메뉴 건너뛰기




Volumn 55, Issue 7, 2011, Pages 2372-2387

Practical variable selection for generalized additive models

Author keywords

Generalized additive model; Nonnegative garrote estimator; Penalized thin plate regression spline; Practical variable selection; Shrinkage smoother

Indexed keywords

BETA CAROTENE; COMPONENT SELECTION; COVARIATES; CROSS-SECTIONAL STUDY; EMPIRICAL PERFORMANCE; EXHAUSTIVE SEARCH; EXTENSIVE SIMULATIONS; GENERALIZED ADDITIVE MODEL; NONNEGATIVE GARROTE ESTIMATOR; NONPARAMETRIC TESTING; PENALIZED THIN PLATE REGRESSION SPLINE; PRACTICAL GUIDELINES; PRACTICAL VARIABLE SELECTION; SELECTION PROCEDURES; SINGLE-STEP; VARIABLE SELECTION;

EID: 79953654016     PISSN: 01679473     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.csda.2011.02.004     Document Type: Article
Times cited : (570)

References (44)
  • 2
    • 79953661967 scopus 로고    scopus 로고
    • Simultaneous selection of variables and smoothing parameters in structured additive regression models
    • C. Belitz, and S. Lang Simultaneous selection of variables and smoothing parameters in structured additive regression models Computational Statistics and Data Analysis 51 2008 6044 6059
    • (2008) Computational Statistics and Data Analysis , vol.51 , pp. 6044-6059
    • Belitz, C.1    Lang, S.2
  • 3
    • 37249080703 scopus 로고    scopus 로고
    • A comparison of methods for the fitting of generalized additive models
    • H. Binder, and G. Tutz A comparison of methods for the fitting of generalized additive models Statistics and Computing 18 2008 87 99
    • (2008) Statistics and Computing , vol.18 , pp. 87-99
    • Binder, H.1    Tutz, G.2
  • 4
    • 84874257732 scopus 로고
    • Better subset regression using the nonnegative garrote
    • L. Breiman Better subset regression using the nonnegative garrote Technometrics 37 1995 373 384
    • (1995) Technometrics , vol.37 , pp. 373-384
    • Breiman, L.1
  • 5
    • 77953318018 scopus 로고    scopus 로고
    • Twin boosting: Improved feature selection and prediction
    • P. Bhlmann, and T. Hothorn Twin boosting: improved feature selection and prediction Statistics and Computing 20 2010 119 138
    • (2010) Statistics and Computing , vol.20 , pp. 119-138
    • Bhlmann, P.1    Hothorn, T.2
  • 7
    • 79953659636 scopus 로고    scopus 로고
    • Variable selection in additive models by nonnegative garrote
    • E. Cantoni, J. Flemming, and E. Ronchetti Variable selection in additive models by nonnegative garrote Statistical Modelling 11 2011 165 180
    • (2011) Statistical Modelling , vol.11 , pp. 165-180
    • Cantoni, E.1    Flemming, J.2    Ronchetti, E.3
  • 8
    • 1042263216 scopus 로고    scopus 로고
    • Degrees-of-freedom tests for smoothing splines
    • DOI 10.1093/biomet/89.2.251
    • E. Cantoni, and T. Hastie Degrees of freedom tests for smoothing splines Biometrika 89 2002 251 263 (Pubitemid 41311979)
    • (2002) Biometrika , vol.89 , Issue.2 , pp. 251-263
    • Cantoni, E.1    Hastie, T.2
  • 10
    • 58549097639 scopus 로고    scopus 로고
    • Shrinkage and model selection with correlated variables via weighted fusion
    • Z.J. Daye, and X.J. Jeng Shrinkage and model selection with correlated variables via weighted fusion Computational Statistics and Data Analysis 53 2009 1284 1298
    • (2009) Computational Statistics and Data Analysis , vol.53 , pp. 1284-1298
    • Daye, Z.J.1    Jeng, X.J.2
  • 14
    • 0037202446 scopus 로고    scopus 로고
    • Generalized linear and generalized additive models in studies of species distributions: Setting the scene
    • DOI 10.1016/S0304-3800(02)00204-1, PII S0304380002002041
    • A. Guisan, T.C. Edwards, and T. Hastie Generalized linear and generalized additive models in studies of species distributions: setting the scene Ecological Modelling 157 2002 89 100 (Pubitemid 35255408)
    • (2002) Ecological Modelling , vol.157 , Issue.2-3 , pp. 89-100
    • Guisan, A.1    Edwards Jr., T.C.2    Hastie, T.3
  • 15
    • 84909719647 scopus 로고
    • How far are automatically chosen regression smoothing parameters from their optimum?
    • W. Hrdle, P. Hall, and J.S. Marron How far are automatically chosen regression smoothing parameters from their optimum? Journal of the American Statistical Association 83 1988 86 95
    • (1988) Journal of the American Statistical Association , vol.83 , pp. 86-95
    • Hrdle, W.1    Hall, P.2    Marron, J.S.3
  • 20
    • 0000406385 scopus 로고
    • A correspondence between Bayesian estimation of stochastic processes and smoothing by splines
    • G. Kimeldorf, and G. Wahba A correspondence between Bayesian estimation of stochastic processes and smoothing by splines Annals of Mathematical Statistics 41 1970 495 502
    • (1970) Annals of Mathematical Statistics , vol.41 , pp. 495-502
    • Kimeldorf, G.1    Wahba, G.2
  • 21
    • 33847350805 scopus 로고    scopus 로고
    • Component selection and smoothing in multivariate nonparametric regression
    • Y. Lin, and H.H. Zhang Component selection and smoothing in multivariate nonparametric regression Annals of Statistics 34 2006 2272 2297
    • (2006) Annals of Statistics , vol.34 , pp. 2272-2297
    • Lin, Y.1    Zhang, H.H.2
  • 22
    • 77951679221 scopus 로고    scopus 로고
    • Penalised regression splines: Theory and application to medical research
    • G. Marra, and R. Radice Penalised regression splines: theory and application to medical research Statistical Methods in Medical Research 19 2010 107 125
    • (2010) Statistical Methods in Medical Research , vol.19 , pp. 107-125
    • Marra, G.1    Radice, R.2
  • 25
    • 77955390403 scopus 로고    scopus 로고
    • Bayesian projection approaches to variable selection in generalized linear models
    • D.J. Nott, and C. Leng Bayesian projection approaches to variable selection in generalized linear models Computational Statistics and Data Analysis 54 2010 3227 3241
    • (2010) Computational Statistics and Data Analysis , vol.54 , pp. 3227-3241
    • Nott, D.J.1    Leng, C.2
  • 26
    • 84863304598 scopus 로고    scopus 로고
    • R: A language and environment for statistical computing
    • R Development Core Team Vienna, Austria. ISBN: 3-900051-07-0. URL:
    • R Development Core Team, 2010. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN: 3-900051-07-0. URL: http://www.R-project.org.
    • (2010) R Foundation for Statistical Computing
  • 28
    • 40249103367 scopus 로고    scopus 로고
    • Size and power of tests for a zero random effect variance or polynomial regression in additive and linear mixed models
    • F. Scheipl, S. Greven, and H. Kuchenhoff Size and power of tests for a zero random effect variance or polynomial regression in additive and linear mixed models Computational Statistics and Data Analysis 52 2008 3283 3299
    • (2008) Computational Statistics and Data Analysis , vol.52 , pp. 3283-3299
    • Scheipl, F.1    Greven, S.2    Kuchenhoff, H.3
  • 30
    • 34548232392 scopus 로고    scopus 로고
    • Input selection and shrinkage in multiresponse linear regression
    • DOI 10.1016/j.csda.2007.01.025, PII S0167947307000205
    • T. Simil, and J. Tikka Input selection and shrinkage in multiresponse linear regression Computational Statistics and Data Analysis 52 2007 406 422 (Pubitemid 47331720)
    • (2007) Computational Statistics and Data Analysis , vol.52 , Issue.1 , pp. 406-422
    • Simila, T.1    Tikka, J.2
  • 32
    • 33845509035 scopus 로고    scopus 로고
    • Generalized additive modeling with implicit variable selection by likelihood-based boosting
    • G. Tutz, and H. Binder Generalized additive modeling with implicit variable selection by likelihood-based boosting Biometrics 62 2006 961 971
    • (2006) Biometrics , vol.62 , pp. 961-971
    • Tutz, G.1    Binder, H.2
  • 33
    • 34547142781 scopus 로고    scopus 로고
    • Boosting ridge regression
    • DOI 10.1016/j.csda.2006.11.041, PII S0167947306004749
    • G. Tutz, and H. Binder Boosting ridge regression Computational Statistics and Data Analysis 51 2007 6044 6059 (Pubitemid 47126005)
    • (2007) Computational Statistics and Data Analysis , vol.51 , Issue.12 , pp. 6044-6059
    • Tutz, G.1    Binder, H.2
  • 35
    • 0000608177 scopus 로고
    • A comparison of GCV and GML for choosing the smoothing parameter in the generalized spline smoothing problem
    • G. Wahba A comparison of GCV and GML for choosing the smoothing parameter in the generalized spline smoothing problem The Annals of Statistics 13 1985 1378 1402
    • (1985) The Annals of Statistics , vol.13 , pp. 1378-1402
    • Wahba, G.1
  • 38
    • 42149179133 scopus 로고    scopus 로고
    • Fast stable direct fitting and smoothness selection for generalized additive models
    • S.N. Wood Fast stable direct fitting and smoothness selection for generalized additive models Journal of the Royal Statistical Society Series B 70 2008 495 518
    • (2008) Journal of the Royal Statistical Society Series B , vol.70 , pp. 495-518
    • Wood, S.N.1
  • 39
    • 78650862532 scopus 로고    scopus 로고
    • Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models
    • S.N. Wood Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models Journal of the Royal Statistical Society Series B 73 2011 3 36
    • (2011) Journal of the Royal Statistical Society Series B , vol.73 , pp. 3-36
    • Wood, S.N.1
  • 40
    • 70349234037 scopus 로고    scopus 로고
    • Consistent variable selection in additive models
    • L. Xue Consistent variable selection in additive models Statistica Sinica 19 2009 1281 1296
    • (2009) Statistica Sinica , vol.19 , pp. 1281-1296
    • Xue, L.1
  • 43
    • 33750973351 scopus 로고    scopus 로고
    • Component selection and smoothing for nonparametric regression in exponential families
    • H.H. Zhang, and Y. Lin Component selection and smoothing for nonparametric regression in exponential families Statistica Sinica 16 2006 1021 1041 (Pubitemid 44744361)
    • (2006) Statistica Sinica , vol.16 , Issue.3 , pp. 1021-1041
    • Zhang, H.H.1    Lin, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.