메뉴 건너뛰기




Volumn 2015-January, Issue , 2015, Pages 1855-1863

Rectified factor networks

Author keywords

[No Author keywords available]

Indexed keywords

CODES (SYMBOLS); GENE EXPRESSION; GENES; INFORMATION SCIENCE; LEARNING SYSTEMS;

EID: 84965180108     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (12)

References (30)
  • 1
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • G. E. Hinton and R. Salakhutdinov. Reducing the dimensionality of data with neural networks. Science, 313(5786):504-507, 2006.
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.2
  • 2
    • 84864073449 scopus 로고    scopus 로고
    • Greedy layer-wise training of deep networks
    • B. Schölkopf, J. C. Platt, and T. Hoffman, editors, MIT Press
    • Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle. Greedy layer-wise training of deep networks. In B. Schölkopf, J. C. Platt, and T. Hoffman, editors, NIPS, pages 153-160. MIT Press, 2007.
    • (2007) NIPS , pp. 153-160
    • Bengio, Y.1    Lamblin, P.2    Popovici, D.3    Larochelle, H.4
  • 3
    • 84910651844 scopus 로고    scopus 로고
    • Deep learning in neural networks: An overview
    • J. Schmidhuber. Deep learning in neural networks: An overview. Neural Networks, 61:85-117, 2015.
    • (2015) Neural Networks , vol.61 , pp. 85-117
    • Schmidhuber, J.1
  • 4
    • 84930630277 scopus 로고    scopus 로고
    • Deep learning
    • Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521(7553):436-444, 2015.
    • (2015) Nature , vol.521 , Issue.7553 , pp. 436-444
    • LeCun, Y.1    Bengio, Y.2    Hinton, G.3
  • 5
    • 77956509090 scopus 로고    scopus 로고
    • Rectified linear units improve restricted Boltzmann machines
    • Omnipress, 2010
    • V. Nair and G. E. Hinton. Rectified linear units improve restricted Boltzmann machines. In ICML, pages 807-814. Omnipress 2010, ISBN 978-1-60558-907-7, 2010.
    • (2010) ICML , pp. 807-814
    • Nair, V.1    Hinton, G.E.2
  • 6
    • 84862294866 scopus 로고    scopus 로고
    • Deep sparse rectifier neural networks
    • X. Glorot, A. Bordes, and Y. Bengio. Deep sparse rectifier neural networks. In AISTATS, volume 15, pages 315-323, 2011.
    • (2011) AISTATS , vol.15 , pp. 315-323
    • Glorot, X.1    Bordes, A.2    Bengio, Y.3
  • 8
    • 77954206273 scopus 로고    scopus 로고
    • FABIA: Factor analysis for bicluster acquisition
    • S. Hochreiter, U. Bodenhofer, et al. FABIA: factor analysis for bicluster acquisition. Bioinformatics, 26(12):1520-1527, 2010.
    • (2010) Bioinformatics , vol.26 , Issue.12 , pp. 1520-1527
    • Hochreiter, S.1    Bodenhofer, U.2
  • 9
    • 84890319953 scopus 로고    scopus 로고
    • HapFABIA: Identification of very short segments of identity by descent characterized by rare variants in large sequencing data
    • S. Hochreiter. HapFABIA: Identification of very short segments of identity by descent characterized by rare variants in large sequencing data. Nucleic Acids Res., 41(22):e202, 2013.
    • (2013) Nucleic Acids Res. , vol.41 , Issue.22 , pp. e202
    • Hochreiter, S.1
  • 10
    • 0032603958 scopus 로고    scopus 로고
    • Variational learning in nonlinear Gaussian belief networks
    • B. J. Frey and G. E. Hinton. Variational learning in nonlinear Gaussian belief networks. Neural Computation, 11(1):193-214, 1999.
    • (1999) Neural Computation , vol.11 , Issue.1 , pp. 193-214
    • Frey, B.J.1    Hinton, G.E.2
  • 11
    • 33750512942 scopus 로고    scopus 로고
    • Variational learning for rectified factor analysis
    • M. Harva and A. Kaban. Variational learning for rectified factor analysis. Signal Processing, 87(3):509-527, 2007.
    • (2007) Signal Processing , vol.87 , Issue.3 , pp. 509-527
    • Harva, M.1    Kaban, A.2
  • 13
    • 84864068448 scopus 로고    scopus 로고
    • Variational EM algorithms for non-Gaussian latent variable models
    • J. Palmer, D. Wipf, K. Kreutz-Delgado, and B. Rao. Variational EM algorithms for non-Gaussian latent variable models. In NIPS, volume 18, pages 1059-1066, 2006.
    • (2006) NIPS , vol.18 , pp. 1059-1066
    • Palmer, J.1    Wipf, D.2    Kreutz-Delgado, K.3    Rao, B.4
  • 14
    • 0016948909 scopus 로고
    • On the Goldstein-Levitin-Polyak gradient projection method
    • D. P. Bertsekas. On the Goldstein-Levitin-Polyak gradient projection method. IEEE Trans. Automat. Control, 21:174-184, 1976.
    • (1976) IEEE Trans. Automat. Control , vol.21 , pp. 174-184
    • Bertsekas, D.P.1
  • 15
    • 0003600777 scopus 로고    scopus 로고
    • Society for Industrial and Applied Mathematics SIAM, Philadelphia
    • C. T. Kelley. Iterative Methods for Optimization. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 1999.
    • (1999) Iterative Methods for Optimization
    • Kelley, C.T.1
  • 16
    • 0000377218 scopus 로고
    • Projected Newton methods for optimization problems with simple constraints
    • D. P. Bertsekas. Projected Newton methods for optimization problems with simple constraints. SIAM J. Control Optim., 20:221-246, 1982.
    • (1982) SIAM J. Control Optim. , vol.20 , pp. 221-246
    • Bertsekas, D.P.1
  • 18
    • 0001743783 scopus 로고
    • The gradient projection method for nonlinear programming. Part II. Nonlinear constraints
    • J. B. Rosen. The gradient projection method for nonlinear programming. part ii. nonlinear constraints. Journal of the Society for Industrial and Applied Mathematics, 9(4):514-532, 1961.
    • (1961) Journal of the Society for Industrial and Applied Mathematics , vol.9 , Issue.4 , pp. 514-532
    • Rosen, J.B.1
  • 21
    • 29144534131 scopus 로고    scopus 로고
    • Convergence theorems for generalized alternating minimization procedures
    • A. Gunawardana and W. Byrne. Convergence theorems for generalized alternating minimization procedures. Journal of Machine Learning Research, 6:2049-2073, 2005.
    • (2005) Journal of Machine Learning Research , vol.6 , pp. 2049-2073
    • Gunawardana, A.1    Byrne, W.2
  • 23
    • 26944457949 scopus 로고    scopus 로고
    • PhD thesis, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology
    • N. Srebro. Learning with Matrix Factorizations. PhD thesis, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 2004.
    • (2004) Learning with Matrix Factorizations
    • Srebro, N.1
  • 24
    • 0346307721 scopus 로고    scopus 로고
    • A fast fixed-point algorithm for independent component analysis
    • A. Hyvärinen and E. Oja. A fast fixed-point algorithm for independent component analysis. Neural Comput., 9(7):1483-1492, 1999.
    • (1999) Neural Comput. , vol.9 , Issue.7 , pp. 1483-1492
    • Hyvärinen, A.1    Oja, E.2
  • 26
    • 79551480483 scopus 로고    scopus 로고
    • Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
    • P. Vincent, H. Larochelle, et al. Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. JMLR, 11:3371-3408, 2010.
    • (2010) JMLR , vol.11 , pp. 3371-3408
    • Vincent, P.1    Larochelle, H.2
  • 27
    • 34547967782 scopus 로고    scopus 로고
    • An empirical evaluation of deep architectures on problems with many factors of variation
    • H. Larochelle, D. Erhan, et al. An empirical evaluation of deep architectures on problems with many factors of variation. In ICML, pages 473-480, 2007.
    • (2007) ICML , pp. 473-480
    • Larochelle, H.1    Erhan, D.2
  • 29
    • 84939942187 scopus 로고    scopus 로고
    • Using transcriptomics to guide lead optimization in drug discovery projects: Lessons learned from the {QSTAR} project
    • B. Verbist, G. Klambauer, et al. Using transcriptomics to guide lead optimization in drug discovery projects: Lessons learned from the {QSTAR} project. Drug Discovery Today, 20(5):505-513, 2015.
    • (2015) Drug Discovery Today , vol.20 , Issue.5 , pp. 505-513
    • Verbist, B.1    Klambauer, G.2
  • 30
    • 33645823677 scopus 로고    scopus 로고
    • A new summarization method for Affymetrix probe level data
    • S. Hochreiter, D.-A. Clevert, and K. Obermayer. A new summarization method for Affymetrix probe level data. Bioinformatics, 22(8):943-949, 2006.
    • (2006) Bioinformatics , vol.22 , Issue.8 , pp. 943-949
    • Hochreiter, S.1    Clevert, D.-A.2    Obermayer, K.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.