메뉴 건너뛰기




Volumn 10, Issue 9, 2016, Pages 715-738

A review of key challenges of electrospun scaffolds for tissue-engineering applications

Author keywords

cell infiltration; electrospinning; mechanical strength; tissue engineering

Indexed keywords

BEARINGS (MACHINE PARTS); BIOLOGICAL ORGANS; CELL ENGINEERING; COPYRIGHTS; ELECTROSPINNING; SCAFFOLDS (BIOLOGY); TISSUE;

EID: 84987837600     PISSN: 19326254     EISSN: 19327005     Source Type: Journal    
DOI: 10.1002/term.1978     Document Type: Review
Times cited : (429)

References (172)
  • 1
    • 56349100057 scopus 로고    scopus 로고
    • Use of electrospinning technique for biomedical applications
    • Agarwal S, Wendorff JH, Greiner A. 2008; Use of electrospinning technique for biomedical applications. Polymer 49: 5603–5621.
    • (2008) Polymer , vol.49 , pp. 5603-5621
    • Agarwal, S.1    Wendorff, J.H.2    Greiner, A.3
  • 2
    • 70249125098 scopus 로고    scopus 로고
    • Progress in the field of electrospinning for tissue engineering applications
    • Agarwal S, Wendorff JH, Greiner A. 2009; Progress in the field of electrospinning for tissue engineering applications. Adv Mater 21: 3343–3351.
    • (2009) Adv Mater , vol.21 , pp. 3343-3351
    • Agarwal, S.1    Wendorff, J.H.2    Greiner, A.3
  • 3
    • 37549056891 scopus 로고    scopus 로고
    • Isolation and characterization of nanofibers from agricultural residues: wheat straw and soy hulls
    • Alemdar A, Sain M. 2008; Isolation and characterization of nanofibers from agricultural residues: wheat straw and soy hulls. Bioresour Technol 99: 1664–1671.
    • (2008) Bioresour Technol , vol.99 , pp. 1664-1671
    • Alemdar, A.1    Sain, M.2
  • 4
    • 77954803562 scopus 로고    scopus 로고
    • Novel poly(l-lactic acid)/hyaluronic acid macroporous hybrid scaffolds: characterization and assessment of cytotoxicity
    • Antunes JC, Oliveira JM, Reis RL, et al. 2010; Novel poly(l-lactic acid)/hyaluronic acid macroporous hybrid scaffolds: characterization and assessment of cytotoxicity. J Biomed Mater Res A 94: 856–869.
    • (2010) J Biomed Mater Res A , vol.94 , pp. 856-869
    • Antunes, J.C.1    Oliveira, J.M.2    Reis, R.L.3
  • 5
    • 49149114045 scopus 로고    scopus 로고
    • Advancing tissue engineering by using electrospun nanofibers
    • Ashammakhi N, Ndreu A, Nikkola L, et al. 2008; Advancing tissue engineering by using electrospun nanofibers. Regen Med 3: 547–574.
    • (2008) Regen Med , vol.3 , pp. 547-574
    • Ashammakhi, N.1    Ndreu, A.2    Nikkola, L.3
  • 6
    • 77950527395 scopus 로고    scopus 로고
    • Electrospinning of polymer nanofibers: effects on oriented morphology, structures and tensile properties
    • Baji A, Mai YW, Wong SH, et al. 2010; Electrospinning of polymer nanofibers: effects on oriented morphology, structures and tensile properties. Compos Sci Technol 70: 703–718.
    • (2010) Compos Sci Technol , vol.70 , pp. 703-718
    • Baji, A.1    Mai, Y.W.2    Wong, S.H.3
  • 7
    • 40649127864 scopus 로고    scopus 로고
    • The potential to improve cell infiltration in composite fiber-aligned electrospun scaffolds by the selective removal of sacrificial fibers
    • Baker BM, Gee AO, Metter RB, et al. 2008; The potential to improve cell infiltration in composite fiber-aligned electrospun scaffolds by the selective removal of sacrificial fibers. Biomaterials 29: 2348–2358.
    • (2008) Biomaterials , vol.29 , pp. 2348-2358
    • Baker, B.M.1    Gee, A.O.2    Metter, R.B.3
  • 8
    • 65349149487 scopus 로고    scopus 로고
    • Tailoring fiber diameter in electrospun poly(ε-caprolactone) scaffolds for optimal cellular infiltration in cardiovascular tissue engineering
    • Balguid A, Mol A, van Marion MH, et al. 2009; Tailoring fiber diameter in electrospun poly(ε-caprolactone) scaffolds for optimal cellular infiltration in cardiovascular tissue engineering. Tissue Eng 15: 437–444.
    • (2009) Tissue Eng , vol.15 , pp. 437-444
    • Balguid, A.1    Mol, A.2    van Marion, M.H.3
  • 9
    • 84876907491 scopus 로고    scopus 로고
    • Braided nanofibrous scaffold for tendon and ligament tissue engineering
    • Barber JG, Handorf AM, Allee TJ, et al. 2013; Braided nanofibrous scaffold for tendon and ligament tissue engineering. Tissue Eng 19: 1265–1274.
    • (2013) Tissue Eng , vol.19 , pp. 1265-1274
    • Barber, J.G.1    Handorf, A.M.2    Allee, T.J.3
  • 10
    • 36248962668 scopus 로고    scopus 로고
    • Nanofiber technology: designing the next generation of tissue engineering scaffolds
    • Barnes CP, Sell SA, Boland ED, et al. 2007; Nanofiber technology: designing the next generation of tissue engineering scaffolds. Adv Drug Deliv Rev 59: 1413–1433.
    • (2007) Adv Drug Deliv Rev , vol.59 , pp. 1413-1433
    • Barnes, C.P.1    Sell, S.A.2    Boland, E.D.3
  • 11
    • 79959620420 scopus 로고    scopus 로고
    • Mineralization of pristine chitosan film through biomimetic process
    • Baskar D, Balu R, Kumar TSS. 2011; Mineralization of pristine chitosan film through biomimetic process. Int J Biol Macromol 49: 385–389.
    • (2011) Int J Biol Macromol , vol.49 , pp. 385-389
    • Baskar, D.1    Balu, R.2    Kumar, T.S.S.3
  • 12
    • 72149131197 scopus 로고    scopus 로고
    • Fabrication of nanofiber reinforced protein structures for tissue engineering
    • Beachley V, Wen X. 2009; Fabrication of nanofiber reinforced protein structures for tissue engineering. Mater Sci Eng C 29: 2448–2453.
    • (2009) Mater Sci Eng C , vol.29 , pp. 2448-2453
    • Beachley, V.1    Wen, X.2
  • 13
    • 77953723114 scopus 로고    scopus 로고
    • Polymer nanofibrous structures: fabrication, biofunctionalization, and cell interactions
    • Beachley V, Wen X. 2010; Polymer nanofibrous structures: fabrication, biofunctionalization, and cell interactions. Prog Polym Sci 35: 868–892.
    • (2010) Prog Polym Sci , vol.35 , pp. 868-892
    • Beachley, V.1    Wen, X.2
  • 14
    • 0346094228 scopus 로고    scopus 로고
    • Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications
    • Berger J, Reist M, Mayer JM, et al. 2004; Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. Eur J Pharm Biopharm 57: 19–34.
    • (2004) Eur J Pharm Biopharm , vol.57 , pp. 19-34
    • Berger, J.1    Reist, M.2    Mayer, J.M.3
  • 15
    • 77949652722 scopus 로고    scopus 로고
    • Electrospinning: a fascinating fiber fabrication technique
    • Bhardwaj N, Kundu SC. 2010; Electrospinning: a fascinating fiber fabrication technique. Biotech Adv 28: 325–347.
    • (2010) Biotech Adv , vol.28 , pp. 325-347
    • Bhardwaj, N.1    Kundu, S.C.2
  • 16
    • 78650294679 scopus 로고    scopus 로고
    • Cell infiltration and growth in a low density, uncompressed three-dimensional electrospun nanofibrous scaffold
    • Blakeney BA, Tambralli A, Anderson JM, et al. 2011; Cell infiltration and growth in a low density, uncompressed three-dimensional electrospun nanofibrous scaffold. Biomaterials 32: 1538–1590.
    • (2011) Biomaterials , vol.32 , pp. 1538-1590
    • Blakeney, B.A.1    Tambralli, A.2    Anderson, J.M.3
  • 17
    • 84875523139 scopus 로고    scopus 로고
    • State of the art composites comprising electrospun fibres coupled with hydrogels: a review
    • Bosworth LA, Turner LA, Cartmell SH. 2013; State of the art composites comprising electrospun fibres coupled with hydrogels: a review. Nanomedicine 9: 322–335.
    • (2013) Nanomedicine , vol.9 , pp. 322-335
    • Bosworth, L.A.1    Turner, L.A.2    Cartmell, S.H.3
  • 18
    • 80053927918 scopus 로고    scopus 로고
    • Mammalian cell viability in electrospun composite nanofiber structures
    • Canbolat MF, Tang C, Bernacki SH, et al. 2011; Mammalian cell viability in electrospun composite nanofiber structures. Macromol Biosci 11: 1346–1356.
    • (2011) Macromol Biosci , vol.11 , pp. 1346-1356
    • Canbolat, M.F.1    Tang, C.2    Bernacki, S.H.3
  • 19
    • 68249158472 scopus 로고    scopus 로고
    • Electrospinning of reconstituted silk fiber from aqueous silk fibroin solution
    • Cao H, Chen X, Huang L, et al. 2009; Electrospinning of reconstituted silk fiber from aqueous silk fibroin solution. Mater Sci Eng C 29: 2270–2274.
    • (2009) Mater Sci Eng C , vol.29 , pp. 2270-2274
    • Cao, H.1    Chen, X.2    Huang, L.3
  • 20
    • 84859404787 scopus 로고    scopus 로고
    • Preparation and characterization of biomimetic silk fibroin/chitosan composite nanofibers by electrospinning for osteoblasts culture
    • Chen JP, Chen SH, Lai GJ. 2012; Preparation and characterization of biomimetic silk fibroin/chitosan composite nanofibers by electrospinning for osteoblasts culture. Nanoscale Res Lett 6: 1–11.
    • (2012) Nanoscale Res Lett , vol.6 , pp. 1-11
    • Chen, J.P.1    Chen, S.H.2    Lai, G.J.3
  • 21
    • 38949217990 scopus 로고    scopus 로고
    • Structuring electrospun polycaprolactone nanofiber tissue scaffolds by femtosecond laser ablation
    • Choi HW, Johnson JK, Nam J, et al. 2007; Structuring electrospun polycaprolactone nanofiber tissue scaffolds by femtosecond laser ablation. J Laser Appl 19: 225–231.
    • (2007) J Laser Appl , vol.19 , pp. 225-231
    • Choi, H.W.1    Johnson, J.K.2    Nam, J.3
  • 22
    • 1442286959 scopus 로고    scopus 로고
    • Formation of interfiber bonding in electrospun poly (etherimide) nanofiber web
    • Choi SS, Lee SG, Joo CW, et al. 2004; Formation of interfiber bonding in electrospun poly (etherimide) nanofiber web. Mater Sci 39: 1511–1513.
    • (2004) Mater Sci , vol.39 , pp. 1511-1513
    • Choi, S.S.1    Lee, S.G.2    Joo, C.W.3
  • 23
    • 84893500059 scopus 로고    scopus 로고
    • Advanced tissue engineering scaffold design for regeneration of the complex hierarchical periodontal structure
    • Costa PF, Vaquette C, Zhang Q, et al. 2014; Advanced tissue engineering scaffold design for regeneration of the complex hierarchical periodontal structure. J Clin Periodontol 41: 283–294.
    • (2014) J Clin Periodontol , vol.41 , pp. 283-294
    • Costa, P.F.1    Vaquette, C.2    Zhang, Q.3
  • 24
    • 33847372436 scopus 로고    scopus 로고
    • Influence of porosity and fibre diameter on the degradation of chitosan fibre-mesh scaffolds and cell adhesion
    • Cunha-Reis C, TuzlaKoglu K, Baas E, et al. 2007; Influence of porosity and fibre diameter on the degradation of chitosan fibre-mesh scaffolds and cell adhesion. J Mater Sci Mater Med 18: 195–200.
    • (2007) J Mater Sci Mater Med , vol.18 , pp. 195-200
    • Cunha-Reis, C.1    TuzlaKoglu, K.2    Baas, E.3
  • 25
    • 33846410643 scopus 로고    scopus 로고
    • The future prospects of microbial cellulose in biomedical applications
    • Czaja WK, Young DJ, Kawecki M, et al. 2007; The future prospects of microbial cellulose in biomedical applications. Biomacromolecules 8: 1–12.
    • (2007) Biomacromolecules , vol.8 , pp. 1-12
    • Czaja, W.K.1    Young, D.J.2    Kawecki, M.3
  • 26
    • 52649160187 scopus 로고    scopus 로고
    • Patterned melt electrospun substrates for tissue engineering
    • Dalton PD, Joergensen NT, Groll J, et al. 2008; Patterned melt electrospun substrates for tissue engineering. Biomed Mater 3: 1–11.
    • (2008) Biomed Mater , vol.3 , pp. 1-11
    • Dalton, P.D.1    Joergensen, N.T.2    Groll, J.3
  • 27
    • 35449004406 scopus 로고    scopus 로고
    • Melt electrospinning of poly-(ethylene glycol–block–ε-caprolactone)
    • Dalton PD, Lleixa Calvet J, Mourran A, et al. 2006; Melt electrospinning of poly-(ethylene glycol–block–ε-caprolactone). Biotechnol J, 1: 998–1006.
    • (2006) Biotechnol J , vol.1 , pp. 998-1006
    • Dalton, P.D.1    Lleixa Calvet, J.2    Mourran, A.3
  • 29
    • 78650905591 scopus 로고    scopus 로고
    • Dehydrothermal crosslinking of electrospun collagen
    • Drexler JW, Powell HM. 2011; Dehydrothermal crosslinking of electrospun collagen. Tissue Eng 17: 9–17.
    • (2011) Tissue Eng , vol.17 , pp. 9-17
    • Drexler, J.W.1    Powell, H.M.2
  • 30
    • 42549093132 scopus 로고    scopus 로고
    • Nanofibrous membranes from aqueous electrospinning of carboxymethyl chitosan
    • Du J, Hsieh YL. 2008; Nanofibrous membranes from aqueous electrospinning of carboxymethyl chitosan. Nanotechnology 19: 1–9.
    • (2008) Nanotechnology , vol.19 , pp. 1-9
    • Du, J.1    Hsieh, Y.L.2
  • 31
    • 33747090012 scopus 로고    scopus 로고
    • Statistical geometry of pores and statistics of porous nanofibrous assemblies
    • Eichhorn SJ, Sampson WW. 2005; Statistical geometry of pores and statistics of porous nanofibrous assemblies. J R Soc Interface 2: 309–318.
    • (2005) J R Soc Interface , vol.2 , pp. 309-318
    • Eichhorn, S.J.1    Sampson, W.W.2
  • 32
    • 80052345868 scopus 로고    scopus 로고
    • The three-dimensional vascularization of growth factor-releasing hybrid scaffold of poly(ɛ-caprolactone)/collagen fibers and hyaluronic acid hydrogel
    • Ekaputra AK, Prestwich GD, Cool SM, et al. 2011; The three-dimensional vascularization of growth factor-releasing hybrid scaffold of poly(ɛ-caprolactone)/collagen fibers and hyaluronic acid hydrogel. Biomaterials 32: 8108–8117.
    • (2011) Biomaterials , vol.32 , pp. 8108-8117
    • Ekaputra, A.K.1    Prestwich, G.D.2    Cool, S.M.3
  • 33
    • 0001864170 scopus 로고    scopus 로고
    • Biocompatibility studies of anionic collagen membranes with different degree of glutaraldehyde cross-linking
    • Goissis G, Marcantonio E Jr, Marcantonio RA, et al. 1999; Biocompatibility studies of anionic collagen membranes with different degree of glutaraldehyde cross-linking. Biomaterials 20: 27–34.
    • (1999) Biomaterials , vol.20 , pp. 27-34
    • Goissis, G.1    Marcantonio, E.2    Marcantonio, R.A.3
  • 34
    • 50349091092 scopus 로고    scopus 로고
    • Starch–poly(ε-caprolactone) and starch–poly(lactic acid) fibre-mesh scaffolds for bone tissue engineering applications: structure, mechanical properties and degradation behaviour
    • Gomes ME, Azevedo HS, Moreira AR, et al. 2008; Starch–poly(ε-caprolactone) and starch–poly(lactic acid) fibre-mesh scaffolds for bone tissue engineering applications: structure, mechanical properties and degradation behaviour. J Tissue Eng Regen Med 2: 243–252.
    • (2008) J Tissue Eng Regen Med , vol.2 , pp. 243-252
    • Gomes, M.E.1    Azevedo, H.S.2    Moreira, A.R.3
  • 35
    • 33646558911 scopus 로고    scopus 로고
    • Influence of the porosity of starch-based fiber mesh scaffolds on the proliferation and osteogenic differentiation of bone marrow stromal cells cultured in a flow perfusion bioreactor
    • Gomes ME, Holtorf HL, Reis RL, et al. 2006; Influence of the porosity of starch-based fiber mesh scaffolds on the proliferation and osteogenic differentiation of bone marrow stromal cells cultured in a flow perfusion bioreactor. Tissue Eng 12: 801–809.
    • (2006) Tissue Eng , vol.12 , pp. 801-809
    • Gomes, M.E.1    Holtorf, H.L.2    Reis, R.L.3
  • 36
    • 0033377495 scopus 로고    scopus 로고
    • The mechanical design of spider silks: from fibroin sequence to mechanical function
    • Gosline J, Guerette P, Ortlepp C, et al. 1999; The mechanical design of spider silks: from fibroin sequence to mechanical function. J Exp Biol 202: 3295–3303.
    • (1999) J Exp Biol , vol.202 , pp. 3295-3303
    • Gosline, J.1    Guerette, P.2    Ortlepp, C.3
  • 37
    • 53149102104 scopus 로고    scopus 로고
    • Nondestructive replication of self-ordered nanoporous alumina membranes via cross-linked polyacrylate nanofiber arrays
    • Grimm S, Giesa R, Sklarek K, et al. 2008; Nondestructive replication of self-ordered nanoporous alumina membranes via cross-linked polyacrylate nanofiber arrays. Nano Lett 8: 1954–1959.
    • (2008) Nano Lett , vol.8 , pp. 1954-1959
    • Grimm, S.1    Giesa, R.2    Sklarek, K.3
  • 38
    • 77649202832 scopus 로고    scopus 로고
    • Study of the electrospun PLA/silk fibroin–gelatin composite nanofibrous scaffold for tissue engineering
    • Gui-Bo Y, You-Zhu Z, Shu-Dong W, et al. 2010; Study of the electrospun PLA/silk fibroin–gelatin composite nanofibrous scaffold for tissue engineering. J Biomed Mater Res A 93: 158–163.
    • (2010) J Biomed Mater Res A , vol.93 , pp. 158-163
    • Gui-Bo, Y.1    You-Zhu, Z.2    Shu-Dong, W.3
  • 39
    • 77953407233 scopus 로고    scopus 로고
    • Solving cell infiltration limitation of electrospun nanofiber meshes for tissue engineering applications
    • Guimarães A, Martins A, Pinho ED, et al. 2010; Solving cell infiltration limitation of electrospun nanofiber meshes for tissue engineering applications. Nanomedicine 5: 539–554.
    • (2010) Nanomedicine , vol.5 , pp. 539-554
    • Guimarães, A.1    Martins, A.2    Pinho, E.D.3
  • 40
    • 77949657773 scopus 로고    scopus 로고
    • Polyblend nanofibers for biomedical applications: perspectives and challenges
    • Gunn J, Zhang M. 2010; Polyblend nanofibers for biomedical applications: perspectives and challenges. Trends Biotechnol 28: 189–197.
    • (2010) Trends Biotechnol , vol.28 , pp. 189-197
    • Gunn, J.1    Zhang, M.2
  • 41
    • 84855937121 scopus 로고    scopus 로고
    • Electroactive porous tubular scaffolds with degradability and non-cytotoxicity for neural tissue regeneration
    • Guo B, Sun Y, Finne-Wistrand A, et al. 2012; Electroactive porous tubular scaffolds with degradability and non-cytotoxicity for neural tissue regeneration. Acta Biomater 8: 144–153.
    • (2012) Acta Biomater , vol.8 , pp. 144-153
    • Guo, B.1    Sun, Y.2    Finne-Wistrand, A.3
  • 42
    • 27744469532 scopus 로고    scopus 로고
    • Fabrication and endothelialization of collagen-blended biodegradable polymer nanofibers: potential vascular graft for blood vessel tissue engineering
    • He W, Yong T, Teo WE, et al. 2005; Fabrication and endothelialization of collagen-blended biodegradable polymer nanofibers: potential vascular graft for blood vessel tissue engineering. Tissue Eng 11: 1574–1588.
    • (2005) Tissue Eng , vol.11 , pp. 1574-1588
    • He, W.1    Yong, T.2    Teo, W.E.3
  • 43
    • 77952418607 scopus 로고    scopus 로고
    • Hydrogel/electrospun fiber composites influence neural stem/progenitor cell fate
    • Hsieh A, Zahir T, Lapitsky Y, et al. 2010; Hydrogel/electrospun fiber composites influence neural stem/progenitor cell fate. Soft Matter 6: 2227–2237.
    • (2010) Soft Matter , vol.6 , pp. 2227-2237
    • Hsieh, A.1    Zahir, T.2    Lapitsky, Y.3
  • 44
    • 84855557796 scopus 로고    scopus 로고
    • Biodegradable bicomponent fibers from renewable sources: melt-spinning of poly(lactic acid) and poly[(3-hydroxybutyrate)-co-(3-hydroxyvalerate)]
    • Hufenus R, Reifler FA, Maniura-Weber K, et al. 2012; Biodegradable bicomponent fibers from renewable sources: melt-spinning of poly(lactic acid) and poly[(3-hydroxybutyrate)-co-(3-hydroxyvalerate)]. Macromol Mater Eng 297: 75–84.
    • (2012) Macromol Mater Eng , vol.297 , pp. 75-84
    • Hufenus, R.1    Reifler, F.A.2    Maniura-Weber, K.3
  • 45
    • 47349091321 scopus 로고    scopus 로고
    • Microfluidic chip-based fabrication of PLGA microfiber scaffolds for tissue engineering
    • Hwang CM, Khademhosseini A, Park Y, et al. 2008; Microfluidic chip-based fabrication of PLGA microfiber scaffolds for tissue engineering. Langmuir 24: 6845–6851.
    • (2008) Langmuir , vol.24 , pp. 6845-6851
    • Hwang, C.M.1    Khademhosseini, A.2    Park, Y.3
  • 46
    • 77951633881 scopus 로고    scopus 로고
    • Biodegradable fibrous scaffolds with tunable properties formed from photocrosslinkable poly(glycerol sebacate)
    • Ifkovits JL, Devlin JJ, Eng G, et al. 2009; Biodegradable fibrous scaffolds with tunable properties formed from photocrosslinkable poly(glycerol sebacate). ACS Appl Mater Interfaces 1: 1878–1892.
    • (2009) ACS Appl Mater Interfaces , vol.1 , pp. 1878-1892
    • Ifkovits, J.L.1    Devlin, J.J.2    Eng, G.3
  • 47
    • 84875212234 scopus 로고    scopus 로고
    • Enhanced mechanical strength and biocompatibility of electrospun polycaprolactone–gelatin scaffold with surface deposited nano-hydroxyapatite
    • Jaiswal AK, Chhabra H, Soni VP, et al. 2013a; Enhanced mechanical strength and biocompatibility of electrospun polycaprolactone–gelatin scaffold with surface deposited nano-hydroxyapatite. Mater Sci Eng C 33: 2376–2385.
    • (2013) Mater Sci Eng C , vol.33 , pp. 2376-2385
    • Jaiswal, A.K.1    Chhabra, H.2    Soni, V.P.3
  • 48
    • 84875474957 scopus 로고    scopus 로고
    • Improved functionalization of electrospun PLLA/gelatin scaffold by alternate soaking method for bone tissue engineering
    • Jaiswal AK, Kadam SS, Soni VP, et al. 2013b; Improved functionalization of electrospun PLLA/gelatin scaffold by alternate soaking method for bone tissue engineering. Appl Surf Sci 268: 477–488.
    • (2013) Appl Surf Sci , vol.268 , pp. 477-488
    • Jaiswal, A.K.1    Kadam, S.S.2    Soni, V.P.3
  • 49
    • 33746905086 scopus 로고    scopus 로고
    • Stretched polymer nanohairs by nanodrawing
    • Jeong HE, Lee SH, Kim P, et al. 2006; Stretched polymer nanohairs by nanodrawing. Nano Lett 6: 1508–1513.
    • (2006) Nano Lett , vol.6 , pp. 1508-1513
    • Jeong, H.E.1    Lee, S.H.2    Kim, P.3
  • 50
    • 77956185316 scopus 로고    scopus 로고
    • Cytocompatible cross-linking of electrospun zein fibers for the development of water-stable tissue engineering scaffolds
    • Jiang Q, Reddy N, Yang Y, et al. 2010; Cytocompatible cross-linking of electrospun zein fibers for the development of water-stable tissue engineering scaffolds. Acta Biomater 6: 4042–4051.
    • (2010) Acta Biomater , vol.6 , pp. 4042-4051
    • Jiang, Q.1    Reddy, N.2    Yang, Y.3
  • 51
    • 84879085740 scopus 로고    scopus 로고
    • Macroporosity enhances vascularization of electrospun scaffolds
    • Joshi VS, Lei NY, Walthers CM, et al. 2013; Macroporosity enhances vascularization of electrospun scaffolds. J Surg Res 183: 18–26.
    • (2013) J Surg Res , vol.183 , pp. 18-26
    • Joshi, V.S.1    Lei, N.Y.2    Walthers, C.M.3
  • 52
    • 77949653337 scopus 로고    scopus 로고
    • Bilayered scaffold for engineering cellularized blood vessels
    • Ju YM, Choi JS, Atala A, et al. 2010; Bilayered scaffold for engineering cellularized blood vessels. Biomaterials 31: 4313–4321.
    • (2010) Biomaterials , vol.31 , pp. 4313-4321
    • Ju, Y.M.1    Choi, J.S.2    Atala, A.3
  • 53
    • 17844400927 scopus 로고    scopus 로고
    • Porosity of 3D biomaterial scaffolds and osteogenesis
    • Karageorgiou V, Kaplan D. 2005; Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26: 5474–5491.
    • (2005) Biomaterials , vol.26 , pp. 5474-5491
    • Karageorgiou, V.1    Kaplan, D.2
  • 54
    • 79960987895 scopus 로고    scopus 로고
    • Melt electrospinning of biodegradable polyurethane scaffolds
    • Karchin A, Simonovsky FI, Ratner BD, et al. 2011; Melt electrospinning of biodegradable polyurethane scaffolds. Acta Biomater 7: 3277–3284.
    • (2011) Acta Biomater , vol.7 , pp. 3277-3284
    • Karchin, A.1    Simonovsky, F.I.2    Ratner, B.D.3
  • 55
    • 78649846490 scopus 로고    scopus 로고
    • Engineering extracellular matrix through nanotechnology
    • Kelleher CM, Vacanti JP. 2010; Engineering extracellular matrix through nanotechnology. Interface 7: 717–729.
    • (2010) Interface , vol.7 , pp. 717-729
    • Kelleher, C.M.1    Vacanti, J.P.2
  • 56
    • 2942557446 scopus 로고    scopus 로고
    • Mesoscopic spatial designs of nano- and microfiber meshes for tissue-engineering matrix and scaffold based on newly devised multilayering and mixing electrospinning techniques
    • Kidoaki S, Kwon IK, Matsuda T. 2005; Mesoscopic spatial designs of nano- and microfiber meshes for tissue-engineering matrix and scaffold based on newly devised multilayering and mixing electrospinning techniques. Biomaterials 26: 37–46.
    • (2005) Biomaterials , vol.26 , pp. 37-46
    • Kidoaki, S.1    Kwon, I.K.2    Matsuda, T.3
  • 57
    • 54949154117 scopus 로고    scopus 로고
    • Hybrid process for fabricating 3D hierarchical scaffolds combining rapid prototyping and electrospinning
    • Kim GH, Son JG, Park SA, et al. 2008a; Hybrid process for fabricating 3D hierarchical scaffolds combining rapid prototyping and electrospinning. Macromol Rapid Commun 29: 1577–1581.
    • (2008) Macromol Rapid Commun , vol.29 , pp. 1577-1581
    • Kim, G.H.1    Son, J.G.2    Park, S.A.3
  • 58
    • 18844440585 scopus 로고    scopus 로고
    • The effect of molecular weight and the linear velocity of drum surface on the properties of electrospun poly (ethylene terephthalate) nonwoven fibers
    • Kim KW, Lee KH, Khil MS, et al. 2004; The effect of molecular weight and the linear velocity of drum surface on the properties of electrospun poly (ethylene terephthalate) nonwoven fibers. Polymer 5: 122–127.
    • (2004) Polymer , vol.5 , pp. 122-127
    • Kim, K.W.1    Lee, K.H.2    Khil, M.S.3
  • 59
    • 77949267607 scopus 로고    scopus 로고
    • Fabrication and characterization of three-dimensional PLGA nanofiber/microfiber composite scaffolds
    • Kim SJ, Jang DH, Park WH, et al. 2010; Fabrication and characterization of three-dimensional PLGA nanofiber/microfiber composite scaffolds. Polymer 51: 1320–1327.
    • (2010) Polymer , vol.51 , pp. 1320-1327
    • Kim, S.J.1    Jang, D.H.2    Park, W.H.3
  • 60
    • 53649108808 scopus 로고    scopus 로고
    • Macroporous and nanofibrous hyaluronic acid/collagen hybrid scaffold fabricated by concurrent electrospinning and deposition/leaching of salt particles
    • Kim TG, Chung HJ, Park TG. 2008b; Macroporous and nanofibrous hyaluronic acid/collagen hybrid scaffold fabricated by concurrent electrospinning and deposition/leaching of salt particles. Acta Biomater 4: 1611–1619.
    • (2008) Acta Biomater , vol.4 , pp. 1611-1619
    • Kim, T.G.1    Chung, H.J.2    Park, T.G.3
  • 61
    • 77955911475 scopus 로고    scopus 로고
    • Characterization of cross-linked gelatin nanofibers through electrospinning
    • Ko JH, Yin HY, An J, et al. 2010; Characterization of cross-linked gelatin nanofibers through electrospinning. Macromol Res 18: 137–143.
    • (2010) Macromol Res , vol.18 , pp. 137-143
    • Ko, J.H.1    Yin, H.Y.2    An, J.3
  • 62
    • 77249168642 scopus 로고    scopus 로고
    • The effect of fiber alignment and heparin coating on cell infiltration into nanofibrous PLLA scaffolds
    • Kurpinski KT, Stephenson JT, Janairo RR, et al. 2010; The effect of fiber alignment and heparin coating on cell infiltration into nanofibrous PLLA scaffolds. Biomaterials 31: 3536–3542.
    • (2010) Biomaterials , vol.31 , pp. 3536-3542
    • Kurpinski, K.T.1    Stephenson, J.T.2    Janairo, R.R.3
  • 63
    • 11144281219 scopus 로고    scopus 로고
    • Electrospun nano- to microfiber fabrics made of biodegradable copolyesters:structural characteristics, mechanical properties and cell adhesion potential
    • Kwon K, Kidoaki S, Matsuda T. 2005; Electrospun nano- to microfiber fabrics made of biodegradable copolyesters:structural characteristics, mechanical properties and cell adhesion potential. Biomaterials 26: 3929–3939.
    • (2005) Biomaterials , vol.26 , pp. 3929-3939
    • Kwon, K.1    Kidoaki, S.2    Matsuda, T.3
  • 64
    • 33847119347 scopus 로고    scopus 로고
    • Electrospinning for tissue engineering scaffolds
    • Lannutti J, Reneker D, Ma T, et al. 2007; Electrospinning for tissue engineering scaffolds. Mater Sci Eng C 27: 504–509.
    • (2007) Mater Sci Eng C , vol.27 , pp. 504-509
    • Lannutti, J.1    Reneker, D.2    Ma, T.3
  • 65
    • 84861591090 scopus 로고    scopus 로고
    • Femtosecond laser ablation enhances cell infiltration into three-dimensional electrospun scaffolds
    • Lee BLP, Jeon H, Wang A, et al. 2012a; Femtosecond laser ablation enhances cell infiltration into three-dimensional electrospun scaffolds. Acta Biomater 8: 2648–2658.
    • (2012) Acta Biomater , vol.8 , pp. 2648-2658
    • Lee, B.L.P.1    Jeon, H.2    Wang, A.3
  • 66
    • 84864006009 scopus 로고    scopus 로고
    • The effect of controlled release of PDGF-BB from heparin-conjugated electrospun PCL/gelatin scaffolds on cellular bioactivity and infiltration
    • Lee J, Yoo JJ, Atala A, et al. 2012b; The effect of controlled release of PDGF-BB from heparin-conjugated electrospun PCL/gelatin scaffolds on cellular bioactivity and infiltration. Biomaterials 33: 6709–6720.
    • (2012) Biomaterials , vol.33 , pp. 6709-6720
    • Lee, J.1    Yoo, J.J.2    Atala, A.3
  • 67
    • 80055119000 scopus 로고    scopus 로고
    • Highly porous electrospun nanofibers enhanced by ultrasonication for improved cellular infiltration
    • Lee JB, Jeong SI, Bae MS, et al. 2011; Highly porous electrospun nanofibers enhanced by ultrasonication for improved cellular infiltration. Tissue Eng 17: 2695–2702.
    • (2011) Tissue Eng , vol.17 , pp. 2695-2702
    • Lee, J.B.1    Jeong, S.I.2    Bae, M.S.3
  • 68
    • 38349150878 scopus 로고    scopus 로고
    • The use of thermal treatments to enhance the mechanical properties of electrospun poly(ɛ-caprolactone) scaffold
    • Lee SJ, Oh SH, Liu J, et al. 2008; The use of thermal treatments to enhance the mechanical properties of electrospun poly(ɛ-caprolactone) scaffold. Biomaterials 29: 1422–1430.
    • (2008) Biomaterials , vol.29 , pp. 1422-1430
    • Lee, S.J.1    Oh, S.H.2    Liu, J.3
  • 69
    • 10644275312 scopus 로고    scopus 로고
    • Electrospun dual-porosity structure and biodegradation morphology of montmorillonite-reinforced PLLA nanocomposite scaffolds
    • Lee YH, Lee JH, An IG, et al. 2005; Electrospun dual-porosity structure and biodegradation morphology of montmorillonite-reinforced PLLA nanocomposite scaffolds. Biomaterials 26: 3165–3172.
    • (2005) Biomaterials , vol.26 , pp. 3165-3172
    • Lee, Y.H.1    Lee, J.H.2    An, I.G.3
  • 70
    • 70349160470 scopus 로고    scopus 로고
    • In vitro, cell infiltration and, in vivo, cell infiltration and vascularization in a fibrous, highly porous poly(, -lactide) scaffold fabricated by cryogenic electrospinning technique
    • Leong MF, Rasheed MZ, Lim TC, et al. 2008; In vitro cell infiltration and in vivo cell infiltration and vascularization in a fibrous, highly porous poly(d,l-lactide) scaffold fabricated by cryogenic electrospinning technique. J Biomed Mater Res A 91: 231–240.
    • (2008) J Biomed Mater Res A , vol.91 , pp. 231-240
    • Leong, M.F.1    Rasheed, M.Z.2    Lim, T.C.3
  • 71
    • 33751187144 scopus 로고    scopus 로고
    • Characterization of nanofibrous membranes with capillary flow porometry
    • Li D, Frey MW, Joo YL. 2006; Characterization of nanofibrous membranes with capillary flow porometry. J Membr Sci 286: 104–114.
    • (2006) J Membr Sci , vol.286 , pp. 104-114
    • Li, D.1    Frey, M.W.2    Joo, Y.L.3
  • 72
    • 84862777273 scopus 로고    scopus 로고
    • The use of hyaluronan to regulate protein adsorption and cell infiltration in nanofibrous scaffolds
    • Li L, Qian Y, Jiang C, et al. 2012a; The use of hyaluronan to regulate protein adsorption and cell infiltration in nanofibrous scaffolds. Biomaterials 33: 3428–3445.
    • (2012) Biomaterials , vol.33 , pp. 3428-3445
    • Li, L.1    Qian, Y.2    Jiang, C.3
  • 73
    • 84655166571 scopus 로고    scopus 로고
    • Preparation and characterization of poly(ɛ-caprolactone) nonwoven mats via melt electrospinning
    • Li X, Liu H, Wang J, et al. 2012b; Preparation and characterization of poly(ɛ-caprolactone) nonwoven mats via melt electrospinning. Polymer 53: 248–253.
    • (2012) Polymer , vol.53 , pp. 248-253
    • Li, X.1    Liu, H.2    Wang, J.3
  • 74
    • 33749574116 scopus 로고    scopus 로고
    • Biomimetic electrospun nanofibers for tissue regeneration
    • Liao S, Li B, Ma Z, et al. 2006; Biomimetic electrospun nanofibers for tissue regeneration. Biomed Mater 1: 45–53.
    • (2006) Biomed Mater , vol.1 , pp. 45-53
    • Liao, S.1    Li, B.2    Ma, Z.3
  • 75
    • 70349810887 scopus 로고    scopus 로고
    • Biomimetic electrospun nanofibers for tissue regeneration
    • Lim SH, Mao HQ. 2009; Biomimetic electrospun nanofibers for tissue regeneration. Adv Drug Deliv Rev 61: 1084–1096.
    • (2009) Adv Drug Deliv Rev , vol.61 , pp. 1084-1096
    • Lim, S.H.1    Mao, H.Q.2
  • 76
    • 84862237584 scopus 로고    scopus 로고
    • Electrospinning versus fibre production methods: from specifics to technological convergence
    • Luo CJ, Stoyanov SD, Stride E, et al. 2012; Electrospinning versus fibre production methods: from specifics to technological convergence. Chem Soc Rev 41: 4708–4735.
    • (2012) Chem Soc Rev , vol.41 , pp. 4708-4735
    • Luo, C.J.1    Stoyanov, S.D.2    Stride, E.3
  • 77
    • 17144376020 scopus 로고    scopus 로고
    • Potential of nanofiber matrix as tissue-engineering scaffolds
    • Ma Z, Kotaki M, Inai R, et al. 2005; Potential of nanofiber matrix as tissue-engineering scaffolds. Tissue Eng 11: 1–2.
    • (2005) Tissue Eng , vol.11 , pp. 1-2
    • Ma, Z.1    Kotaki, M.2    Inai, R.3
  • 78
    • 37349091115 scopus 로고    scopus 로고
    • Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends
    • Mano JF, Silva GA, Azevedo HS, et al. 2007; Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends. J R Soc Interface 22: 999–1030.
    • (2007) J R Soc Interface , vol.22 , pp. 999-1030
    • Mano, J.F.1    Silva, G.A.2    Azevedo, H.S.3
  • 79
    • 38049113230 scopus 로고    scopus 로고
    • Electrospun nanostructured scaffolds for tissue engineering applications
    • Martins A, Araujo JV, Reis RL, et al. 2007; Electrospun nanostructured scaffolds for tissue engineering applications. Nanomedicine 2: 929–942.
    • (2007) Nanomedicine , vol.2 , pp. 929-942
    • Martins, A.1    Araujo, J.V.2    Reis, R.L.3
  • 80
    • 64349104489 scopus 로고    scopus 로고
    • Hierarchical starch-based fibrous scaffold for bone tissue engineering applications
    • Martins A, Chung S, Pedro AJ, et al. 2009a; Hierarchical starch-based fibrous scaffold for bone tissue engineering applications. J Tissue Eng Regen Med 3: 37–42.
    • (2009) J Tissue Eng Regen Med , vol.3 , pp. 37-42
    • Martins, A.1    Chung, S.2    Pedro, A.J.3
  • 81
    • 67649892067 scopus 로고    scopus 로고
    • Surface modification of electrospun polycaprolactone nanofiber meshes by plasma treatment to enhance biological performance
    • Martins A, Pinho ED, Faria S, et al. 2009b; Surface modification of electrospun polycaprolactone nanofiber meshes by plasma treatment to enhance biological performance. Small 5: 1195–1206.
    • (2009) Small , vol.5 , pp. 1195-1206
    • Martins, A.1    Pinho, E.D.2    Faria, S.3
  • 82
    • 78650055735 scopus 로고    scopus 로고
    • Biodegradable nanofibers-reinforced microfibrous composite scaffolds for bone tissue engineering
    • Martins A, Pinho ED, Correlo VM, et al. 2010; Biodegradable nanofibers-reinforced microfibrous composite scaffolds for bone tissue engineering. Tissue Eng 16: 3599–3609.
    • (2010) Tissue Eng , vol.16 , pp. 3599-3609
    • Martins, A.1    Pinho, E.D.2    Correlo, V.M.3
  • 83
    • 79959851146 scopus 로고    scopus 로고
    • The influence of patterned nanofiber meshes on human mesenchymal stem cell osteogenesis
    • Martins A, Silva MLA, Faria S, et al. 2011; The influence of patterned nanofiber meshes on human mesenchymal stem cell osteogenesis. Macromol Biosci 11: 978–987.
    • (2011) Macromol Biosci , vol.11 , pp. 978-987
    • Martins, A.1    Silva, M.L.A.2    Faria, S.3
  • 85
    • 77957793021 scopus 로고    scopus 로고
    • Fiber-reinforced scaffolds for tissue engineering and regenerative medicine: use of traditional textile substrates to nanofibrous arrays
    • McCullen SD, Haslauera CM, Loboa EG. 2010; Fiber-reinforced scaffolds for tissue engineering and regenerative medicine: use of traditional textile substrates to nanofibrous arrays. J Mater Chem 20: 8776–8788.
    • (2010) J Mater Chem , vol.20 , pp. 8776-8788
    • McCullen, S.D.1    Haslauera, C.M.2    Loboa, E.G.3
  • 86
    • 79953647971 scopus 로고    scopus 로고
    • Hydrogel–electrospun mesh composites for coronary artery bypass grafts
    • McMahon RE, Qu X, Jimenez-Vergara AC, et al. 2011; Hydrogel–electrospun mesh composites for coronary artery bypass grafts. Tissue Eng 17: 451–461.
    • (2011) Tissue Eng , vol.17 , pp. 451-461
    • McMahon, R.E.1    Qu, X.2    Jimenez-Vergara, A.C.3
  • 87
    • 38449087800 scopus 로고    scopus 로고
    • 3D fiber-deposited electrospun integrated scaffolds enhance cartilage tissue formation
    • Moroni L, Schotel R, Hamann D, et al. 2008; 3D fiber-deposited electrospun integrated scaffolds enhance cartilage tissue formation. Adv Funct Mater 18: 53–60.
    • (2008) Adv Funct Mater , vol.18 , pp. 53-60
    • Moroni, L.1    Schotel, R.2    Hamann, D.3
  • 88
    • 34548618320 scopus 로고    scopus 로고
    • Improved cellular infiltration in electrospun fiber via engineered porosity
    • Nam J, Huang Y, Agarwal S, et al. 2007; Improved cellular infiltration in electrospun fiber via engineered porosity. Tissue Eng 13: 2249–2257.
    • (2007) Tissue Eng , vol.13 , pp. 2249-2257
    • Nam, J.1    Huang, Y.2    Agarwal, S.3
  • 89
    • 38149047611 scopus 로고    scopus 로고
    • Materials selection and residual solvent retention in biodegradable electrospun fibers
    • Nam J, Huang Y, Agarwal S, et al. 2008; Materials selection and residual solvent retention in biodegradable electrospun fibers. J Appl Polym Sci 107: 1547–1554.
    • (2008) J Appl Polym Sci , vol.107 , pp. 1547-1554
    • Nam, J.1    Huang, Y.2    Agarwal, S.3
  • 90
    • 78650719013 scopus 로고    scopus 로고
    • Dynamic culture enhances stem cell infiltration and modulates extracellular matrix production on aligned electrospun nanofibrous scaffolds
    • Nerurkar NL, Sen S, Baker BM, et al. 2011; Dynamic culture enhances stem cell infiltration and modulates extracellular matrix production on aligned electrospun nanofibrous scaffolds. Acta Biomater 7: 485–491.
    • (2011) Acta Biomater , vol.7 , pp. 485-491
    • Nerurkar, N.L.1    Sen, S.2    Baker, B.M.3
  • 91
    • 56349116427 scopus 로고    scopus 로고
    • Patterning of polymer nanofiber meshes by electrospinning for biomedical applications
    • Neves NM, Campos R, Pedro A, et al. 2007; Patterning of polymer nanofiber meshes by electrospinning for biomedical applications. Int J Nanomed 2: 433–438.
    • (2007) Int J Nanomed , vol.2 , pp. 433-438
    • Neves, N.M.1    Campos, R.2    Pedro, A.3
  • 92
    • 67650128152 scopus 로고    scopus 로고
    • A review of the cellular response on electrospun nanofibers for tissue engineering
    • Nisbet DR, Forsythe JS, Shen W, et al. 2009; A review of the cellular response on electrospun nanofibers for tissue engineering. J Biomater Appl 24: 7–29.
    • (2009) J Biomater Appl , vol.24 , pp. 7-29
    • Nisbet, D.R.1    Forsythe, J.S.2    Shen, W.3
  • 93
    • 84863300239 scopus 로고    scopus 로고
    • In vitro evaluation of electrospun PCL/nanoclay composite scaffold for bone tissue engineering
    • Nitya G, Nair GT, Mony U, et al. 2012; In vitro evaluation of electrospun PCL/nanoclay composite scaffold for bone tissue engineering. J Mater Sci Mater Med 23: 1749–1761.
    • (2012) J Mater Sci Mater Med , vol.23 , pp. 1749-1761
    • Nitya, G.1    Nair, G.T.2    Mony, U.3
  • 94
    • 42449141885 scopus 로고    scopus 로고
    • Characterization of electrical and mechanical properties for coaxial nanofibers with poly(ethylene oxide) (PEO) core and multiwalled carbon nanotube/PEO sheath
    • Ojha SS, Stevens DR, Stano K, et al. 2008; Characterization of electrical and mechanical properties for coaxial nanofibers with poly(ethylene oxide) (PEO) core and multiwalled carbon nanotube/PEO sheath. Macromolecules 41: 2509–2513.
    • (2008) Macromolecules , vol.41 , pp. 2509-2513
    • Ojha, S.S.1    Stevens, D.R.2    Stano, K.3
  • 95
    • 85121156630 scopus 로고    scopus 로고
    • Combined microfabrication and electrospinning to produce 3D architectures for corneal repair
    • Ortega I, Ryan AJ, Deshpande P, et al. 2012; Combined microfabrication and electrospinning to produce 3D architectures for corneal repair. Acta Biomater 9: 1–10.
    • (2012) Acta Biomater , vol.9 , pp. 1-10
    • Ortega, I.1    Ryan, A.J.2    Deshpande, P.3
  • 96
    • 79952189383 scopus 로고    scopus 로고
    • Electrospun gelatin nanofibers: optimization of genipin cross-linking to preserve fiber morphology after exposure to water
    • Panzavolta S, Gioffre M, Focarete ML, et al. 2011; Electrospun gelatin nanofibers: optimization of genipin cross-linking to preserve fiber morphology after exposure to water. Acta Biomater 7: 1702–1709.
    • (2011) Acta Biomater , vol.7 , pp. 1702-1709
    • Panzavolta, S.1    Gioffre, M.2    Focarete, M.L.3
  • 97
    • 48449092707 scopus 로고    scopus 로고
    • Development of dual scale scaffolds via direct polymer melt deposition and electrospinning for applications in tissue regeneration
    • Park SH, Kim TG, Kim HC, et al. 2008; Development of dual scale scaffolds via direct polymer melt deposition and electrospinning for applications in tissue regeneration. Acta Biomater 4: 1198–1207.
    • (2008) Acta Biomater , vol.4 , pp. 1198-1207
    • Park, S.H.1    Kim, T.G.2    Kim, H.C.3
  • 98
    • 4644341971 scopus 로고    scopus 로고
    • Fibers and 3D mesh scaffolds from biodegradable starch-based blends: production and characterization
    • Pavlov MP, Mano JF, Neves NM, et al. 2004; Fibers and 3D mesh scaffolds from biodegradable starch-based blends: production and characterization. Macromol Biosci 4: 776–784.
    • (2004) Macromol Biosci , vol.4 , pp. 776-784
    • Pavlov, M.P.1    Mano, J.F.2    Neves, N.M.3
  • 99
    • 84877251282 scopus 로고    scopus 로고
    • Industrial upscaling of electrospinning and applications of polymer nanofibers: a review
    • Persano L, Camposeo A, Tekmen C, et al. 2013; Industrial upscaling of electrospinning and applications of polymer nanofibers: a review. Macromol Mater Eng 298: 504–520.
    • (2013) Macromol Mater Eng , vol.298 , pp. 504-520
    • Persano, L.1    Camposeo, A.2    Tekmen, C.3
  • 100
    • 80055116875 scopus 로고    scopus 로고
    • Increasing the pore sizes of bone-mimetic electrospun scaffolds comprised of polycaprolactone, collagen I and hydroxyapatite to enhance cell infiltration
    • Phipps MC, Clem WC, Grunda JM, et al. 2012; Increasing the pore sizes of bone-mimetic electrospun scaffolds comprised of polycaprolactone, collagen I and hydroxyapatite to enhance cell infiltration. Biomaterials 33: 524–534.
    • (2012) Biomaterials , vol.33 , pp. 524-534
    • Phipps, M.C.1    Clem, W.C.2    Grunda, J.M.3
  • 101
    • 64249126222 scopus 로고    scopus 로고
    • Degradable particulate composite reinforced with nanofibres for biomedical applications
    • Pinho ED, Martins A, Araújo JV, et al. 2009; Degradable particulate composite reinforced with nanofibres for biomedical applications. Acta Biomater 5: 1104–1114.
    • (2009) Acta Biomater , vol.5 , pp. 1104-1114
    • Pinho, E.D.1    Martins, A.2    Araújo, J.V.3
  • 102
    • 84898007943 scopus 로고    scopus 로고
    • Size also matters in biodegradable composite microfiber reinforced by chitosan nanofibers
    • Pinho ED, Martins A, Araujo JV, et al. 2014; Size also matters in biodegradable composite microfiber reinforced by chitosan nanofibers. Mater Res Soc Symp Proc 67: 59–69; DOI: 10.1557/opl.2014.1567.
    • (2014) Mater Res Soc Symp Proc , vol.67 , pp. 59-69
    • Pinho, E.D.1    Martins, A.2    Araujo, J.V.3
  • 103
    • 84859454661 scopus 로고    scopus 로고
    • Hybrid silica–PVA nanofibers via sol–gel electrospinning
    • Pirzada T, Arvidson SA, Saquing CD, et al. 2012; Hybrid silica–PVA nanofibers via sol–gel electrospinning. Langmuir 28: 5834–5844.
    • (2012) Langmuir , vol.28 , pp. 5834-5844
    • Pirzada, T.1    Arvidson, S.A.2    Saquing, C.D.3
  • 105
    • 78951492585 scopus 로고    scopus 로고
    • Improvement of electrospun polymer fiber meshes pore size by femtosecond laser irradiation
    • Rebollar E, Cordero D, Martins A, et al. 2011; Improvement of electrospun polymer fiber meshes pore size by femtosecond laser irradiation. Appl Surf Sci 257: 4091–4095.
    • (2011) Appl Surf Sci , vol.257 , pp. 4091-4095
    • Rebollar, E.1    Cordero, D.2    Martins, A.3
  • 106
    • 72149088455 scopus 로고    scopus 로고
    • Intrinsic extracellular matrix properties regulate stem cell differentiation
    • Reilly GC, Engler AJ. 2010; Intrinsic extracellular matrix properties regulate stem cell differentiation. J Biomech 43: 55–62.
    • (2010) J Biomech , vol.43 , pp. 55-62
    • Reilly, G.C.1    Engler, A.J.2
  • 107
    • 80053047116 scopus 로고    scopus 로고
    • Increasing the pore size of electrospun scaffolds
    • Rnjak-Kovacina J, Weiss AS. 2011; Increasing the pore size of electrospun scaffolds. Tissue Eng 17: 365–372.
    • (2011) Tissue Eng , vol.17 , pp. 365-372
    • Rnjak-Kovacina, J.1    Weiss, A.S.2
  • 108
    • 79960565027 scopus 로고    scopus 로고
    • Tailoring the porosity and pore size of electrospun synthetic human elastin scaffolds for dermal tissue engineering
    • Rnjak-Kovacina J, Wise SG, Li Z, et al. 2011; Tailoring the porosity and pore size of electrospun synthetic human elastin scaffolds for dermal tissue engineering. Biomaterials 32: 6729–6736.
    • (2011) Biomaterials , vol.32 , pp. 6729-6736
    • Rnjak-Kovacina, J.1    Wise, S.G.2    Li, Z.3
  • 109
    • 34249662098 scopus 로고    scopus 로고
    • Formation and aqueous surface wettability of polysiloxane nanofibers prepared via surface-initiated, vapor-phase polymerization of organotrichlorosilanes
    • Rollings DA, Tsoi S, Sit JC, et al. 2007; Formation and aqueous surface wettability of polysiloxane nanofibers prepared via surface-initiated, vapor-phase polymerization of organotrichlorosilanes. Langmuir 23: 5275–5278.
    • (2007) Langmuir , vol.23 , pp. 5275-5278
    • Rollings, D.A.1    Tsoi, S.2    Sit, J.C.3
  • 110
    • 77951592441 scopus 로고    scopus 로고
    • Growth factor delivery through electrospun nanofibers in scaffolds for tissue engineering applications
    • Sahoo S, Ang LT, Goh JC, et al. 2010a; Growth factor delivery through electrospun nanofibers in scaffolds for tissue engineering applications. J Biomed Mater Res A 93: 1539–1550.
    • (2010) J Biomed Mater Res A , vol.93 , pp. 1539-1550
    • Sahoo, S.1    Ang, L.T.2    Goh, J.C.3
  • 111
    • 76749142958 scopus 로고    scopus 로고
    • A bFGF-releasing silk/PLGA-based biohybrid scaffold for ligament/tendon tissue engineering using mesenchymal progenitor cells
    • Sahoo S, Lok Toh S, Goh J. 2010b; A bFGF-releasing silk/PLGA-based biohybrid scaffold for ligament/tendon tissue engineering using mesenchymal progenitor cells. Biomaterials 31: 2990–2998.
    • (2010) Biomaterials , vol.31 , pp. 2990-2998
    • Sahoo, S.1    Lok Toh, S.2    Goh, J.3
  • 112
    • 50349088678 scopus 로고    scopus 로고
    • Endothelial cell colonization and angiogenic potential of combined nano- and micro-fibrous scaffolds for bone tissue engineering
    • Santos MI, Tuzlakoglu K, Fuchs S, et al. 2008; Endothelial cell colonization and angiogenic potential of combined nano- and micro-fibrous scaffolds for bone tissue engineering. Biomaterials 29: 4306–4313.
    • (2008) Biomaterials , vol.29 , pp. 4306-4313
    • Santos, M.I.1    Tuzlakoglu, K.2    Fuchs, S.3
  • 113
    • 38449097375 scopus 로고    scopus 로고
    • Biomaterials/scaffolds. Design of bioactive, multiphasic PCL/collagen type I and type II PCL–TCP/collagen composite scaffolds for functional tissue engineering of osteochondral repair tissue by using electrospinning and FDM techniques
    • Schumann D, Ekaputra AK, Lam CX, et al. 2007; Biomaterials/scaffolds. Design of bioactive, multiphasic PCL/collagen type I and type II PCL–TCP/collagen composite scaffolds for functional tissue engineering of osteochondral repair tissue by using electrospinning and FDM techniques. Methods Mol Med 140: 101–124.
    • (2007) Methods Mol Med , vol.140 , pp. 101-124
    • Schumann, D.1    Ekaputra, A.K.2    Lam, C.X.3
  • 114
    • 80054079976 scopus 로고    scopus 로고
    • Spray deposition of live cells throughout the electrospinning process produces nanofibrous three-dimensional tissue scaffolds
    • Seil JT, Webster TJ. 2011; Spray deposition of live cells throughout the electrospinning process produces nanofibrous three-dimensional tissue scaffolds. Nanomedicine 6: 1095–1099.
    • (2011) Nanomedicine , vol.6 , pp. 1095-1099
    • Seil, J.T.1    Webster, T.J.2
  • 115
    • 80155134198 scopus 로고    scopus 로고
    • Incorporating platelet-rich plasma into electrospun scaffolds for tissue engineering applications
    • Sell SA, Wolfe PS, Ericksen JJ, et al. 2011; Incorporating platelet-rich plasma into electrospun scaffolds for tissue engineering applications. Tissue Eng 17: 2723–2737.
    • (2011) Tissue Eng , vol.17 , pp. 2723-2737
    • Sell, S.A.1    Wolfe, P.S.2    Ericksen, J.J.3
  • 116
    • 84862680222 scopus 로고    scopus 로고
    • Cellular infiltration on nanofibrous scaffolds using a modified electrospinning technique
    • Shabani I, Haddadi-Asl V, Seyedjafari E, et al. 2012; Cellular infiltration on nanofibrous scaffolds using a modified electrospinning technique. Biochem Biophys Res Commun 423: 50–54.
    • (2012) Biochem Biophys Res Commun , vol.423 , pp. 50-54
    • Shabani, I.1    Haddadi-Asl, V.2    Seyedjafari, E.3
  • 117
    • 67349269535 scopus 로고    scopus 로고
    • Electrospinning of carboxymethyl chitin/poly(vinyl alcohol) nanofibrous scaffolds for tissue engineering applications
    • Shalumon KT, Binulal NS, Selvamurugan N, et al. 2009; Electrospinning of carboxymethyl chitin/poly(vinyl alcohol) nanofibrous scaffolds for tissue engineering applications. Carbohyd Polym 77: 863–869.
    • (2009) Carbohyd Polym , vol.77 , pp. 863-869
    • Shalumon, K.T.1    Binulal, N.S.2    Selvamurugan, N.3
  • 118
    • 78449273698 scopus 로고    scopus 로고
    • Novel three-dimensional scaffolds of poly(l-lactic acid) microfibers using electrospinning and mechanical expansion: fabrication and bone regeneration
    • Shim IK, Jung MR, Kim KH, et al. 2010; Novel three-dimensional scaffolds of poly(l-lactic acid) microfibers using electrospinning and mechanical expansion: fabrication and bone regeneration. J Biomed Mater Res B 95: 150–160.
    • (2010) J Biomed Mater Res B , vol.95 , pp. 150-160
    • Shim, I.K.1    Jung, M.R.2    Kim, K.H.3
  • 119
    • 67650471753 scopus 로고    scopus 로고
    • Chitosan nano-/microfibrous double-layered membrane with rolled-up three-dimensional structures for chondrocyte cultivation
    • Shim IK, Suh WH, Lee SY, et al. 2009; Chitosan nano-/microfibrous double-layered membrane with rolled-up three-dimensional structures for chondrocyte cultivation. J Biomed Mater Res A 90: 595–602.
    • (2009) J Biomed Mater Res A , vol.90 , pp. 595-602
    • Shim, I.K.1    Suh, W.H.2    Lee, S.Y.3
  • 120
    • 40049090999 scopus 로고    scopus 로고
    • Electrospinning: applications in drug delivery and tissue engineering
    • Sill TJ, Recum HA. 2008; Electrospinning: applications in drug delivery and tissue engineering. Biomaterials 29: 1989–2006.
    • (2008) Biomaterials , vol.29 , pp. 1989-2006
    • Sill, T.J.1    Recum, H.A.2
  • 121
    • 37649005060 scopus 로고    scopus 로고
    • Ultraporous 3D polymer meshes by low-temperature electrospinning: use of ice crystals as a removable void template
    • Simonet M, Schneider OD, Neuenschwander P, et al. 2007; Ultraporous 3D polymer meshes by low-temperature electrospinning: use of ice crystals as a removable void template. Polym Eng Sci 47: 2020–2026.
    • (2007) Polym Eng Sci , vol.47 , pp. 2020-2026
    • Simonet, M.1    Schneider, O.D.2    Neuenschwander, P.3
  • 122
    • 76949091192 scopus 로고    scopus 로고
    • Multiscale three-dimensional scaffolds for soft tissue engineering via multimodal electrospinning
    • Soliman S, Pagliari S, Rinaldi A, et al. 2010; Multiscale three-dimensional scaffolds for soft tissue engineering via multimodal electrospinning. Acta Biomater 6: 1227–1237.
    • (2010) Acta Biomater , vol.6 , pp. 1227-1237
    • Soliman, S.1    Pagliari, S.2    Rinaldi, A.3
  • 123
    • 84872141694 scopus 로고    scopus 로고
    • Enhancing crystallinity and orientation by hot-stretching to improve the mechanical properties of electrospun partially aligned polyacrylonitrile (PAN) nanocomposites
    • Song Z, Hou X, Zhang L, et al. 2011; Enhancing crystallinity and orientation by hot-stretching to improve the mechanical properties of electrospun partially aligned polyacrylonitrile (PAN) nanocomposites. Materials 4: 621–632.
    • (2011) Materials , vol.4 , pp. 621-632
    • Song, Z.1    Hou, X.2    Zhang, L.3
  • 124
    • 26944451302 scopus 로고    scopus 로고
    • Microintegrating smooth muscle cells into a biodegradable, elastomeric fiber matrix
    • Stankus JJ, Guan J, Fujimoto K, et al. 2006; Microintegrating smooth muscle cells into a biodegradable, elastomeric fiber matrix. Biomaterials 27: 735–744.
    • (2006) Biomaterials , vol.27 , pp. 735-744
    • Stankus, J.J.1    Guan, J.2    Fujimoto, K.3
  • 125
    • 33947164658 scopus 로고    scopus 로고
    • Fabrication of cell microintegrated blood vessel constructs through electrohydrodynamic atomization
    • Stankus JJ, Soletti L, Fujimoto K, et al. 2007; Fabrication of cell microintegrated blood vessel constructs through electrohydrodynamic atomization. Biomaterials 28: 2738–2746.
    • (2007) Biomaterials , vol.28 , pp. 2738-2746
    • Stankus, J.J.1    Soletti, L.2    Fujimoto, K.3
  • 126
    • 34250660129 scopus 로고    scopus 로고
    • Preparation of water-stable submicron fibers from aqueous latex dispersion of water-insoluble polymers by electrospinning
    • Stoiljkovic A, Ishaque M, Justus U, et al. 2007; Preparation of water-stable submicron fibers from aqueous latex dispersion of water-insoluble polymers by electrospinning. Polymer 48: 3974–3981.
    • (2007) Polymer , vol.48 , pp. 3974-3981
    • Stoiljkovic, A.1    Ishaque, M.2    Justus, U.3
  • 127
    • 48549090620 scopus 로고    scopus 로고
    • Computational predictions of the tensile properties of electrospun fibre meshes: effect of fibre diameter and fibre orientation
    • Stylianopoulos T, Bashur CA, Goldstein AS, et al. 2008; Computational predictions of the tensile properties of electrospun fibre meshes: effect of fibre diameter and fibre orientation. J Mech Behav Biomed Mater 1: 326–335.
    • (2008) J Mech Behav Biomed Mater , vol.1 , pp. 326-335
    • Stylianopoulos, T.1    Bashur, C.A.2    Goldstein, A.S.3
  • 128
    • 62649109838 scopus 로고    scopus 로고
    • Generation of alginate microfibers with a roller-assisted microfluidic system
    • Su J, Zheng Y, Wu H. 2011; Generation of alginate microfibers with a roller-assisted microfluidic system. Lab Chip 9: 996–1001.
    • (2011) Lab Chip , vol.9 , pp. 996-1001
    • Su, J.1    Zheng, Y.2    Wu, H.3
  • 129
    • 84899432335 scopus 로고    scopus 로고
    • Elastic biodegradable starch/ethylene-co-vinyl alcohol fibre-mesh scaffolds for tissue engineering applications
    • Susano MA, Leonor IB, Reis RL, et al. 2014; Elastic biodegradable starch/ethylene-co-vinyl alcohol fibre-mesh scaffolds for tissue engineering applications. J Appl Polym Sci 131: 1–9.
    • (2014) J Appl Polym Sci , vol.131 , pp. 1-9
    • Susano, M.A.1    Leonor, I.B.2    Reis, R.L.3
  • 131
    • 84872764385 scopus 로고    scopus 로고
    • Development of nanofiber-reinforced hydrogel scaffolds for nucleus pulposus regeneration by a combination of electrospinning and spraying technique
    • Thorvaldsson A, Silva-Correia J, Oliveira JM, et al. 2013; Development of nanofiber-reinforced hydrogel scaffolds for nucleus pulposus regeneration by a combination of electrospinning and spraying technique. J Appl Polym Sci 128: 1158–1163.
    • (2013) J Appl Polym Sci , vol.128 , pp. 1158-1163
    • Thorvaldsson, A.1    Silva-Correia, J.2    Oliveira, J.M.3
  • 132
    • 41949105727 scopus 로고    scopus 로고
    • Electrospinning of highly porous scaffolds for cartilage regeneration
    • Thorvaldsson A, Stenhamre H, Gatenholm P, et al. 2008; Electrospinning of highly porous scaffolds for cartilage regeneration. Biomacromolecules 9: 1044–1049.
    • (2008) Biomacromolecules , vol.9 , pp. 1044-1049
    • Thorvaldsson, A.1    Stenhamre, H.2    Gatenholm, P.3
  • 133
    • 79960101737 scopus 로고    scopus 로고
    • Optimization of electrospun polylactide-based ultrathin fibers for osteoconductive bone scaffolds
    • Torres-Giner S, Gimeno-Alcaniz JV, Ocio MJ, et al. 2011; Optimization of electrospun polylactide-based ultrathin fibers for osteoconductive bone scaffolds. J Appl Polym Sci 122: 914–925.
    • (2011) J Appl Polym Sci , vol.122 , pp. 914-925
    • Torres-Giner, S.1    Gimeno-Alcaniz, J.V.2    Ocio, M.J.3
  • 134
    • 77950887954 scopus 로고    scopus 로고
    • Comparative performance of electrospun collagen nanofibers cross-linked by means of different methods
    • Torres-Giner S, Gimeno-Alcaniz JV, Ocio MJ, et al. 2009; Comparative performance of electrospun collagen nanofibers cross-linked by means of different methods. ACS Appl Mater Interfaces 1: 218–223.
    • (2009) ACS Appl Mater Interfaces , vol.1 , pp. 218-223
    • Torres-Giner, S.1    Gimeno-Alcaniz, J.V.2    Ocio, M.J.3
  • 135
    • 33846267342 scopus 로고    scopus 로고
    • Cell electrospinning: a unique biotechnique for encapsulating living organisms for generating active biological microthreads/scaffolds
    • Townsend-Nicholson A, Jayasinghe SN. 2006; Cell electrospinning: a unique biotechnique for encapsulating living organisms for generating active biological microthreads/scaffolds. Biomacromolecules 7: 3364–3369.
    • (2006) Biomacromolecules , vol.7 , pp. 3364-3369
    • Townsend-Nicholson, A.1    Jayasinghe, S.N.2
  • 136
    • 29144536122 scopus 로고    scopus 로고
    • Nano- and micro-fiber combined scaffolds: a new architecture for bone tissue engineering
    • Tuzlakoglu K, Bolgen N, Salgado AJ, et al. 2005; Nano- and micro-fiber combined scaffolds: a new architecture for bone tissue engineering. J Mater Sci Mater Med 16: 1099–1104.
    • (2005) J Mater Sci Mater Med , vol.16 , pp. 1099-1104
    • Tuzlakoglu, K.1    Bolgen, N.2    Salgado, A.J.3
  • 137
    • 79551538574 scopus 로고    scopus 로고
    • Design of nano- and microfiber combined scaffolds by electrospinning of collagen onto starch-based fiber meshes: a man-made equivalent of natural extracellular mitrix
    • Tuzlakoglu K, Santos MI, Neves N, et al. 2011; Design of nano- and microfiber combined scaffolds by electrospinning of collagen onto starch-based fiber meshes: a man-made equivalent of natural extracellular mitrix. Tissue Eng 17: 463–473.
    • (2011) Tissue Eng , vol.17 , pp. 463-473
    • Tuzlakoglu, K.1    Santos, M.I.2    Neves, N.3
  • 138
    • 79955591893 scopus 로고    scopus 로고
    • Increasing electrospun scaffold pore size with tailored collectors for improved cell penetration
    • Vaquette C, Cooper-White JJ. 2011; Increasing electrospun scaffold pore size with tailored collectors for improved cell penetration. Acta Biomater 7: 2544–2557.
    • (2011) Acta Biomater , vol.7 , pp. 2544-2557
    • Vaquette, C.1    Cooper-White, J.J.2
  • 139
    • 84987796326 scopus 로고    scopus 로고
    • A simple method for fabricating 3D multilayered composite scaffolds
    • Vaquette C, Cooper-White JJ. 2012; A simple method for fabricating 3D multilayered composite scaffolds. Acta Biomater 7: 3277–3284.
    • (2012) Acta Biomater , vol.7 , pp. 3277-3284
    • Vaquette, C.1    Cooper-White, J.J.2
  • 140
    • 34548611009 scopus 로고    scopus 로고
    • Nanofibers and their applications in tissue engineering
    • Vasita R, Katti DS. 2006; Nanofibers and their applications in tissue engineering. Int J Nanomed 1: 15–30.
    • (2006) Int J Nanomed , vol.1 , pp. 15-30
    • Vasita, R.1    Katti, D.S.2
  • 141
    • 37549070763 scopus 로고    scopus 로고
    • Interaction of cells and nanofiber scaffolds in tissue engineering
    • Venugopal J, Low S, Choon AT, et al. 2008a; Interaction of cells and nanofiber scaffolds in tissue engineering. J Biomed Mater Res B 84: 34–48.
    • (2008) J Biomed Mater Res B , vol.84 , pp. 34-48
    • Venugopal, J.1    Low, S.2    Choon, A.T.3
  • 142
    • 43549116318 scopus 로고    scopus 로고
    • Nanobioengineered electrospun composite nanofibers and osteoblasts for bone regeneration
    • Venugopal JR, Low S, Choon AT, et al. 2008b; Nanobioengineered electrospun composite nanofibers and osteoblasts for bone regeneration. Artif Organs 35: 388–397.
    • (2008) Artif Organs , vol.35 , pp. 388-397
    • Venugopal, J.R.1    Low, S.2    Choon, A.T.3
  • 143
    • 0142248386 scopus 로고    scopus 로고
    • Radiation crosslinking of methylcellulose and hydroxyethylcellulose in concentrated aqueous solutions
    • Wach RA, Mitomo H, Nagasawa N, et al. 2003; Radiation crosslinking of methylcellulose and hydroxyethylcellulose in concentrated aqueous solutions. Nucl Instr Meth Phys Res 533: 533–544.
    • (2003) Nucl Instr Meth Phys Res , vol.533 , pp. 533-544
    • Wach, R.A.1    Mitomo, H.2    Nagasawa, N.3
  • 144
    • 84864615557 scopus 로고    scopus 로고
    • Electrospun drug-eluting sutures for local anesthesia
    • Weldon CB, Tsui JH, Shankarappa SA, et al. 2012; Electrospun drug-eluting sutures for local anesthesia. J Control Release 161: 903–909.
    • (2012) J Control Release , vol.161 , pp. 903-909
    • Weldon, C.B.1    Tsui, J.H.2    Shankarappa, S.A.3
  • 145
    • 78751705670 scopus 로고    scopus 로고
    • Pre-osteoblast infiltration and differentiation in highly porous apatite-coated PLLA electrospun scaffolds
    • Whited BM, Whitney JR, Hofmann MC, et al. 2011; Pre-osteoblast infiltration and differentiation in highly porous apatite-coated PLLA electrospun scaffolds. Biomaterials 32: 2294–2304.
    • (2011) Biomaterials , vol.32 , pp. 2294-2304
    • Whited, B.M.1    Whitney, J.R.2    Hofmann, M.C.3
  • 146
    • 4744345810 scopus 로고    scopus 로고
    • Variable cytocompatibility of six cell lines with photoinitiators used for polymerizing hydrogels and cell encapsulation
    • Williams CG, Malik AN, Kim TK, et al. 2005; Variable cytocompatibility of six cell lines with photoinitiators used for polymerizing hydrogels and cell encapsulation. Biomaterials 26: 1211–1218.
    • (2005) Biomaterials , vol.26 , pp. 1211-1218
    • Williams, C.G.1    Malik, A.N.2    Kim, T.K.3
  • 147
    • 78649629945 scopus 로고    scopus 로고
    • Utilizing NaCl to increase the porosity of electrospun materials
    • Wright LD, Andric T, Freeman JW. 2011; Utilizing NaCl to increase the porosity of electrospun materials. Mater Sci Eng C 31: 30–36.
    • (2011) Mater Sci Eng C , vol.31 , pp. 30-36
    • Wright, L.D.1    Andric, T.2    Freeman, J.W.3
  • 148
    • 84867545160 scopus 로고    scopus 로고
    • Electrospun nanoyarn scaffold and its application in tissue engineering
    • Wu J, Liu S, He L, et al. 2012; Electrospun nanoyarn scaffold and its application in tissue engineering. Mater Lett 89: 146–149.
    • (2012) Mater Lett , vol.89 , pp. 146-149
    • Wu, J.1    Liu, S.2    He, L.3
  • 149
    • 34250622461 scopus 로고    scopus 로고
    • Electrospray in the dripping mode for cell microencapsulation
    • Xie J, Wang CH. 2007; Electrospray in the dripping mode for cell microencapsulation. J Colloid Interface Sci 312: 247–255.
    • (2007) J Colloid Interface Sci , vol.312 , pp. 247-255
    • Xie, J.1    Wang, C.H.2
  • 150
    • 77956508754 scopus 로고    scopus 로고
    • Fabrication of cross-linked polyethyleneimine microfibers by reactive electrospinning with in situ photo-crosslinking by UV radiation
    • Xu X, Zhang JF, Fan Y. 2010; Fabrication of cross-linked polyethyleneimine microfibers by reactive electrospinning with in situ photo-crosslinking by UV radiation. Biomacromolecules 11: 2283–2289.
    • (2010) Biomacromolecules , vol.11 , pp. 2283-2289
    • Xu, X.1    Zhang, J.F.2    Fan, Y.3
  • 151
    • 84971528378 scopus 로고    scopus 로고
    • Cross-linked electrospun fibrous scaffolds for tissue engineering
    • Xu X, Zhang JF. 2012; Cross-linked electrospun fibrous scaffolds for tissue engineering. Curr Tissue Eng 1: 2–14.
    • (2012) Curr Tissue Eng , vol.1 , pp. 2-14
    • Xu, X.1    Zhang, J.F.2
  • 152
    • 84870252785 scopus 로고    scopus 로고
    • In vivo bone generation via the endochondral pathway on three-dimensional electrospun fibers
    • Yang W, Yang F, Wang Y, et al. 2013; In vivo bone generation via the endochondral pathway on three-dimensional electrospun fibers. Acta Biomater 9: 4505–4512.
    • (2013) Acta Biomater , vol.9 , pp. 4505-4512
    • Yang, W.1    Yang, F.2    Wang, Y.3
  • 153
    • 67049096654 scopus 로고    scopus 로고
    • Nanofiber enabled layer-by-layer approach toward three-dimensional tissue formation
    • Yang X, Shah JD, Wang H. 2009a; Nanofiber enabled layer-by-layer approach toward three-dimensional tissue formation. Tissue Eng 15: 945–956.
    • (2009) Tissue Eng , vol.15 , pp. 945-956
    • Yang, X.1    Shah, J.D.2    Wang, H.3
  • 154
    • 79952771584 scopus 로고    scopus 로고
    • Portable nanofiber meshes dictate cell orientation throughout three-dimensional hydrogels
    • Yang Y, Wimpenny I, Ahearne M. 2011; Portable nanofiber meshes dictate cell orientation throughout three-dimensional hydrogels. Nanomedicine 7: 131–136.
    • (2011) Nanomedicine , vol.7 , pp. 131-136
    • Yang, Y.1    Wimpenny, I.2    Ahearne, M.3
  • 155
    • 70149089297 scopus 로고    scopus 로고
    • Electrospun composite mats of poly[(d,l-lactide)-co-glycolide] and collagen with high porosity as potential scaffolds for skin tissue engineering
    • Yang Y, Zhu X, Cui W. 2009b; Electrospun composite mats of poly[(d,l-lactide)-co-glycolide] and collagen with high porosity as potential scaffolds for skin tissue engineering. Macromol Mater Eng 294: 611–619.
    • (2009) Macromol Mater Eng , vol.294 , pp. 611-619
    • Yang, Y.1    Zhu, X.2    Cui, W.3
  • 156
    • 59749084551 scopus 로고    scopus 로고
    • Novel wet electrospinning system for fabrication of spongiform nanofiber three-dimensional fabric
    • Yokoyama Y, Hattori S, Yoshikawa C, et al. 2009; Novel wet electrospinning system for fabrication of spongiform nanofiber three-dimensional fabric. Mater Lett 63: 754–756.
    • (2009) Mater Lett , vol.63 , pp. 754-756
    • Yokoyama, Y.1    Hattori, S.2    Yoshikawa, C.3
  • 157
    • 70349792411 scopus 로고    scopus 로고
    • Surface-functionalized electrospun nanofibers for tissue engineering and drug delivery
    • Yoo HS, Kim TG, Park TG. 2009; Surface-functionalized electrospun nanofibers for tissue engineering and drug delivery. Adv Drug Deliv Rev 61: 1033–1042.
    • (2009) Adv Drug Deliv Rev , vol.61 , pp. 1033-1042
    • Yoo, H.S.1    Kim, T.G.2    Park, T.G.3
  • 158
    • 33144473071 scopus 로고    scopus 로고
    • Thermal interfiber bonding of electrospun poly(l-lactic acid) nanofibers
    • You Y, Lee SW, Lee SJ. 2006; Thermal interfiber bonding of electrospun poly(l-lactic acid) nanofibers. Mater Lett 60: 1331–1333.
    • (2006) Mater Lett , vol.60 , pp. 1331-1333
    • You, Y.1    Lee, S.W.2    Lee, S.J.3
  • 159
    • 84872390039 scopus 로고    scopus 로고
    • Electrospun polycaprolactone scaffolds with tailored porosity using two approaches for enhanced cellular infiltration
    • Zander NE, Orlicki JA, Rawlett AM. 2013; Electrospun polycaprolactone scaffolds with tailored porosity using two approaches for enhanced cellular infiltration. Mater Sci Mater Med 24: 179–187.
    • (2013) Mater Sci Mater Med , vol.24 , pp. 179-187
    • Zander, N.E.1    Orlicki, J.A.2    Rawlett, A.M.3
  • 160
    • 0037082740 scopus 로고    scopus 로고
    • Fused deposition modeling of novel scaffold architectures for tissue engineering applications
    • Zein I, Hutmacher DW, Tan KC, et al. 2002; Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials 23: 1169–1185.
    • (2002) Biomaterials , vol.23 , pp. 1169-1185
    • Zein, I.1    Hutmacher, D.W.2    Tan, K.C.3
  • 161
    • 56149107480 scopus 로고    scopus 로고
    • Electrospinning of three-dimensional nanofibrous tubes with controllable architectures
    • Zhang D, Chang J. 2008; Electrospinning of three-dimensional nanofibrous tubes with controllable architectures. Nano Lett 8: 3283–3287.
    • (2008) Nano Lett , vol.8 , pp. 3283-3287
    • Zhang, D.1    Chang, J.2
  • 162
    • 34548525935 scopus 로고    scopus 로고
    • Bioinspired structure of bioceramics for bone regeneration in load-bearing sites
    • Zhang F, Chang J, Lu J, et al. 2007a; Bioinspired structure of bioceramics for bone regeneration in load-bearing sites. Acta Biomater 3: 896–904.
    • (2007) Acta Biomater , vol.3 , pp. 896-904
    • Zhang, F.1    Chang, J.2    Lu, J.3
  • 163
    • 68249147876 scopus 로고    scopus 로고
    • Bionic electrospun ultrafine fibrous poly(l-lactic acid) scaffolds with a multi-scale structure
    • Zhang K, Wang X, Jing D, et al. 2009a; Bionic electrospun ultrafine fibrous poly(l-lactic acid) scaffolds with a multi-scale structure. Biomed Mater 4: 1–6.
    • (2009) Biomed Mater , vol.4 , pp. 1-6
    • Zhang, K.1    Wang, X.2    Jing, D.3
  • 164
    • 70349814064 scopus 로고    scopus 로고
    • Electrospun silk biomaterial scaffolds for regenerative medicine
    • Zhang X, Reagan MR, Kaplan DL. 2009b; Electrospun silk biomaterial scaffolds for regenerative medicine. Adv Drug Deliv Rev 61: 988–1006.
    • (2009) Adv Drug Deliv Rev , vol.61 , pp. 988-1006
    • Zhang, X.1    Reagan, M.R.2    Kaplan, D.L.3
  • 165
    • 11144350558 scopus 로고    scopus 로고
    • Electrospinning of gelatin fibers and gelatin/PCL composite fibrous scaffolds
    • Zhang Y, Ouyang H, Lim CT. 2005; Electrospinning of gelatin fibers and gelatin/PCL composite fibrous scaffolds. J Biomed Mater Res B 72: 156–165.
    • (2005) J Biomed Mater Res B , vol.72 , pp. 156-165
    • Zhang, Y.1    Ouyang, H.2    Lim, C.T.3
  • 166
    • 50349091938 scopus 로고    scopus 로고
    • Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering
    • Zhang Y, Venugopal JR, El-Turki A, et al. 2008; Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering. Biomaterials 29: 4314–4322.
    • (2008) Biomaterials , vol.29 , pp. 4314-4322
    • Zhang, Y.1    Venugopal, J.R.2    El-Turki, A.3
  • 167
    • 47049102085 scopus 로고    scopus 로고
    • Biomimetic and bioactive nanofibrous scaffolds from electrospun composite nanofibers
    • Zhang YZ, Su B, Venugopal J, et al. 2007b; Biomimetic and bioactive nanofibrous scaffolds from electrospun composite nanofibers. Int J Nanomed 2: 623–638.
    • (2007) Int J Nanomed , vol.2 , pp. 623-638
    • Zhang, Y.Z.1    Su, B.2    Venugopal, J.3
  • 168
    • 84858978170 scopus 로고    scopus 로고
    • Fabrication of large pores in electrospun nanofibrous scaffolds for cellular infiltration: a review
    • Zhong S, Zhang Y, Lim CH. 2012; Fabrication of large pores in electrospun nanofibrous scaffolds for cellular infiltration: a review. Tissue Eng 18: 77–87.
    • (2012) Tissue Eng , vol.18 , pp. 77-87
    • Zhong, S.1    Zhang, Y.2    Lim, C.H.3
  • 169
    • 33748742170 scopus 로고    scopus 로고
    • The thermal effects on electrospinning of polylactic acid melts
    • Zhou H, Green TB, Joo YL. 2006; The thermal effects on electrospinning of polylactic acid melts. Polymer 47: 7497–7505.
    • (2006) Polymer , vol.47 , pp. 7497-7505
    • Zhou, H.1    Green, T.B.2    Joo, Y.L.3
  • 170
    • 81255135926 scopus 로고    scopus 로고
    • UV-initiated crosslinking of electrospun poly(ethylene oxide) nanofibers with pentaerythritol triacrylate: effect of irradiation time and incorporated cellulose nanocrystals
    • Zhou C, Wang Q, Wu Q. 2012; UV-initiated crosslinking of electrospun poly(ethylene oxide) nanofibers with pentaerythritol triacrylate: effect of irradiation time and incorporated cellulose nanocrystals. Carbohyd Polym 87: 1779–1786.
    • (2012) Carbohyd Polym , vol.87 , pp. 1779-1786
    • Zhou, C.1    Wang, Q.2    Wu, Q.3
  • 171
    • 0041803100 scopus 로고    scopus 로고
    • Control of structure, morphology and property in electrospun poly(glycolide-co-lactide) non-woven membranes via post-draw treatments
    • Zong X, Ran S, Fang D, et al. 2003; Control of structure, morphology and property in electrospun poly(glycolide-co-lactide) non-woven membranes via post-draw treatments. Polymer 44: 4959–4967.
    • (2003) Polymer , vol.44 , pp. 4959-4967
    • Zong, X.1    Ran, S.2    Fang, D.3
  • 172
    • 84862797122 scopus 로고    scopus 로고
    • Electrospun fibrous scaffolds with continuous gradations in mineral contents and biological cues for manipulating cellular behaviors
    • Zou B, Liu Y, Luo X, et al. 2012; Electrospun fibrous scaffolds with continuous gradations in mineral contents and biological cues for manipulating cellular behaviors. Acta Biomater 8: 1576–1583.
    • (2012) Acta Biomater , vol.8 , pp. 1576-1583
    • Zou, B.1    Liu, Y.2    Luo, X.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.