메뉴 건너뛰기




Volumn , Issue , 2012, Pages 2518-2525

Learning hierarchical representations for face verification with convolutional deep belief networks

Author keywords

[No Author keywords available]

Indexed keywords

DEEP BELIEF NETWORKS; DEEP LEARNING; DESCRIPTORS; FACE RECOGNITION SYSTEMS; FACE VERIFICATION; FEATURE REPRESENTATION; GLOBAL STRUCTURE; HIERARCHICAL REPRESENTATION; HIGH RESOLUTION IMAGE; IMAGE DESCRIPTORS; LEARNING MODELS; LOCAL BINARY PATTERNS; NATURAL SOURCES; NOVEL APPLICATIONS; OBJECT CLASS; PIXEL INTENSITIES; RECOGNITION SYSTEMS; RESTRICTED BOLTZMANN MACHINE; STATIONARITY;

EID: 84866691616     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2012.6247968     Document Type: Conference Paper
Times cited : (396)

References (41)
  • 3
    • 77955988832 scopus 로고    scopus 로고
    • Face recognition with learning-based descriptor
    • 2, 5, 7
    • Z. Cao, Q. Yin, X. Tang, and J. Sun. Face recognition with learning-based descriptor. In CVPR, 2010. 2, 5, 7
    • (2010) CVPR
    • Cao, Z.1    Yin, Q.2    Tang, X.3    Sun, J.4
  • 6
    • 0037313125 scopus 로고    scopus 로고
    • Spatiochromatic receptive field properties derived from information-theoretic analyses of cone mosaic responses to natural scenes
    • 6
    • E. Doi, T. Inui, T.-W. Lee, T. Wachtler, and T. J. Sejnowski. Spatiochromatic receptive field properties derived from information-theoretic analyses of cone mosaic responses to natural scenes. Neural Computation, 15:397-417, 2003. 6
    • (2003) Neural Computation , vol.15 , pp. 397-417
    • Doi, E.1    Inui, T.2    Lee, T.-W.3    Wachtler, T.4    Sejnowski, T.J.5
  • 8
    • 77953178820 scopus 로고    scopus 로고
    • Is that you? Metric learning approaches for face identification
    • 2
    • M. Guillaumin, J. Verbeek, and C. Schmid. Is that you? Metric learning approaches for face identification. In ICCV, 2009. 2
    • (2009) ICCV
    • Guillaumin, M.1    Verbeek, J.2    Schmid, C.3
  • 9
    • 0013344078 scopus 로고    scopus 로고
    • Training products of experts by minimizing contrastive divergence
    • 4
    • G. E. Hinton. Training products of experts by minimizing contrastive divergence. Neural Computation, 14(8):1771-1800, 2002. 4
    • (2002) Neural Computation , vol.14 , Issue.8 , pp. 1771-1800
    • Hinton, G.E.1
  • 10
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • 1, 2, 4
    • G. E. Hinton, S. Osindero, and Y.-W. Teh. A fast learning algorithm for deep belief nets. Neural Computation, 18(7):1527-1554, 2006. 1, 2, 4
    • (2006) Neural Computation , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.-W.3
  • 12
    • 77953183471 scopus 로고    scopus 로고
    • What is the best multistage architecture for object recognition?
    • 2, 3, 4
    • K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun. What is the best multistage architecture for object recognition? In ICCV, 2009. 2, 3, 4
    • (2009) ICCV
    • Jarrett, K.1    Kavukcuoglu, K.2    Ranzato, M.3    Lecun, Y.4
  • 13
    • 77953185711 scopus 로고    scopus 로고
    • Attribute and simile classifiers for face verification
    • 2
    • N. Kumar, A. C. Berg, P. N. Belhumeur, and S. K. Nayar. Attribute and simile classifiers for face verification. In ICCV, 2009. 2
    • (2009) ICCV
    • Kumar, N.1    Berg, A.C.2    Belhumeur, P.N.3    Nayar, S.K.4
  • 14
    • 50249093806 scopus 로고    scopus 로고
    • An empirical evaluation of deep architectures on problems with many factors of variation
    • 1
    • H. Larochelle, D. Erhan, A. Courville, J. Bergstra, and Y. Bengio. An empirical evaluation of deep architectures on problems with many factors of variation. In ICML, 2007. 1
    • (2007) ICML
    • Larochelle, H.1    Erhan, D.2    Courville, A.3    Bergstra, J.4    Bengio, Y.5
  • 15
    • 84864036295 scopus 로고    scopus 로고
    • Efficient sparse coding algorithms
    • 2
    • H. Lee, A. Battle, R. Raina, and A. Y. Ng. Efficient sparse coding algorithms. In NIPS, 2007. 2
    • (2007) NIPS
    • Lee, H.1    Battle, A.2    Raina, R.3    Ng, A.Y.4
  • 16
    • 71149119164 scopus 로고    scopus 로고
    • Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations
    • 2, 3
    • H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng. Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In ICML, 2009. 2, 3
    • (2009) ICML
    • Lee, H.1    Grosse, R.2    Ranganath, R.3    Ng, A.Y.4
  • 17
    • 80053540444 scopus 로고    scopus 로고
    • Unsupervised learning of hierarchical representations with convolutional deep belief networks
    • 4
    • H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng. Unsupervised learning of hierarchical representations with convolutional deep belief networks. Communications of the ACM, 54(10):95-103, 2011. 4
    • (2011) Communications of the ACM , vol.54 , Issue.10 , pp. 95-103
    • Lee, H.1    Grosse, R.2    Ranganath, R.3    Ng, A.Y.4
  • 18
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • 1
    • D. G. Lowe. Distinctive image features from scale-invariant keypoints. IJCV, 60(2):91-110, 2004. 1
    • (2004) IJCV , vol.60 , Issue.2 , pp. 91-110
    • Lowe, D.G.1
  • 19
    • 77956509090 scopus 로고    scopus 로고
    • Rectified linear units improve restricted boltzmann machines
    • 2, 7
    • V. Nair and G. E. Hinton. Rectified linear units improve restricted boltzmann machines. In ICML, 2010. 2, 7
    • (2010) ICML
    • Nair, V.1    Hinton, G.E.2
  • 20
    • 79958716412 scopus 로고    scopus 로고
    • Cosine similarity metric learning for face verification
    • 2, 5, 7
    • H. V. Nguyen and L. Bai. Cosine similarity metric learning for face verification. In ACCV, 2010. 2, 5, 7
    • (2010) ACCV
    • Nguyen, H.V.1    Bai, L.2
  • 21
    • 0033886806 scopus 로고    scopus 로고
    • Text classification from labeled and unlabeled documents using em
    • 3
    • K. Nigam, A. K. McCallum, S. Thrun, and T. Mitchell. Text classification from labeled and unlabeled documents using EM. Machine Learning, 39:103-134, 2000. 3
    • (2000) Machine Learning , vol.39 , pp. 103-134
    • Nigam, K.1    McCallum, A.K.2    Thrun, S.3    Mitchell, T.4
  • 22
    • 0029669420 scopus 로고    scopus 로고
    • A comparative study of texture measures with classification based on feature distributions
    • 1
    • T. Ojala, M. Pietikinen, and D. Harwood. A comparative study of texture measures with classification based on feature distributions. Pattern Recognition, 19(3):51-59, 1996. 1
    • (1996) Pattern Recognition , vol.19 , Issue.3 , pp. 51-59
    • Ojala, T.1    Pietikinen, M.2    Harwood, D.3
  • 23
    • 0029938380 scopus 로고    scopus 로고
    • Emergence of simple-cell receptive field properties by learning a sparse code for natural images
    • 2, 4
    • B. A. Olshausen and D. J. Field. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 381:607-609, 1996. 2, 4
    • (1996) Nature , vol.381 , pp. 607-609
    • Olshausen, B.A.1    Field, D.J.2
  • 24
    • 79958697382 scopus 로고    scopus 로고
    • Beyond simple features: A large-scale feature search approach to unconstrained face recognition
    • 2
    • N. Pinto and D. Cox. Beyond simple features: A large-scale feature search approach to unconstrained face recognition. In Automatic Face and Gesture Recognition, 2011. 2
    • (2011) Automatic Face and Gesture Recognition
    • Pinto, N.1    Cox, D.2
  • 25
    • 70450172604 scopus 로고    scopus 로고
    • How far can you get with a modern face recognition test set using only simple features?
    • 7
    • N. Pinto, J. J. DiCarlo, and D. D. Cox. How far can you get with a modern face recognition test set using only simple features? In CVPR, 2009. 7
    • (2009) CVPR
    • Pinto, N.1    Dicarlo, J.J.2    Cox, D.D.3
  • 26
    • 51949106645 scopus 로고    scopus 로고
    • Self-taught learning: Transfer learning from unlabeled data
    • 3
    • R. Raina, A. Battle, H. Lee, B. Packer, and A. Y. Ng. Self-taught learning: Transfer learning from unlabeled data. In ICML, 2007. 3
    • (2007) ICML
    • Raina, R.1    Battle, A.2    Lee, H.3    Packer, B.4    Ng, A.Y.5
  • 27
    • 70049094447 scopus 로고    scopus 로고
    • Sparse feature learning for deep belief networks
    • 1
    • M. Ranzato, Y. Boureau, and Y. LeCun. Sparse feature learning for deep belief networks. NIPS, 2007. 1
    • (2007) NIPS
    • Ranzato, M.1    Boureau, Y.2    Lecun, Y.3
  • 28
    • 77955989954 scopus 로고    scopus 로고
    • Modeling pixel means and covariances using factorized third-order Boltzmann machines
    • 2
    • M. Ranzato and G. E. Hinton. Modeling Pixel Means and Covariances Using Factorized Third-Order Boltzmann Machines. In CVPR, 2010. 2
    • (2010) CVPR
    • Ranzato, M.1    Hinton, G.E.2
  • 29
    • 34948870900 scopus 로고    scopus 로고
    • Unsupervised learning of invariant feature hierarchies with applications to object recognition
    • 2
    • M. Ranzato, F.-J. Huang, Y.-L. Boureau, and Y. LeCun. Unsupervised learning of invariant feature hierarchies with applications to object recognition. In CVPR, 2007. 2
    • (2007) CVPR
    • Ranzato, M.1    Huang, F.-J.2    Boureau, Y.-L.3    Lecun, Y.4
  • 30
    • 85112276587 scopus 로고    scopus 로고
    • Efficient learning of sparse representations with an energy-based model
    • 1, 4
    • M. Ranzato, C. Poultney, S. Chopra, and Y. LeCun. Efficient learning of sparse representations with an energy-based model. In NIPS, 2006. 1, 4
    • (2006) NIPS
    • Ranzato, M.1    Poultney, C.2    Chopra, S.3    Lecun, Y.4
  • 31
    • 80052877144 scopus 로고    scopus 로고
    • On deep generative models with applications to recognition
    • 3, 4
    • M. Ranzato, J. Susskind, V. Mnih, and G. Hinton. On deep generative models with applications to recognition. In CVPR, 2011. 3, 4
    • (2011) CVPR
    • Ranzato, M.1    Susskind, J.2    Mnih, V.3    Hinton, G.4
  • 32
    • 60449120149 scopus 로고    scopus 로고
    • Fields of experts
    • 4
    • S. Roth and M. J. Black. Fields of experts. IJCV, 82(2):205-229, 2009. 4
    • (2009) IJCV , vol.82 , Issue.2 , pp. 205-229
    • Roth, S.1    Black, M.J.2
  • 33
    • 80053448548 scopus 로고    scopus 로고
    • On random weights and unsupervised feature learning
    • 2, 3, 6
    • A. Saxe, P. W. Koh, Z. Chen, M. Bhand, B. Suresh, and A. Ng. On random weights and unsupervised feature learning. In ICML, 2011. 2, 3, 6
    • (2011) ICML
    • Saxe, A.1    Koh, P.W.2    Chen, Z.3    Bhand, M.4    Suresh, B.5    Ng, A.6
  • 34
    • 84863049755 scopus 로고    scopus 로고
    • Efficient learning of sparse, distributed, convolutional feature representations for object recognition
    • 4
    • K. Sohn, D. Y. Jung, H. Lee, and A. Hero III. Efficient learning of sparse, distributed, convolutional feature representations for object recognition. In ICCV, 2011. 4
    • (2011) ICCV
    • Sohn, K.1    Jung, D.Y.2    Lee, H.3    Hero III, A.4
  • 36
    • 80052885960 scopus 로고    scopus 로고
    • Modeling the joint density of two images under a variety of transformations
    • 3
    • J. Susskind, G. Hinton, R. Memisevic, and M. Pollefeys. Modeling the joint density of two images under a variety of transformations. In CVPR, 2011. 3
    • (2011) CVPR
    • Susskind, J.1    Hinton, G.2    Memisevic, R.3    Pollefeys, M.4
  • 37
    • 84898970768 scopus 로고    scopus 로고
    • Learning sparse topographic representations with products of student-t distributions
    • 4
    • M.Welling, G. E. Hinton, and S. Osindero. Learning sparse topographic representations with products of student-t distributions. In NIPS, 2003. 4
    • (2003) NIPS
    • Welling, M.1    Hinton, G.E.2    Osindero, S.3
  • 38
    • 79958695571 scopus 로고    scopus 로고
    • Similarity scores based on background samples
    • 1, 2, 6, 7
    • L. Wolf, T. Hassner, and Y. Taigman. Similarity scores based on background samples. In ACCV, 2009. 1, 2, 6, 7
    • (2009) ACCV
    • Wolf, L.1    Hassner, T.2    Taigman, Y.3
  • 39
    • 70450209196 scopus 로고    scopus 로고
    • Linear spatial pyramid matching using sparse coding for image classification
    • 2
    • J. Yang, K. Yu, Y. Gong, and T. S. Huang. Linear spatial pyramid matching using sparse coding for image classification. In CVPR, 2009. 2
    • (2009) CVPR
    • Yang, J.1    Yu, K.2    Gong, Y.3    Huang, T.S.4
  • 40
    • 80052874106 scopus 로고    scopus 로고
    • An associate-predict model for face recognition
    • 2, 7
    • Q. Yin, X. Tang, and J. Sun. An associate-predict model for face recognition. In CVPR, 2011. 2, 7
    • (2011) CVPR
    • Yin, Q.1    Tang, X.2    Sun, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.