy to support intracellular growth
-
23966861
-
S.Steele, J.Brunton, B.Ziehr, S.Taft-Benz, N.Moorman, T.Kawula. Francisella tularensis harvests nutrients derived via ATG5-independent autophagy to support intracellular growth. PLoS Pathog 2013; 9:e1003562; PMID:23966861; http://dx.doi.org/10.1371/journal.ppat.1003562
-
(2013)
PLoS Pathog
-
-
Steele, S.1
Brunton, J.2
Ziehr, B.3
Taft-Benz, S.4
Moorman, N.5
Kawula, T.6
-
35
-
-
38849200959
-
Subversion of cellular autophagy by Anaplasma phagocytophilum
-
17979984
-
H.Niu, M.Yamaguchi, Y.Rikihisa. Subversion of cellular autophagy by Anaplasma phagocytophilum. Cell Microbiol 2008; 10:593–605; PMID:17979984; http://dx.doi.org/10.1111/j.1462-5822.2007.01068.x
-
(2008)
Cell Microbiol
, vol.10
, pp. 593-605
-
-
Niu, H.1
Yamaguchi, M.2
Rikihisa, Y.3
-
36
-
-
84877317415
-
Ats-1: a novel bacterial molecule that links ?autophagy to bacterial nutrition
-
23388398
-
H.Niu, Y.Rikihisa. Ats-1:a novel bacterial molecule that links ?autophagy to bacterial nutrition. Autophagy 2013; 9:787–8; PMID:23388398; http://dx.doi.org/10.4161/auto.23693
-
(2013)
Autophagy
, vol.9
, pp. 787-788
-
-
Niu, H.1
Rikihisa, Y.2
-
37
-
-
84871385890
-
Autophagosomes induced by a bacterial Beclin 1 binding protein facilitate obligatory intracellular infection
-
23197835
-
H.Niu, Q.Xiong, A.Yamamoto, M.Hayashi-Nishino, Y.Rikihisa. Autophagosomes induced by a bacterial Beclin 1 binding protein facilitate obligatory intracellular infection. Proc Natl Acad Sci U S A 2012; 109:20800–7; PMID:23197835; http://dx.doi.org/10.1073/pnas.1218674109
-
(2012)
Proc Natl Acad Sci U S A
, vol.109
, pp. 20800-20807
-
-
Niu, H.1
Xiong, Q.2
Yamamoto, A.3
Hayashi-Nishino, M.4
Rikihisa, Y.5
-
38
-
-
0036126936
-
Characterization and transcriptional analysis of gene clusters for a type IV secretion machinery in human granulocytic and monocytic ehrlichiosis agents
-
11895979
-
N.Ohashi, N.Zhi, Q.Lin, Y.Rikihisa. Characterization and transcriptional analysis of gene clusters for a type IV secretion machinery in human granulocytic and monocytic ehrlichiosis agents. Infect Immun 2002; 70:2128–38; PMID:11895979; http://dx.doi.org/10.1128/IAI.70.4.2128-2138.2002
-
(2002)
Infect Immun
, vol.70
, pp. 2128-2138
-
-
Ohashi, N.1
Zhi, N.2
Lin, Q.3
Rikihisa, Y.4
-
39
-
-
40449139085
-
Regulation of type IV secretion apparatus genes during Ehrlichia chaffeensis intracellular development by a previously unidentified protein
-
18192398
-
Z.Cheng, X.Wang, Y.Rikihisa. Regulation of type IV secretion apparatus genes during Ehrlichia chaffeensis intracellular development by a previously unidentified protein. J Bacteriol 2008; 190:2096–105; PMID:18192398; http://dx.doi.org/10.1128/JB.01813-07
-
(2008)
J Bacteriol
, vol.190
, pp. 2096-2105
-
-
Cheng, Z.1
Wang, X.2
Rikihisa, Y.3
-
40
-
-
58149490639
-
Four VirB6 paralogs and VirB9 are expressed and interact in Ehrlichia chaffeensis-containing vacuoles
-
18952796
-
W.Bao, Y.Kumagai, H.Niu, M.Yamaguchi, K.Miura, Y.Rikihisa. Four VirB6 paralogs and VirB9 are expressed and interact in Ehrlichia chaffeensis-containing vacuoles. J Bacteriol 2009; 191:278–86; PMID:18952796; http://dx.doi.org/10.1128/JB.01031-08
-
(2009)
J Bacteriol
, vol.191
, pp. 278-286
-
-
Bao, W.1
Kumagai, Y.2
Niu, H.3
Yamaguchi, M.4
Miura, K.5
Rikihisa, Y.6
-
41
-
-
75249092539
-
Anaplasma phagocytophilum and Ehrlichia chaffeensis type IV secretion and Ank proteins
-
20053580
-
Y.Rikihisa, M.Lin. Anaplasma phagocytophilum and Ehrlichia chaffeensis type IV secretion and Ank proteins. Curr Opin Microbiol 2010; 13:59–66; PMID:20053580; http://dx.doi.org/10.1016/j.mib.2009.12.008
-
(2010)
Curr Opin Microbiol
, vol.13
, pp. 59-66
-
-
Rikihisa, Y.1
Lin, M.2
-
42
-
-
33645865541
-
Type IV secretion systems and their effectors in bacterial pathogenesis
-
16529981
-
S.Backert, T.F.Meyer. Type IV secretion systems and their effectors in bacterial pathogenesis. Curr Opin Microbiol 2006; 9:207–17; PMID:16529981; http://dx.doi.org/10.1016/j.mib.2006.02.008
-
(2006)
Curr Opin Microbiol
, vol.9
, pp. 207-217
-
-
Backert, S.1
Meyer, T.F.2
-
43
-
-
84862804099
-
Ehrlichia type IV secretion effector ECH0825 is translocated to mitochondria and curbs ROS and apoptosis by upregulating host MnSOD
-
22348527
-
H.Liu, W.Bao, M.Lin, H.Niu, Y.Rikihisa. Ehrlichia type IV secretion effector ECH0825 is translocated to mitochondria and curbs ROS and apoptosis by upregulating host MnSOD. Cell Microbiol 2012; 14:1037–50; PMID:22348527; http://dx.doi.org/10.1111/j.1462-5822.2012.01775.x
-
(2012)
Cell Microbiol
, vol.14
, pp. 1037-1050
-
-
Liu, H.1
Bao, W.2
Lin, M.3
Niu, H.4
Rikihisa, Y.5
-
44
-
-
0034282751
-
Localization of phosphatidylinositol 3-phosphate in yeast and mammalian cells
-
10970851
-
D.J.Gillooly, I.C.Morrow, M.Lindsay, R.Gould, N.J.Bryant, J.M.Gaullier, R.G.Parton, H.Stenmark. Localization of phosphatidylinositol 3-phosphate in yeast and mammalian cells. EMBO J 2000; 19:4577–88; PMID:10970851; http://dx.doi.org/10.1093/emboj/19.17.4577
-
(2000)
EMBO J
, vol.19
, pp. 4577-4588
-
-
Gillooly, D.J.1
Morrow, I.C.2
Lindsay, M.3
Gould, R.4
Bryant, N.J.5
Gaullier, J.M.6
Parton, R.G.7
Stenmark, H.8
-
45
-
-
19344365468
-
The Rab5 effector Rabankyrin-5 regulates and coordinates different endocytic mechanisms
-
15328530
-
C.Schnatwinkel, S.Christoforidis, M.R.Lindsay, S.Uttenweiler-Joseph, M.Wilm, R.G.Parton, M.Zerial. The Rab5 effector Rabankyrin-5 regulates and coordinates different endocytic mechanisms. PLoS Biol 2004; 2:E261; PMID:15328530; http://dx.doi.org/10.1371/journal.pbio.0020261
-
(2004)
PLoS Biol
, vol.2
, pp. 261
-
-
Schnatwinkel, C.1
Christoforidis, S.2
Lindsay, M.R.3
Uttenweiler-Joseph, S.4
Wilm, M.5
Parton, R.G.6
Zerial, M.7
-
46
-
-
0030873250
-
Identification of an early endosomal protein regulated by phosphatidylinositol 3-kinase
-
V.Patki, J.Virbasius, W.S.Lane, B.H.Toh, H.S.Shpetner, S.Corvera. Identification of an early endosomal protein regulated by phosphatidylinositol 3-kinase. Proc Natl Acad Sci U S A 1997; 94:7326–30; PMID:9207090; http://dx.doi.org/10.1073/pnas.94.14.7326
-
(1997)
Proc Natl Acad Sci U S A
, vol.94
, pp. 7326-7330
-
-
Patki, V.1
Virbasius, J.2
Lane, W.S.3
Toh, B.H.4
Shpetner, H.S.5
Corvera, S.6
-
47
-
-
0032581654
-
EEA1 links PI(3)K function to Rab5 regulation of endosome fusion
-
A.Simonsen, R.Lippe, S.Christoforidis, J.M.Gaullier, A.Brech, J.Callaghan, B.H.Toh, C.Murphy, M.Zerial, H.Stenmark. EEA1 links PI(3)K function to Rab5 regulation of endosome fusion. Nature 1998; 394:494–8; PMID:9697774; http://dx.doi.org/10.1038/28879
-
(1998)
Nature
, vol.394
, pp. 494-498
-
-
Simonsen, A.1
Lippe, R.2
Christoforidis, S.3
Gaullier, J.M.4
Brech, A.5
Callaghan, J.6
Toh, B.H.7
Murphy, C.8
Zerial, M.9
Stenmark, H.10
-
48
-
-
39749141485
-
The regulation and function of Class III PI3Ks: novel roles for Vps34
-
18215151
-
J.M.Backer. The regulation and function of Class III PI3Ks:novel roles for Vps34. Biochem J 2008; 410:1–17; PMID:18215151; http://dx.doi.org/10.1042/BJ20071427
-
(2008)
Biochem J
, vol.410
, pp. 1-17
-
-
Backer, J.M.1
-
49
-
-
0033978633
-
Distinct classes of phosphatidylinositol 3'-kinases are involved in signaling pathways that control macroautophagy in HT-29 cells
-
10625637
-
A.Petiot, E.Ogier-Denis, E.F.Blommaart, A.J.Meijer, P.Codogno. Distinct classes of phosphatidylinositol 3'-kinases are involved in signaling pathways that control macroautophagy in HT-29 cells. J Biol Chem 2000; 275:992–8; PMID:10625637; http://dx.doi.org/10.1074/jbc.275.2.992
-
(2000)
J Biol Chem
, vol.275
, pp. 992-998
-
-
Petiot, A.1
Ogier-Denis, E.2
Blommaart, E.F.3
Meijer, A.J.4
Codogno, P.5
-
50
-
-
0005677775
-
3-Methyladenine: specific inhibitor of autophagic/lysosomal protein degradation in isolated rat hepatocytes
-
P.O.Seglen, P.B.Gordon. 3-Methyladenine:specific inhibitor of autophagic/lysosomal protein degradation in isolated rat hepatocytes. Proc Natl Acad Sci U S A 1982; 79:1889–92; PMID:6952238; http://dx.doi.org/10.1073/pnas.79.6.1889
-
(1982)
Proc Natl Acad Sci U S A
, vol.79
, pp. 2238-2292
-
-
Seglen, P.O.1
Gordon, P.B.2
-
51
-
-
33645078650
-
Regulation of membrane traffic by ?phosphoinositide 3-kinases
-
16467569
-
K.Lindmo, H.Stenmark. Regulation of membrane traffic by ?phosphoinositide 3-kinases. J Cell Sci 2006; 119:605–14; PMID:16467569; http://dx.doi.org/10.1242/jcs.02855
-
(2006)
J Cell Sci
, vol.119
, pp. 605-614
-
-
Lindmo, K.1
Stenmark, H.2
-
52
-
-
0031976047
-
Immunodominant major outer membrane proteins of Ehrlichia chaffeensis are encoded by a polymorphic multigene family
-
N.Ohashi, N.Zhi, Y.Zhang, Y.Rikihisa. Immunodominant major outer membrane proteins of Ehrlichia chaffeensis are encoded by a polymorphic multigene family. Infect Immun 1998; 66:132–9; PMID:9423849
-
(1998)
Infect Immun
, vol.66
, pp. 132-139
-
-
Ohashi, N.1
Zhi, N.2
Zhang, Y.3
Rikihisa, Y.4
-
53
-
-
84920913770
-
Ehrlichia chaffeensis proliferation begins with NtrY/NtrX and PutA/GlnA upregulation and CtrA degradation induced by Proline and Glutamine Uptake
-
25425236
-
Z.Cheng, M.Lin, Y.Rikihisa. Ehrlichia chaffeensis proliferation begins with NtrY/NtrX and PutA/GlnA upregulation and CtrA degradation induced by Proline and Glutamine Uptake. MBio 2014; 5:e02141; PMID:25425236; http://dx.doi.org/10.1128/mBio.02141-14
-
(2014)
MBio
, pp. 2141
-
-
Cheng, Z.1
Lin, M.2
Rikihisa, Y.3
-
54
-
-
84887265439
-
Ehrlichia chaffeensis uses its surface protein EtpE to bind GPI-anchored protein DNase X and trigger entry into mammalian cells
-
24098122
-
D.Mohan Kumar, M.Yamaguchi, K.Miura, M.Lin, M.Los, J.F.Coy, Y.Rikihisa. Ehrlichia chaffeensis uses its surface protein EtpE to bind GPI-anchored protein DNase X and trigger entry into mammalian cells. PLoS Pathog 2013; 9:e1003666; PMID:24098122; http://dx.doi.org/10.1371/journal.ppat.1003666
-
(2013)
PLoS Pathog
, vol.9
, pp. 1003666
-
-
Mohan Kumar, D.1
Yamaguchi, M.2
Miura, K.3
Lin, M.4
Los, M.5
Coy, J.F.6
Rikihisa, Y.7
-
55
-
-
84863116629
-
Class III PI3K Vps34 plays an essential role in autophagy and in heart and liver function
-
22308354
-
N.Jaber, Z.Dou, J.S.Chen, J.Catanzaro, Y.P.Jiang, L.M.Ballou, E.Selinger, X.Ouyang, R.Z.Lin, J.Zhang, Class III PI3K Vps34 plays an essential role in autophagy and in heart and liver function. Proc Natl Acad Sci U S A 2012; 109:2003–8; PMID:22308354; http://dx.doi.org/10.1073/pnas.1112848109
-
(2012)
Proc Natl Acad Sci U S A
, vol.109
, pp. 2003-2008
-
-
Jaber, N.1
Dou, Z.2
Chen, J.S.3
Catanzaro, J.4
Jiang, Y.P.5
Ballou, L.M.6
Selinger, E.7
Ouyang, X.8
Lin, R.Z.9
Zhang, J.10
-
56
-
-
0037378608
-
Modulation of Rab5 and Rab7 recruitment to phagosomes by phosphatidylinositol 3-kinase
-
12640132
-
O.V.Vieira, C.Bucci, R.E.Harrison, W.S.Trimble, L.Lanzetti, J.Gruenberg, A.D.Schreiber, P.D.Stahl, S.Grinstein. Modulation of Rab5 and Rab7 recruitment to phagosomes by phosphatidylinositol 3-kinase. Mol Cell Biol 2003; 23:2501–14; PMID:12640132; http://dx.doi.org/10.1128/MCB.23.7.2501-2514.2003
-
(2003)
Mol Cell Biol
, vol.23
, pp. 2501-2514
-
-
Vieira, O.V.1
Bucci, C.2
Harrison, R.E.3
Trimble, W.S.4
Lanzetti, L.5
Gruenberg, J.6
Schreiber, A.D.7
Stahl, P.D.8
Grinstein, S.9
-
57
-
-
0035032723
-
Beclin-phosphatidylinositol 3-kinase complex functions at the trans-Golgi network
-
11306555
-
A.Kihara, Y.Kabeya, Y.Ohsumi, T.Yoshimori. Beclin-phosphatidylinositol 3-kinase complex functions at the trans-Golgi network. EMBO Rep 2001; 2:330–5; PMID:11306555; http://dx.doi.org/10.1093/embo-reports/kve061
-
(2001)
EMBO Rep
, vol.2
, pp. 330-335
-
-
Kihara, A.1
Kabeya, Y.2
Ohsumi, Y.3
Yoshimori, T.4
-
58
-
-
80053501671
-
Beclin1 controls the levels of p53 by regulating the deubiquitination activity of USP10 and USP13
-
21962518
-
J.Liu, H.Xia, M.Kim, L.Xu, Y.Li, L.Zhang, Y.Cai, H.V.Norberg, T.Zhang, T.Furuya, Beclin1 controls the levels of p53 by regulating the deubiquitination activity of USP10 and USP13. Cell 2011; 147:223–34; PMID:21962518; http://dx.doi.org/10.1016/j.cell.2011.08.037
-
(2011)
Cell
, vol.147
, pp. 223-234
-
-
Liu, J.1
Xia, H.2
Kim, M.3
Xu, L.4
Li, Y.5
Zhang, L.6
Cai, Y.7
Norberg, H.V.8
Zhang, T.9
Furuya, T.10
-
59
-
-
0025776523
-
Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast
-
J.Heitman, N.R.Movva, M.N.Hall. Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science 1991; 253:905–9; PMID:1715094; http://dx.doi.org/10.1126/science.1715094
-
(1991)
Science
, vol.253
, pp. 905-909
-
-
Heitman, J.1
Movva, N.R.2
Hall, M.N.3
-
60
-
-
77957682295
-
ATG16L1 and NOD2 interact in an autophagy-dependent antibacterial pathway implicated in Crohn's disease pathogenesis
-
41 e1-2, 20637199
-
C.R.Homer, A.L.Richmond, N.A.Rebert, J.P.Achkar, C.McDonald. ATG16L1 and NOD2 interact in an autophagy-dependent antibacterial pathway implicated in Crohn's disease pathogenesis. Gastroenterology 2010; 139;1630–41, 41 e1-2; PMID:20637199; http://dx.doi.org/10.1053/j.gastro.2010.07.006
-
(2010)
Gastroenterology
, vol.139
, pp. 1630-1641
-
-
Homer, C.R.1
Richmond, A.L.2
Rebert, N.A.3
Achkar, J.P.4
McDonald, C.5
-
61
-
-
0035911162
-
Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells
-
11266458
-
N.Mizushima, A.Yamamoto, M.Hatano, Y.Kobayashi, Y.Kabeya, K.Suzuki, T.Tokuhisa, Y.Ohsumi, T.Yoshimori. Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells. J Cell Biol 2001; 152:657–68; PMID:11266458; http://dx.doi.org/10.1083/jcb.152.4.657
-
(2001)
J Cell Biol
, vol.152
, pp. 657-668
-
-
Mizushima, N.1
Yamamoto, A.2
Hatano, M.3
Kobayashi, Y.4
Kabeya, Y.5
Suzuki, K.6
Tokuhisa, T.7
Ohsumi, Y.8
Yoshimori, T.9
-
62
-
-
11144245626
-
The role of autophagy during the early neonatal starvation period
-
15525940
-
A.Kuma, M.Hatano, M.Matsui, A.Yamamoto, H.Nakaya, T.Yoshimori, Y.Ohsumi, T.Tokuhisa, N.Mizushima. The role of autophagy during the early neonatal starvation period. Nature 2004; 432:1032–6; PMID:15525940; http://dx.doi.org/10.1038/nature03029
-
(2004)
Nature
, vol.432
, pp. 1032-1036
-
-
Kuma, A.1
Hatano, M.2
Matsui, M.3
Yamamoto, A.4
Nakaya, H.5
Yoshimori, T.6
Ohsumi, Y.7
Tokuhisa, T.8
Mizushima, N.9
-
63
-
-
33745192802
-
Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice
-
16625204
-
T.Hara, K.Nakamura, M.Matsui, A.Yamamoto, Y.Nakahara, R.Suzuki-Migishima, M.Yokoyama, K.Mishima, I.Saito, H.Okano, Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 2006; 441:885–9; PMID:16625204; http://dx.doi.org/10.1038/nature04724
-
(2006)
Nature
, vol.441
, pp. 885-889
-
-
Hara, T.1
Nakamura, K.2
Matsui, M.3
Yamamoto, A.4
Nakahara, Y.5
Suzuki-Migishima, R.6
Yokoyama, M.7
Mishima, K.8
Saito, I.9
Okano, H.10
-
64
-
-
55249109400
-
Autophagosome-independent essential function for the autophagy protein Atg5 in cellular immunity to intracellular pathogens
-
18996346
-
Z.Zhao, B.Fux, M.Goodwin, I.R.Dunay, D.Strong, B.C.Miller, K.Cadwell, M.A.Delgado, M.Ponpuak, K.G.Green, Autophagosome-independent essential function for the autophagy protein Atg5 in cellular immunity to intracellular pathogens. Cell Host Microbe 2008; 4:458–69; PMID:18996346; http://dx.doi.org/10.1016/j.chom.2008.10.003
-
(2008)
Cell Host Microbe
, vol.4
, pp. 458-469
-
-
Zhao, Z.1
Fux, B.2
Goodwin, M.3
Dunay, I.R.4
Strong, D.5
Miller, B.C.6
Cadwell, K.7
Delgado, M.A.8
Ponpuak, M.9
Green, K.G.10
-
65
-
-
0009785235
-
Mouse lysozyme M gene: isolation, characterization, and expression studies
-
M.Cross, I.Mangelsdorf, A.Wedel, R.Renkawitz. Mouse lysozyme M gene:isolation, characterization, and expression studies. Proc Natl Acad Sci U S A 1988; 85:6232–6; PMID:3413093; http://dx.doi.org/10.1073/pnas.85.17.6232
-
(1988)
Proc Natl Acad Sci U S A
, vol.85
, pp. 6232-6236
-
-
Cross, M.1
Mangelsdorf, I.2
Wedel, A.3
Renkawitz, R.4
-
66
-
-
35848954083
-
Coronavirus replication does not require the autophagy gene ATG5
-
17700057
-
Z.Zhao, L.B.Thackray, B.C.Miller, T.M.Lynn, M.M.Becker, E.Ward, N.N.Mizushima, M.R.Denison, H.W.Virgin, 4th. Coronavirus replication does not require the autophagy gene ATG5. Autophagy 2007; 3:581–5; PMID:17700057; http://dx.doi.org/10.4161/auto.4782
-
(2007)
Autophagy
, vol.3
, pp. 581-585
-
-
Zhao, Z.1
Thackray, L.B.2
Miller, B.C.3
Lynn, T.M.4
Becker, M.M.5
Ward, E.6
Mizushima, N.N.7
Denison, M.R.8
Virgin, H.W.9
-
67
-
-
0034099224
-
Apg5p functions in the sequestration step in the cytoplasm-to-vacuole targeting and macroautophagy pathways
-
10712513
-
M.D.George, M.Baba, S.V.Scott, N.Mizushima, B.S.Garrison, Y.Ohsumi, D.J.Klionsky. Apg5p functions in the sequestration step in the cytoplasm-to-vacuole targeting and macroautophagy pathways. Mol Biol Cell 2000; 11:969–82; PMID:10712513; http://dx.doi.org/10.1091/mbc.11.3.969
-
(2000)
Mol Biol Cell
, vol.11
, pp. 969-982
-
-
George, M.D.1
Baba, M.2
Scott, S.V.3
Mizushima, N.4
Garrison, B.S.5
Ohsumi, Y.6
Klionsky, D.J.7
-
68
-
-
84904678420
-
The general amino acid control pathway regulates mTOR and autophagy during serum/glutamine starvation
-
25049270
-
R.Chen, Y.Zou, D.Mao, D.Sun, G.Gao, J.Shi, X.Liu, C.Zhu, M.Yang, W.Ye, The general amino acid control pathway regulates mTOR and autophagy during serum/glutamine starvation. J Cell Biol 2014; 206:173–82; PMID:25049270; http://dx.doi.org/10.1083/jcb.201403009
-
(2014)
J Cell Biol
, vol.206
, pp. 173-182
-
-
Chen, R.1
Zou, Y.2
Mao, D.3
Sun, D.4
Gao, G.5
Shi, J.6
Liu, X.7
Zhu, C.8
Yang, M.9
Ye, W.10
-
69
-
-
84899102098
-
Targeted metabolomics of Physaria fendleri, an industrial crop producing hydroxy fatty acids
-
24443498
-
J.C.Cocuron, B.Anderson, A.Boyd, A.P.Alonso. Targeted metabolomics of Physaria fendleri, an industrial crop producing hydroxy fatty acids. Plant Cell Physiol 2014; 55:620–33; PMID:24443498; http://dx.doi.org/10.1093/pcp/pcu011
-
(2014)
Plant Cell Physiol
, vol.55
, pp. 620-633
-
-
Cocuron, J.C.1
Anderson, B.2
Boyd, A.3
Alonso, A.P.4
-
70
-
-
34250802413
-
Comigration of two autophagosome-associated dehydrogenases on two-dimensional polyacrylamide gels
-
16874067
-
M.L.Sneve, A.Overbye, M.Fengsrud, P.O.Seglen. Comigration of two autophagosome-associated dehydrogenases on two-dimensional polyacrylamide gels. Autophagy 2005; 1:157–62; PMID:16874067; http://dx.doi.org/10.4161/auto.1.3.2037
-
(2005)
Autophagy
, vol.1
, pp. 157-162
-
-
Sneve, M.L.1
Overbye, A.2
Fengsrud, M.3
Seglen, P.O.4
-
71
-
-
34547640142
-
Surface-exposed proteins of Ehrlichia chaffeensis
-
17517859
-
Y.Ge, Y.Rikihisa. Surface-exposed proteins of Ehrlichia chaffeensis. Infect Immun 2007; 75:3833–41; PMID:17517859; http://dx.doi.org/10.1128/IAI.00188-07
-
(2007)
Infect Immun
, vol.75
, pp. 3833-3841
-
-
Ge, Y.1
Rikihisa, Y.2
-
72
-
-
77955953184
-
Cyclic di-GMP signaling regulates invasion of Ehrlichia chaffeensis into human monocytes
-
20562302
-
Y.Kumagai, J.Matsuo, Y.Hayakawa, Y.Rikihisa. Cyclic di-GMP signaling regulates invasion of Ehrlichia chaffeensis into human monocytes. J Bacteriol 2010; 192:4122–33; PMID:20562302; http://dx.doi.org/10.1128/JB.00132-10
-
(2010)
J Bacteriol
, vol.192
, pp. 4122-4133
-
-
Kumagai, Y.1
Matsuo, J.2
Hayakawa, Y.3
Rikihisa, Y.4
-
73
-
-
84880331368
-
U.K. induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase
-
23685627
-
R.C.Russell, Y.Tian, H.Yuan, H.W.Park, Y.Y.Chang, J.Kim, H.Kim, T.P.Neufeld, A.Dillin, K.L.Guan. U.K. induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase. Nat Cell Biol 2013; 15:741–50; PMID:23685627; http://dx.doi.org/10.1038/ncb2757
-
(2013)
Nat Cell Biol
, vol.15
, pp. 741-750
-
-
Russell, R.C.1
Tian, Y.2
Yuan, H.3
Park, H.W.4
Chang, Y.Y.5
Kim, J.6
Kim, H.7
Neufeld, T.P.8
Dillin, A.9
Guan, K.L.10
-
74
-
-
79551598347
-
AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1
-
21258367
-
J.Kim, M.Kundu, B.Viollet, K.L.Guan. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 2011; 13:132–41; PMID:21258367; http://dx.doi.org/10.1038/ncb2152
-
(2011)
Nat Cell Biol
, vol.13
, pp. 132-141
-
-
Kim, J.1
Kundu, M.2
Viollet, B.3
Guan, K.L.4
-
75
-
-
0025837327
-
Mitogen-activated 70K S6 kinase. Identification of in vitro 40 S ribosomal S6 phosphorylation sites
-
S.Ferrari, H.R.Bandi, J.Hofsteenge, B.M.Bussian, G.Thomas. Mitogen-activated 70K S6 kinase. Identification of in vitro 40 S ribosomal S6 phosphorylation sites. J Biol Chem 1991; 266:22770–5; PMID:1939282
-
(1991)
J Biol Chem
, vol.266
, pp. 22770-22775
-
-
Ferrari, S.1
Bandi, H.R.2
Hofsteenge, J.3
Bussian, B.M.4
Thomas, G.5
-
76
-
-
0029910018
-
Characterization of the AMP-activated protein kinase kinase from rat liver and identification of threonine 172 as the major site at which it phosphorylates AMP-activated protein kinase
-
S.A.Hawley, M.Davison, A.Woods, S.P.Davies, R.K.Beri, D.Carling, D.G.Hardie. Characterization of the AMP-activated protein kinase kinase from rat liver and identification of threonine 172 as the major site at which it phosphorylates AMP-activated protein kinase. J Biol Chem 1996; 271:27879–87; PMID:8910387; http://dx.doi.org/10.1074/jbc.271.44.27879
-
(1996)
J Biol Chem
, vol.271
, pp. 27879-27887
-
-
Hawley, S.A.1
Davison, M.2
Woods, A.3
Davies, S.P.4
Beri, R.K.5
Carling, D.6
Hardie, D.G.7
-
77
-
-
65549145048
-
An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1
-
19150980
-
C.C.Thoreen, S.A.Kang, J.W.Chang, Q.Liu, J.Zhang, Y.Gao, L.J.Reichling, T.Sim, D.M.Sabatini, N.S.Gray. An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1. J Biol Chem 2009; 284:8023–32; PMID:19150980; http://dx.doi.org/10.1074/jbc.M900301200
-
(2009)
J Biol Chem
, vol.284
, pp. 8023-8032
-
-
Thoreen, C.C.1
Kang, S.A.2
Chang, J.W.3
Liu, Q.4
Zhang, J.5
Gao, Y.6
Reichling, L.J.7
Sim, T.8
Sabatini, D.M.9
Gray, N.S.10
-
78
-
-
58549084167
-
Ubiquitin signals autophagic degradation of cytosolic proteins and peroxisomes
-
19074260
-
P.K.Kim, D.W.Hailey, R.T.Mullen, J.Lippincott-Schwartz. Ubiquitin signals autophagic degradation of cytosolic proteins and peroxisomes. Proc Natl Acad Sci U S A 2008; 105:20567–74; PMID:19074260; http://dx.doi.org/10.1073/pnas.0810611105
-
(2008)
Proc Natl Acad Sci U S A
, vol.105
, pp. 20567-20574
-
-
Kim, P.K.1
Hailey, D.W.2
Mullen, R.T.3
Lippincott-Schwartz, J.4
-
79
-
-
34548259958
-
p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy
-
17580304
-
S.Pankiv, T.H.Clausen, T.Lamark, A.Brech, J.A.Bruun, H.Outzen, A.Øvervatn, G.Bjørkøy, T.Johansen. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 2007; 282:24131–45; PMID:17580304; http://dx.doi.org/10.1074/jbc.M702824200
-
(2007)
J Biol Chem
, vol.282
, pp. 24131-24145
-
-
Pankiv, S.1
Clausen, T.H.2
Lamark, T.3
Brech, A.4
Bruun, J.A.5
Outzen, H.6
Øvervatn, A.7
Bjørkøy, G.8
Johansen, T.9
-
80
-
-
53049103308
-
Structural basis for sorting mechanism of p62 in selective autophagy
-
18524774
-
Y.Ichimura, T.Kumanomidou, Y.S.Sou, T.Mizushima, J.Ezaki, T.Ueno, E.Kominami, T.Yamane, K.Tanaka, M.Komatsu. Structural basis for sorting mechanism of p62 in selective autophagy. J Biol Chem 2008; 283:22847–57; PMID:18524774; http://dx.doi.org/10.1074/jbc.M802182200
-
(2008)
J Biol Chem
, vol.283
, pp. 22847-22857
-
-
Ichimura, Y.1
Kumanomidou, T.2
Sou, Y.S.3
Mizushima, T.4
Ezaki, J.5
Ueno, T.6
Kominami, E.7
Yamane, T.8
Tanaka, K.9
Komatsu, M.10
-
81
-
-
84886897936
-
Recruitment of the autophagic machinery to endosomes during infection is mediated by ubiquitin
-
24100292
-
N.Fujita, E.Morita, T.Itoh, A.Tanaka, M.Nakaoka, Y.Osada, T.?Umemoto, T.Saitoh, H.Nakatogawa, S.Kobayashi, ?Recruitment of the autophagic machinery to endosomes during infection is mediated by ubiquitin. J Cell Biol 2013; 203:115–28; PMID:24100292; http://dx.doi.org/10.1083/jcb.201304188
-
(2013)
J Cell Biol
, vol.203
, pp. 115-128
-
-
Fujita, N.1
Morita, E.2
Itoh, T.3
Tanaka, A.4
Nakaoka, M.5
Osada, Y.6
Umemoto, T.7
Saitoh, T.8
Nakatogawa, H.9
Kobayashi, S.10
-
82
-
-
34250802980
-
Lysosomal killing of Mycobacterium mediated by ubiquitin-derived peptides is enhanced by autophagy
-
17389386
-
S.Alonso, K.Pethe, D.G.Russell, G.E.Purdy. Lysosomal killing of Mycobacterium mediated by ubiquitin-derived peptides is enhanced by autophagy. Proc Natl Acad Sci U S A 2007; 104:6031–6; PMID:17389386; http://dx.doi.org/10.1073/pnas.0700036104
-
(2007)
Proc Natl Acad Sci U S A
, vol.104
, pp. 6031-6036
-
-
Alonso, S.1
Pethe, K.2
Russell, D.G.3
Purdy, G.E.4
-
83
-
-
34250899749
-
Ubiquitin trafficking to the lysosome: keeping the house tidy and getting rid of unwanted guests
-
17457035
-
G.E.Purdy, D.G.Russell. Ubiquitin trafficking to the lysosome:keeping the house tidy and getting rid of unwanted guests. Autophagy 2007; 3:399–401; PMID:17457035; http://dx.doi.org/10.4161/auto.4272
-
(2007)
Autophagy
, vol.3
, pp. 399-401
-
-
Purdy, G.E.1
Russell, D.G.2
-
84
-
-
84890293210
-
The globally disseminated M1T1 clone of group A Streptococcus evades autophagy for intracellular replication
-
24331465
-
T.C.Barnett, D.Liebl, L.M.Seymour, C.M.Gillen, J.Y.Lim, C.N.Larock, M.R.Davies, B.L.Schulz, V.Nizet, R.D.Teasdale, The globally disseminated M1T1 clone of group A Streptococcus evades autophagy for intracellular replication. Cell Host Microbe 2013; 14:675–82; PMID:24331465; http://dx.doi.org/10.1016/j.chom.2013.11.003
-
(2013)
Cell Host Microbe
, vol.14
, pp. 675-682
-
-
Barnett, T.C.1
Liebl, D.2
Seymour, L.M.3
Gillen, C.M.4
Lim, J.Y.5
Larock, C.N.6
Davies, M.R.7
Schulz, B.L.8
Nizet, V.9
Teasdale, R.D.10
-
85
-
-
84876850002
-
A bacterial protein promotes the recognition of the Legionella pneumophila vacuole by autophagy
-
23420491
-
A.A.Khweek, K.Caution, A.Akhter, B.A.Abdulrahman, M.Tazi, H.?Hassan, N.Majumdar, A.Doran, E.Guirado, L.S.Schlesinger, A bacterial protein promotes the recognition of the Legionella pneumophila vacuole by autophagy. Eur J Immunol 2013; 43:1333–44; PMID:23420491; http://dx.doi.org/10.1002/eji.201242835
-
(2013)
Eur J Immunol
, vol.43
, pp. 1333-1344
-
-
Khweek, A.A.1
Caution, K.2
Akhter, A.3
Abdulrahman, B.A.4
Tazi, M.5
Hassan, H.6
Majumdar, N.7
Doran, A.8
Guirado, E.9
Schlesinger, L.S.10
-
88
-
-
1842766144
-
Eukaryotic proteasomes cannot digest polyglutamine sequences and release them during degradation of polyglutamine-containing proteins
-
15068806
-
P.Venkatraman, R.Wetzel, M.Tanaka, N.Nukina, A.L.Goldberg. Eukaryotic proteasomes cannot digest polyglutamine sequences and release them during degradation of polyglutamine-containing proteins. Mol Cell 2004; 14:95–104; PMID:15068806; http://dx.doi.org/10.1016/S1097-2765(04)00151-0
-
(2004)
Mol Cell
, vol.14
, pp. 95-104
-
-
Venkatraman, P.1
Wetzel, R.2
Tanaka, M.3
Nukina, N.4
Goldberg, A.L.5
-
89
-
-
70350380897
-
Mimicking proteasomal release of polyglutamine peptides initiates aggregation and toxicity
-
19690053
-
M.Raspe, J.Gillis, H.Krol, S.Krom, K.Bosch, H.van Veen, E.Reits. Mimicking proteasomal release of polyglutamine peptides initiates aggregation and toxicity. J Cell Sci 2009; 122:3262–71; PMID:19690053; http://dx.doi.org/10.1242/jcs.045567
-
(2009)
J Cell Sci
, vol.122
, pp. 3262-3271
-
-
Raspe, M.1
Gillis, J.2
Krol, H.3
Krom, S.4
Bosch, K.5
van Veen, H.6
Reits, E.7
-
90
-
-
33947164372
-
Puromycin-sensitive aminopeptidase is the major peptidase responsible for digesting polyglutamine sequences released by proteasomes during protein degradation
-
17318184
-
N.Bhutani, P.Venkatraman, A.L.Goldberg. Puromycin-sensitive aminopeptidase is the major peptidase responsible for digesting polyglutamine sequences released by proteasomes during protein degradation. EMBO J 2007; 26:1385–96; PMID:17318184; http://dx.doi.org/10.1038/sj.emboj.7601592
-
(2007)
EMBO J
, vol.26
, pp. 1592-1596
-
-
Bhutani, N.1
Venkatraman, P.2
Goldberg, A.L.3
-
91
-
-
78149277418
-
Puromycin-sensitive aminopeptidase protects against aggregation-prone proteins via autophagy
-
F.M.Menzies, R.Hourez, S.Imarisio, M.Raspe, O.Sadiq, D.Chandraratna, C.O'Kane, K.L.Rock, E.Reits, A.L.Goldberg, Puromycin-sensitive aminopeptidase protects against aggregation-prone proteins via autophagy. Hum Mol Genet 2010; 19:4573–86; PMID:20829225; http://dx.doi.org/10.1093/hmg/ddq385
-
(2010)
Hum Mol Genet
, vol.19
, pp. 1086-1093
-
-
Menzies, F.M.1
Hourez, R.2
Imarisio, S.3
Raspe, M.4
Sadiq, O.5
Chandraratna, D.6
O'Kane, C.7
Rock, K.L.8
Reits, E.9
Goldberg, A.L.10
-
92
-
-
0028800171
-
Isolation and characterization of yeast mutants in the cytoplasm to vacuole protein targeting pathway
-
T.M.Harding, K.A.Morano, S.V.Scott, D.J.Klionsky. Isolation and characterization of yeast mutants in the cytoplasm to vacuole protein targeting pathway. J Cell Biol 1995; 131:591–602; PMID:7593182; http://dx.doi.org/10.1083/jcb.131.3.591
-
(1995)
J Cell Biol
, vol.131
, pp. 1083-1602
-
-
Harding, T.M.1
Morano, K.A.2
Scott, S.V.3
Klionsky, D.J.4
-
93
-
-
0035185530
-
Specific inhibitor of puromycin-sensitive aminopeptidase with a homophthalimide skeleton: identification of the target molecule and a structure-activity relationship study
-
M.Komoda, H.Kakuta, H.Takahashi, Y.Fujimoto, S.Kadoya, F.Kato, Y.Hashimoto. Specific inhibitor of puromycin-sensitive aminopeptidase with a homophthalimide skeleton:identification of the target molecule and a structure-activity relationship study. Bioorg Med Chem 2001; 9:121–31; PMID:11197332; http://dx.doi.org/10.1016/S0968–0896(00)00231–5
-
(2001)
Bioorg Med Chem
, vol.9
, pp. 231-235
-
-
Komoda, M.1
Kakuta, H.2
Takahashi, H.3
Fujimoto, Y.4
Kadoya, S.5
Kato, F.6
Hashimoto, Y.7
-
94
-
-
0037421050
-
Fluorescent bioprobes for visualization of puromycin-sensitive aminopeptidase in living cells
-
H.Kakuta, Y.Koiso, K.Nagasawa, Y.Hashimoto. Fluorescent bioprobes for visualization of puromycin-sensitive aminopeptidase in living cells. Bioorg Med Chem Lett 2003; 13:83–6; PMID:12467622; http://dx.doi.org/10.1016/S0960–894X(02)00845–4
-
(2003)
Bioorg Med Chem Lett
, vol.13
, pp. 844-845
-
-
Kakuta, H.1
Koiso, Y.2
Nagasawa, K.3
Hashimoto, Y.4
-
95
-
-
84876086849
-
Class IA PI3K p110beta subunit promotes autophagy through Rab5 small GTPase in response to growth factor limitation
-
Z.Dou, J.A.Pan, H.A.Dbouk, L.M.Ballou, J.L.DeLeon, Y.Fan, J.S.Chen, Z.Liang, G.Li, J.M.Backer, Class IA PI3K p110beta subunit promotes autophagy through Rab5 small GTPase in response to growth factor limitation. Mol Cell 2013; 50:29–42; PMID:23434372; http://dx.doi.org/10.1016/j.molcel.2013.01.022
-
(2013)
Mol Cell
, vol.50
, pp. 1016-1042
-
-
Dou, Z.1
Pan, J.A.2
Dbouk, H.A.3
Ballou, L.M.4
DeLeon, J.L.5
Fan, Y.6
Chen, J.S.7
Liang, Z.8
Li, G.9
Backer, J.M.10
-
96
-
-
80054978956
-
Rab5 and class III phosphoinositide 3-kinase Vps34 are involved in hepatitis C virus NS4B-induced autophagy
-
W.C.Su, T.C.Chao, Y.L.Huang, S.C.Weng, K.S.Jeng, M.M.Lai. Rab5 and class III phosphoinositide 3-kinase Vps34 are involved in hepatitis C virus NS4B-induced autophagy. J Virol 2011; 85:10561–71; PMID:21835792; http://dx.doi.org/10.1128/JVI.00173–11
-
(2011)
J Virol
, vol.85
, pp. 111-173
-
-
Su, W.C.1
Chao, T.C.2
Huang, Y.L.3
Weng, S.C.4
Jeng, K.S.5
Lai, M.M.6
-
97
-
-
46249127490
-
Rab5 modulates aggregation and toxicity of mutant huntingtin through macroautophagy in cell and fly models of Huntington disease
-
B.Ravikumar, S.Imarisio, S.Sarkar, C.J.O'Kane, D.C.Rubinsztein. Rab5 modulates aggregation and toxicity of mutant huntingtin through macroautophagy in cell and fly models of Huntington disease. J Cell Sci 2008; 121:1649–60; PMID:18430781; http://dx.doi.org/10.1242/jcs.025726
-
(2008)
J Cell Sci
, vol.121
, pp. 1242-1260
-
-
Ravikumar, B.1
Imarisio, S.2
Sarkar, S.3
O'Kane, C.J.4
Rubinsztein, D.C.5
-
98
-
-
0029022259
-
Co-operative regulation of endocytosis by three Rab5 isoforms
-
C.Bucci, A.Lutcke, O.Steele-Mortimer, V.M.Olkkonen, P.Dupree, M.Chiariello, C.B.Bruni, K.Simons, M.Zerial. Co-operative regulation of endocytosis by three Rab5 isoforms. FEBS Lett 1995; 366:65–71; PMID:7789520; http://dx.doi.org/10.1016/0014–5793(95)00477-Q
-
(1995)
FEBS Lett
, vol.366
, pp. 0014-5793
-
-
Bucci, C.1
Lutcke, A.2
Steele-Mortimer, O.3
Olkkonen, V.M.4
Dupree, P.5
Chiariello, M.6
Bruni, C.B.7
Simons, K.8
Zerial, M.9
-
99
-
-
1942469322
-
Analysis of clathrin-mediated endocytosis of epidermal growth factor receptor by RNA interference
-
14985334
-
F.Huang, A.Khvorova, W.Marshall, A.Sorkin. Analysis of clathrin-mediated endocytosis of epidermal growth factor receptor by RNA interference. J Biol Chem 2004; 279:16657–61; PMID:14985334; http://dx.doi.org/10.1074/jbc.C400046200
-
(2004)
J Biol Chem
, vol.279
, pp. 16657-16661
-
-
Huang, F.1
Khvorova, A.2
Marshall, W.3
Sorkin, A.4
-
100
-
-
33748792527
-
Insulin-stimulated Interaction between insulin receptor substrate 1 and p85alpha and activation of protein kinase B/Akt require Rab5
-
16880210
-
X.Su, I.J.Lodhi, A.R.Saltiel, P.D.Stahl. Insulin-stimulated Interaction between insulin receptor substrate 1 and p85alpha and activation of protein kinase B/Akt require Rab5. J Biol Chem 2006; 281:27982–90; PMID:16880210; http://dx.doi.org/10.1074/jbc.M602873200
-
(2006)
J Biol Chem
, vol.281
, pp. 27982-27990
-
-
Su, X.1
Lodhi, I.J.2
Saltiel, A.R.3
Stahl, P.D.4
-
101
-
-
0033174034
-
Phosphatidylinositol-3-OH kinases are Rab5 effectors
-
10559924
-
S.Christoforidis, M.Miaczynska, K.Ashman, M.Wilm, L.Zhao, S.C.Yip, M.D.Waterfield, J.M.Backer, M.Zerial. Phosphatidylinositol-3-OH kinases are Rab5 effectors. Nature cell biology 1999; 1:249–52; PMID:10559924; http://dx.doi.org/10.1038/12075
-
(1999)
Nature cell biology
, vol.1
, pp. 249-252
-
-
Christoforidis, S.1
Miaczynska, M.2
Ashman, K.3
Wilm, M.4
Zhao, L.5
Yip, S.C.6
Waterfield, M.D.7
Backer, J.M.8
Zerial, M.9
-
102
-
-
0026554965
-
GTP-binding proteins in intracellular transport
-
14731525
-
S.R.Pfeffer. GTP-binding proteins in intracellular transport. Trends Cell Biol 1992; 2:41–6; PMID:14731525; http://dx.doi.org/10.1016/0962-8924(92)90161-F
-
(1992)
Trends Cell Biol
, vol.2
, pp. 41-46
-
-
Pfeffer, S.R.1
-
103
-
-
0024276910
-
Do GTPases direct membrane traffic in secretion?
-
2836065
-
H.R.Bourne. Do GTPases direct membrane traffic in secretion? Cell 1988; 53:669–71; PMID:2836065; http://dx.doi.org/10.1016/0092-8674(88)90081-5
-
(1988)
Cell
, vol.53
, pp. 669-671
-
-
Bourne, H.R.1
-
104
-
-
68049105101
-
Rab GTPases as coordinators of vesicle traffic
-
19603039
-
H.Stenmark. Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol 2009; 10:513–25; PMID:19603039; http://dx.doi.org/10.1038/nrm2728
-
(2009)
Nat Rev Mol Cell Biol
, vol.10
, pp. 513-525
-
-
Stenmark, H.1
-
105
-
-
26944460079
-
A GTPase-activating protein controls Rab5 function in endocytic trafficking
-
16086013
-
A.K.Haas, E.Fuchs, R.Kopajtich, F.A.Barr. A GTPase-activating protein controls Rab5 function in endocytic trafficking. Nat Cell Biol 2005; 7:887–93; PMID:16086013; http://dx.doi.org/10.1038/ncb1290
-
(2005)
Nat Cell Biol
, vol.7
, pp. 887-893
-
-
Haas, A.K.1
Fuchs, E.2
Kopajtich, R.3
Barr, F.A.4
-
106
-
-
78751672975
-
Autophagy in immunity and inflammation
-
21248839
-
B.Levine, N.Mizushima, H.W.Virgin. Autophagy in immunity and inflammation. Nature 2011; 469:323–35; PMID:21248839; http://dx.doi.org/10.1038/nature09782
-
(2011)
Nature
, vol.469
, pp. 323-335
-
-
Levine, B.1
Mizushima, N.2
Virgin, H.W.3
-
107
-
-
79951910694
-
Autophagy in immunity and cell-autonomous defense against intracellular microbes
-
21349088
-
V.Deretic. Autophagy in immunity and cell-autonomous defense against intracellular microbes. Immunol Rev 2011; 240:92–104; PMID:21349088; http://dx.doi.org/10.1111/j.1600-065X.2010.00995.x
-
(2011)
Immunol Rev
, vol.240
, pp. 92-104
-
-
Deretic, V.1
-
108
-
-
84867238654
-
Autophagy: resetting glutamine-dependent metabolism and oxygen consumption
-
22906967
-
T.C.Lin, Y.R.Chen, E.Kensicki, A.Y.Li, M.Kong, Y.Li, R.P.Mohney, H.M.Shen, B.Stiles, N.Mizushima, Autophagy:resetting glutamine-dependent metabolism and oxygen consumption. Autophagy 2012; 8:1477–93; PMID:22906967; http://dx.doi.org/10.4161/auto.21228
-
(2012)
Autophagy
, vol.8
, pp. 1477-1493
-
-
Lin, T.C.1
Chen, Y.R.2
Kensicki, E.3
Li, A.Y.4
Kong, M.5
Li, Y.6
Mohney, R.P.7
Shen, H.M.8
Stiles, B.9
Mizushima, N.10
-
109
-
-
0037627408
-
Mycobacterium tuberculosis glycosylated phosphatidylinositol causes phagosome maturation arrest
-
12702770
-
R.A.Fratti, J.Chua, I.Vergne, V.Deretic. Mycobacterium tuberculosis glycosylated phosphatidylinositol causes phagosome maturation arrest. Proc Natl Acad Sci U S A 2003; 100:5437–42; PMID:12702770; http://dx.doi.org/10.1073/pnas.0737613100
-
(2003)
Proc Natl Acad Sci U S A
, vol.100
, pp. 5437-5442
-
-
Fratti, R.A.1
Chua, J.2
Vergne, I.3
Deretic, V.4
-
110
-
-
84880831979
-
Secreted acid phosphatase (SapM) of Mycobacterium tuberculosis is indispensable for arresting phagosomal maturation and growth of the pathogen in guinea pig tissues
-
23923000
-
R.V.Puri, P.V.Reddy, A.K.Tyagi. Secreted acid phosphatase (SapM) of Mycobacterium tuberculosis is indispensable for arresting phagosomal maturation and growth of the pathogen in guinea pig tissues. PLoS One 2013; 8:e70514; PMID:23923000; http://dx.doi.org/10.1371/journal.pone.0070514
-
(2013)
PLoS One
, vol.8
, pp. 70514
-
-
Puri, R.V.1
Reddy, P.V.2
Tyagi, A.K.3
-
111
-
-
38849091401
-
Characterization of a Listeria monocytogenes protein interfering with Rab5a
-
18088303
-
C.Alvarez-Dominguez, F.Madrazo-Toca, L.Fernandez-Prieto, J.?Vandekerckhove, E.Pareja, R.Tobes, M.T.Gomez-Lopez, E.Del Cerro-Vadillo, M.Fresno, F.Leyva-Cobián, Characterization of a Listeria monocytogenes protein interfering with Rab5a. Traffic 2008; 9:325–37; PMID:18088303; http://dx.doi.org/10.1111/j.1600-0854.2007.00683.x
-
(2008)
Traffic
, vol.9
, pp. 325-337
-
-
Alvarez-Dominguez, C.1
Madrazo-Toca, F.2
Fernandez-Prieto, L.3
Vandekerckhove, J.4
Pareja, E.5
Tobes, R.6
Gomez-Lopez, M.T.7
Del Cerro-Vadillo, E.8
Fresno, M.9
Leyva-Cobián, F.10
-
112
-
-
32644434386
-
Huntingtin-HAP40 complex is a novel Rab5 effector that regulates early endosome motility and is up-regulated in Huntington's disease
-
16476778
-
A.Pal, F.Severin, B.Lommer, A.Shevchenko, M.Zerial. Huntingtin-HAP40 complex is a novel Rab5 effector that regulates early endosome motility and is up-regulated in Huntington's disease. J Cell Biol 2006; 172:605–18; PMID:16476778; http://dx.doi.org/10.1083/jcb.200509091
-
(2006)
J Cell Biol
, vol.172
, pp. 605-618
-
-
Pal, A.1
Severin, F.2
Lommer, B.3
Shevchenko, A.4
Zerial, M.5
-
113
-
-
0025362656
-
In exocrine pancreas, the basolateral endocytic pathway converges with the autophagic pathway immediately after the early endosome
-
2166050
-
J.Tooze, M.Hollinshead, T.Ludwig, K.Howell, B.Hoflack, H.Kern. In exocrine pancreas, the basolateral endocytic pathway converges with the autophagic pathway immediately after the early endosome. J Cell Biol 1990; 111:329–45; PMID:2166050; http://dx.doi.org/10.1083/jcb.111.2.329
-
(1990)
J Cell Biol
, vol.111
, pp. 329-345
-
-
Tooze, J.1
Hollinshead, M.2
Ludwig, T.3
Howell, K.4
Hoflack, B.5
Kern, H.6
-
114
-
-
26844531363
-
Maturation of autophagic vacuoles in Mammalian cells
-
16874026
-
E.L.Eskelinen. Maturation of autophagic vacuoles in Mammalian cells. Autophagy 2005; 1:1–10; PMID:16874026; http://dx.doi.org/10.4161/auto.1.1.1270
-
(2005)
Autophagy
, vol.1
, pp. 1-10
-
-
Eskelinen, E.L.1
-
115
-
-
57649195400
-
Autophagy and multivesicular bodies: two closely related partners
-
19008921
-
C.M.Fader, M.I.Colombo. Autophagy and multivesicular bodies:two closely related partners. Cell Death Differ 2009; 16:70–8; PMID:19008921; http://dx.doi.org/10.1038/cdd.2008.168
-
(2009)
Cell Death Differ
, vol.16
, pp. 70-78
-
-
Fader, C.M.1
Colombo, M.I.2
-
116
-
-
23944437499
-
An enzymatic cascade of Rab5 effectors regulates ?phosphoinositide turnover in the endocytic pathway
-
16103228
-
H.W.Shin, M.Hayashi, S.Christoforidis, S.Lacas-Gervais, S.Hoepfner, M.R.Wenk, J.Modregger, S.Uttenweiler-Joseph, M.Wilm, A.Nystuen, An enzymatic cascade of Rab5 effectors regulates ?phosphoinositide turnover in the endocytic pathway. J Cell Biol 2005; 170:607–18; PMID:16103228; http://dx.doi.org/10.1083/jcb.200505128
-
(2005)
J Cell Biol
, vol.170
, pp. 607-618
-
-
Shin, H.W.1
Hayashi, M.2
Christoforidis, S.3
Lacas-Gervais, S.4
Hoepfner, S.5
Wenk, M.R.6
Modregger, J.7
Uttenweiler-Joseph, S.8
Wilm, M.9
Nystuen, A.10
-
117
-
-
0035494493
-
Distinct roles of class I and class III phosphatidylinositol 3-kinases in phagosome formation and maturation
-
11581283
-
O.V.Vieira, R.J.Botelho, L.Rameh, S.M.Brachmann, T.Matsuo, H.W.?Davidson, A.Schreiber, J.M.Backer, L.C.Cantley, S.Grinstein. Distinct roles of class I and class III phosphatidylinositol 3-kinases in phagosome formation and maturation. J Cell Biol 2001; 155:19–25; PMID:11581283; http://dx.doi.org/10.1083/jcb.200107069
-
(2001)
J Cell Biol
, vol.155
, pp. 19-25
-
-
Vieira, O.V.1
Botelho, R.J.2
Rameh, L.3
Brachmann, S.M.4
Matsuo, T.5
Davidson, H.W.6
Schreiber, A.7
Backer, J.M.8
Cantley, L.C.9
Grinstein, S.10
-
118
-
-
0032510559
-
A lipid associated with the antiphospholipid syndrome regulates endosome structure and function
-
9515966
-
T.Kobayashi, E.Stang, K.S.Fang, P.de Moerloose, R.G.Parton, J.?Gruenberg. A lipid associated with the antiphospholipid syndrome regulates endosome structure and function. Nature 1998; 392:193–7; PMID:9515966; http://dx.doi.org/10.1038/32440
-
(1998)
Nature
, vol.392
, pp. 193-197
-
-
Kobayashi, T.1
Stang, E.2
Fang, K.S.3
de Moerloose, P.4
Parton, R.G.5
Gruenberg, J.6
-
119
-
-
0141433284
-
PI3P signaling regulates receptor sorting but not transport in the endosomal pathway
-
12975344
-
A.Petiot, J.Faure, H.Stenmark, J.Gruenberg. PI3P signaling regulates receptor sorting but not transport in the endosomal pathway. J Cell Biol 2003; 162:971–9; PMID:12975344; http://dx.doi.org/10.1083/jcb.200303018
-
(2003)
J Cell Biol
, vol.162
, pp. 971-979
-
-
Petiot, A.1
Faure, J.2
Stenmark, H.3
Gruenberg, J.4
-
120
-
-
0032944031
-
Multivesicular body morphogenesis requires phosphatidyl-inositol 3-kinase activity
-
9889123
-
M.Fernandez-Borja, R.Wubbolts, J.Calafat, H.Janssen, N.Divecha, S.Dusseljee, J.Neefjes. Multivesicular body morphogenesis requires phosphatidyl-inositol 3-kinase activity. Curr Biol 1999; 9:55–8; PMID:9889123; http://dx.doi.org/10.1016/S0960-9822(99)80048-7
-
(1999)
Curr Biol
, vol.9
, pp. 55-58
-
-
Fernandez-Borja, M.1
Wubbolts, R.2
Calafat, J.3
Janssen, H.4
Divecha, N.5
Dusseljee, S.6
Neefjes, J.7
-
121
-
-
84862793994
-
Rabankyrin-5 interacts with EHD1 and Vps26 to regulate endocytic trafficking and retromer function
-
22284051
-
J.Zhang, C.Reiling, J.B.Reinecke, I.Prislan, L.A.Marky, P.L.Sorgen, N.Naslavsky, S.Caplan. Rabankyrin-5 interacts with EHD1 and Vps26 to regulate endocytic trafficking and retromer function. Traffic 2012; 13:745–57; PMID:22284051; http://dx.doi.org/10.1111/j.1600-0854.2012.01334.x
-
(2012)
Traffic
, vol.13
, pp. 745-757
-
-
Zhang, J.1
Reiling, C.2
Reinecke, J.B.3
Prislan, I.4
Marky, L.A.5
Sorgen, P.L.6
Naslavsky, N.7
Caplan, S.8
-
122
-
-
0027938009
-
Abrogation of gamma interferon-induced inhibition of Ehrlichia chaffeensis infection in human monocytes with iron-transferrin
-
7927758
-
R.E.Barnewall, Y.Rikihisa. Abrogation of gamma interferon-induced inhibition of Ehrlichia chaffeensis infection in human monocytes with iron-transferrin. Infect Immun 1994; 62:4804–10; PMID:7927758
-
(1994)
Infect Immun
, vol.62
, pp. 4804-4810
-
-
Barnewall, R.E.1
Rikihisa, Y.2
-
123
-
-
0031015273
-
Ultrastructural and antigenic characterization of a granulocytic ehrlichiosis agent directly isolated and stably cultivated from a patient in New York state
-
8985223
-
Y.Rikihisa, N.Zhi, G.P.Wormser, B.Wen, H.W.Horowitz, K.E.Hechemy. Ultrastructural and antigenic characterization of a granulocytic ehrlichiosis agent directly isolated and stably cultivated from a patient in New York state. J Infect Dis 1997; 175:210–3; PMID:8985223; http://dx.doi.org/10.1093/infdis/175.1.210
-
(1997)
J Infect Dis
, vol.175
, pp. 210-213
-
-
Rikihisa, Y.1
Zhi, N.2
Wormser, G.P.3
Wen, B.4
Horowitz, H.W.5
Hechemy, K.E.6
-
124
-
-
0031717461
-
Characterization of monoclonal antibodies to the 44-kgdalton major outer membrane protein of the human granulocytic ehrlichiosis agent
-
9774579
-
H.Y.Kim, Y.Rikihisa. Characterization of monoclonal antibodies to the 44-kgdalton major outer membrane protein of the human granulocytic ehrlichiosis agent. J Clin Microbiol 1998; 36:3278–84; PMID:9774579
-
(1998)
J Clin Microbiol
, vol.36
, pp. 3278-3284
-
-
Kim, H.Y.1
Rikihisa, Y.2
-
125
-
-
0035105295
-
The stress-induced MAP kinase p38 regulates endocytic trafficking via the GDI:Rab5 complex
-
11239470
-
V.Cavalli, F.Vilbois, M.Corti, M.J.Marcote, K.Tamura, M.Karin, S.Arkinstall, J.Gruenberg. The stress-induced MAP kinase p38 regulates endocytic trafficking via the GDI:Rab5 complex. Mol Cell 2001; 7:421–32; PMID:11239470; http://dx.doi.org/10.1016/S1097-2765(01)00189-7
-
(2001)
Mol Cell
, vol.7
, pp. 421-432
-
-
Cavalli, V.1
Vilbois, F.2
Corti, M.3
Marcote, M.J.4
Tamura, K.5
Karin, M.6
Arkinstall, S.7
Gruenberg, J.8
-
126
-
-
79955163875
-
A practical guide to evaluating colocalization in biological microscopy
-
21209361
-
K.W.Dunn, M.M.Kamocka, J.H.McDonald. A practical guide to evaluating colocalization in biological microscopy. Am J Physiol Cell Physiol 2011; 300:C723–42; PMID:21209361; http://dx.doi.org/10.1152/ajpcell.00462.2010
-
(2011)
Am J Physiol Cell Physiol
, vol.300
, pp. C723-C742
-
-
Dunn, K.W.1
Kamocka, M.M.2
McDonald, J.H.3
-
127
-
-
33745771590
-
Intra-leukocyte expression of two-component systems in Ehrlichia chaffeensis and Anaplasma phagocytophilum and effects of the histidine kinase inhibitor closantel
-
16882029
-
Z.Cheng, Y.Kumagai, M.Lin, C.Zhang, Y.Rikihisa. Intra-leukocyte expression of two-component systems in Ehrlichia chaffeensis and Anaplasma phagocytophilum and effects of the histidine kinase inhibitor closantel. Cell Microbiol 2006; 8:1241–52; PMID:16882029; http://dx.doi.org/10.1111/j.1462-5822.2006.00704.x
-
(2006)
Cell Microbiol
, vol.8
, pp. 1241-1252
-
-
Cheng, Z.1
Kumagai, Y.2
Lin, M.3
Zhang, C.4
Rikihisa, Y.5
-
128
-
-
0016683921
-
Competition between Chlamydia psittaci and L cells for host isoleucine pools: a limiting factor in chlamydial multiplication
-
1095493
-
T.P.Hatch. Competition between Chlamydia psittaci and L cells for host isoleucine pools:a limiting factor in chlamydial multiplication. Infect Immun 1975; 12:211–20; PMID:1095493
-
(1975)
Infect Immun
, vol.12
, pp. 211-220
-
-
Hatch, T.P.1
-
129
-
-
71049118063
-
Rab5 isoforms differentially regulate the trafficking and degradation of epidermal growth factor receptors
-
19723633
-
P.I.Chen, C.Kong, X.Su, P.D.Stahl. Rab5 isoforms differentially regulate the trafficking and degradation of epidermal growth factor receptors. J Biol Chem 2009; 284:30328–38; PMID:19723633; http://dx.doi.org/10.1074/jbc.M109.034546
-
(2009)
J Biol Chem
, vol.284
, pp. 30328-30338
-
-
Chen, P.I.1
Kong, C.2
Su, X.3
Stahl, P.D.4
-
130
-
-
58449097407
-
Liver transcriptome profiles associated with strain-specific Ehrlichia chaffeensis-induced hepatitis in SCID mice
-
19001077
-
K.Miura, Y.Rikihisa. Liver transcriptome profiles associated with strain-specific Ehrlichia chaffeensis-induced hepatitis in SCID mice. Infect Immun 2009; 77:245–54; PMID:19001077; http://dx.doi.org/10.1128/IAI.00979-08
-
(2009)
Infect Immun
, vol.77
, pp. 245-254
-
-
Miura, K.1
Rikihisa, Y.2
-
131
-
-
33846911072
-
Enteropathogenic Escherichia coli effector EspF interacts with host protein Abcf2
-
17064289
-
J.P.Nougayrede, G.H.Foster, M.S.Donnenberg. Enteropathogenic Escherichia coli effector EspF interacts with host protein Abcf2. Cell Microbiol 2007; 9:680–93; PMID:17064289; http://dx.doi.org/10.1111/j.1462-5822.2006.00820.x
-
(2007)
Cell Microbiol
, vol.9
, pp. 680-693
-
-
Nougayrede, J.P.1
Foster, G.H.2
Donnenberg, M.S.3
-
132
-
-
71649087199
-
A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation
-
19898463
-
M.Hayashi-Nishino, N.Fujita, T.Noda, A.Yamaguchi, T.?Yoshimori, A.Yamamoto. A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation. Nat Cell Biol 2009; 11:1433–7; PMID:19898463; http://dx.doi.org/10.1038/ncb1991
-
(2009)
Nat Cell Biol
, vol.11
, pp. 1433-1437
-
-
Hayashi-Nishino, M.1
Fujita, N.2
Noda, T.3
Yamaguchi, A.4
Yoshimori, T.5
Yamamoto, A.6
|