-
1
-
-
33746600649
-
Reducing the dimensionality of data with neural networks
-
G. E. Hinton and R. Salakhutdinov. Reducing the dimensionality of data with neural networks. Science, 313(5786):504-507, 2006.
-
(2006)
Science
, vol.313
, Issue.5786
, pp. 504-507
-
-
Hinton, G.E.1
Salakhutdinov, R.2
-
2
-
-
84864073449
-
Greedy layer-wise training of deep networks
-
B. Schölkopf, J. C. Platt, and T. Hoffman, editors, MIT Press
-
Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle. Greedy layer-wise training of deep networks. In B. Schölkopf, J. C. Platt, and T. Hoffman, editors, NIPS, pages 153-160. MIT Press, 2007.
-
(2007)
NIPS
, pp. 153-160
-
-
Bengio, Y.1
Lamblin, P.2
Popovici, D.3
Larochelle, H.4
-
3
-
-
84910651844
-
Deep learning in neural networks: An overview
-
J. Schmidhuber. Deep learning in neural networks: An overview. Neural Networks, 61:85-117, 2015.
-
(2015)
Neural Networks
, vol.61
, pp. 85-117
-
-
Schmidhuber, J.1
-
4
-
-
84930630277
-
Deep learning
-
Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521(7553):436-444, 2015.
-
(2015)
Nature
, vol.521
, Issue.7553
, pp. 436-444
-
-
LeCun, Y.1
Bengio, Y.2
Hinton, G.3
-
5
-
-
77956509090
-
Rectified linear units improve restricted Boltzmann machines
-
Omnipress, 2010
-
V. Nair and G. E. Hinton. Rectified linear units improve restricted Boltzmann machines. In ICML, pages 807-814. Omnipress 2010, ISBN 978-1-60558-907-7, 2010.
-
(2010)
ICML
, pp. 807-814
-
-
Nair, V.1
Hinton, G.E.2
-
6
-
-
84862294866
-
Deep sparse rectifier neural networks
-
X. Glorot, A. Bordes, and Y. Bengio. Deep sparse rectifier neural networks. In AISTATS, volume 15, pages 315-323, 2011.
-
(2011)
AISTATS
, vol.15
, pp. 315-323
-
-
Glorot, X.1
Bordes, A.2
Bengio, Y.3
-
7
-
-
84904163933
-
Dropout: A simple way to prevent neural networks from overfitting
-
N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine Learning Research, 15:1929-1958, 2014.
-
(2014)
Journal of Machine Learning Research
, vol.15
, pp. 1929-1958
-
-
Srivastava, N.1
Hinton, G.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.5
-
8
-
-
77954206273
-
FABIA: Factor analysis for bicluster acquisition
-
S. Hochreiter, U. Bodenhofer, et al. FABIA: factor analysis for bicluster acquisition. Bioinformatics, 26(12):1520-1527, 2010.
-
(2010)
Bioinformatics
, vol.26
, Issue.12
, pp. 1520-1527
-
-
Hochreiter, S.1
Bodenhofer, U.2
-
9
-
-
84890319953
-
HapFABIA: Identification of very short segments of identity by descent characterized by rare variants in large sequencing data
-
S. Hochreiter. HapFABIA: Identification of very short segments of identity by descent characterized by rare variants in large sequencing data. Nucleic Acids Res., 41(22):e202, 2013.
-
(2013)
Nucleic Acids Res.
, vol.41
, Issue.22
, pp. e202
-
-
Hochreiter, S.1
-
10
-
-
0032603958
-
Variational learning in nonlinear Gaussian belief networks
-
B. J. Frey and G. E. Hinton. Variational learning in nonlinear Gaussian belief networks. Neural Computation, 11(1):193-214, 1999.
-
(1999)
Neural Computation
, vol.11
, Issue.1
, pp. 193-214
-
-
Frey, B.J.1
Hinton, G.E.2
-
11
-
-
33750512942
-
Variational learning for rectified factor analysis
-
M. Harva and A. Kaban. Variational learning for rectified factor analysis. Signal Processing, 87(3):509-527, 2007.
-
(2007)
Signal Processing
, vol.87
, Issue.3
, pp. 509-527
-
-
Harva, M.1
Kaban, A.2
-
12
-
-
77956929686
-
Posterior regularization for structured latent variable models
-
K. Ganchev, J. Graca, J. Gillenwater, and B. Taskar. Posterior regularization for structured latent variable models. Journal of Machine Learning Research, 11:2001-2049, 2010.
-
(2010)
Journal of Machine Learning Research
, vol.11
, pp. 2001-2049
-
-
Ganchev, K.1
Graca, J.2
Gillenwater, J.3
Taskar, B.4
-
13
-
-
84864068448
-
Variational EM algorithms for non-Gaussian latent variable models
-
J. Palmer, D. Wipf, K. Kreutz-Delgado, and B. Rao. Variational EM algorithms for non-Gaussian latent variable models. In NIPS, volume 18, pages 1059-1066, 2006.
-
(2006)
NIPS
, vol.18
, pp. 1059-1066
-
-
Palmer, J.1
Wipf, D.2
Kreutz-Delgado, K.3
Rao, B.4
-
14
-
-
0016948909
-
On the Goldstein-Levitin-Polyak gradient projection method
-
D. P. Bertsekas. On the Goldstein-Levitin-Polyak gradient projection method. IEEE Trans. Automat. Control, 21:174-184, 1976.
-
(1976)
IEEE Trans. Automat. Control
, vol.21
, pp. 174-184
-
-
Bertsekas, D.P.1
-
15
-
-
0003600777
-
-
Society for Industrial and Applied Mathematics SIAM, Philadelphia
-
C. T. Kelley. Iterative Methods for Optimization. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 1999.
-
(1999)
Iterative Methods for Optimization
-
-
Kelley, C.T.1
-
16
-
-
0000377218
-
Projected Newton methods for optimization problems with simple constraints
-
D. P. Bertsekas. Projected Newton methods for optimization problems with simple constraints. SIAM J. Control Optim., 20:221-246, 1982.
-
(1982)
SIAM J. Control Optim.
, vol.20
, pp. 221-246
-
-
Bertsekas, D.P.1
-
18
-
-
0001743783
-
The gradient projection method for nonlinear programming. Part II. Nonlinear constraints
-
J. B. Rosen. The gradient projection method for nonlinear programming. part ii. nonlinear constraints. Journal of the Society for Industrial and Applied Mathematics, 9(4):514-532, 1961.
-
(1961)
Journal of the Society for Industrial and Applied Mathematics
, vol.9
, Issue.4
, pp. 514-532
-
-
Rosen, J.B.1
-
20
-
-
84965130332
-
-
chapter 6, Society for Industrial and Applied Mathematics
-
A. Ben-Tal and A. Nemirovski. Interior Point Polynomial Time Methods for Linear Programming, Conic Quadratic Programming, and Semidefinite Programming, chapter 6, pages 377-442. Society for Industrial and Applied Mathematics, 2001.
-
(2001)
Interior Point Polynomial Time Methods for Linear Programming, Conic Quadratic Programming, and Semidefinite Programming
, pp. 377-442
-
-
Ben-Tal, A.1
Nemirovski, A.2
-
21
-
-
29144534131
-
Convergence theorems for generalized alternating minimization procedures
-
A. Gunawardana and W. Byrne. Convergence theorems for generalized alternating minimization procedures. Journal of Machine Learning Research, 6:2049-2073, 2005.
-
(2005)
Journal of Machine Learning Research
, vol.6
, pp. 2049-2073
-
-
Gunawardana, A.1
Byrne, W.2
-
23
-
-
26944457949
-
-
PhD thesis, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology
-
N. Srebro. Learning with Matrix Factorizations. PhD thesis, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 2004.
-
(2004)
Learning with Matrix Factorizations
-
-
Srebro, N.1
-
24
-
-
0346307721
-
A fast fixed-point algorithm for independent component analysis
-
A. Hyvärinen and E. Oja. A fast fixed-point algorithm for independent component analysis. Neural Comput., 9(7):1483-1492, 1999.
-
(1999)
Neural Comput.
, vol.9
, Issue.7
, pp. 1483-1492
-
-
Hyvärinen, A.1
Oja, E.2
-
26
-
-
79551480483
-
Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
-
P. Vincent, H. Larochelle, et al. Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. JMLR, 11:3371-3408, 2010.
-
(2010)
JMLR
, vol.11
, pp. 3371-3408
-
-
Vincent, P.1
Larochelle, H.2
-
27
-
-
34547967782
-
An empirical evaluation of deep architectures on problems with many factors of variation
-
H. Larochelle, D. Erhan, et al. An empirical evaluation of deep architectures on problems with many factors of variation. In ICML, pages 473-480, 2007.
-
(2007)
ICML
, pp. 473-480
-
-
Larochelle, H.1
Erhan, D.2
-
29
-
-
84939942187
-
Using transcriptomics to guide lead optimization in drug discovery projects: Lessons learned from the {QSTAR} project
-
B. Verbist, G. Klambauer, et al. Using transcriptomics to guide lead optimization in drug discovery projects: Lessons learned from the {QSTAR} project. Drug Discovery Today, 20(5):505-513, 2015.
-
(2015)
Drug Discovery Today
, vol.20
, Issue.5
, pp. 505-513
-
-
Verbist, B.1
Klambauer, G.2
-
30
-
-
33645823677
-
A new summarization method for Affymetrix probe level data
-
S. Hochreiter, D.-A. Clevert, and K. Obermayer. A new summarization method for Affymetrix probe level data. Bioinformatics, 22(8):943-949, 2006.
-
(2006)
Bioinformatics
, vol.22
, Issue.8
, pp. 943-949
-
-
Hochreiter, S.1
Clevert, D.-A.2
Obermayer, K.3
|