-
1
-
-
84864073449
-
Greedy layer-wise training of deep networks
-
1, 2
-
Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle. Greedy layer-wise training of deep networks. In NIPS, 2007. 1, 2
-
(2007)
NIPS
-
-
Bengio, Y.1
Lamblin, P.2
Popovici, D.3
Larochelle, H.4
-
3
-
-
77955988832
-
Face recognition with learning-based descriptor
-
2, 5, 7
-
Z. Cao, Q. Yin, X. Tang, and J. Sun. Face recognition with learning-based descriptor. In CVPR, 2010. 2, 5, 7
-
(2010)
CVPR
-
-
Cao, Z.1
Yin, Q.2
Tang, X.3
Sun, J.4
-
5
-
-
51949118036
-
Information-theoretic metric learning
-
5
-
J. V. Davis, B. Kulis, P. Jain, S. Sra, and I. S. Dhillon. Information-theoretic metric learning. In ICML, 2007. 5
-
(2007)
ICML
-
-
Davis, J.V.1
Kulis, B.2
Jain, P.3
Sra, S.4
Dhillon, I.S.5
-
6
-
-
0037313125
-
Spatiochromatic receptive field properties derived from information-theoretic analyses of cone mosaic responses to natural scenes
-
6
-
E. Doi, T. Inui, T.-W. Lee, T. Wachtler, and T. J. Sejnowski. Spatiochromatic receptive field properties derived from information-theoretic analyses of cone mosaic responses to natural scenes. Neural Computation, 15:397-417, 2003. 6
-
(2003)
Neural Computation
, vol.15
, pp. 397-417
-
-
Doi, E.1
Inui, T.2
Lee, T.-W.3
Wachtler, T.4
Sejnowski, T.J.5
-
7
-
-
84860644702
-
Measuring invariances in deep networks
-
4
-
I. J. Goodfellow, Q. V. Le, A. M. Saxe, H. Lee, and A. Y. Ng. Measuring invariances in deep networks. In NIPS, volume 22, 2009. 4
-
(2009)
NIPS
, vol.22
-
-
Goodfellow, I.J.1
Le, Q.V.2
Saxe, A.M.3
Lee, H.4
Ng, A.Y.5
-
8
-
-
77953178820
-
Is that you? Metric learning approaches for face identification
-
2
-
M. Guillaumin, J. Verbeek, and C. Schmid. Is that you? Metric learning approaches for face identification. In ICCV, 2009. 2
-
(2009)
ICCV
-
-
Guillaumin, M.1
Verbeek, J.2
Schmid, C.3
-
9
-
-
0013344078
-
Training products of experts by minimizing contrastive divergence
-
4
-
G. E. Hinton. Training products of experts by minimizing contrastive divergence. Neural Computation, 14(8):1771-1800, 2002. 4
-
(2002)
Neural Computation
, vol.14
, Issue.8
, pp. 1771-1800
-
-
Hinton, G.E.1
-
10
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
1, 2, 4
-
G. E. Hinton, S. Osindero, and Y.-W. Teh. A fast learning algorithm for deep belief nets. Neural Computation, 18(7):1527-1554, 2006. 1, 2, 4
-
(2006)
Neural Computation
, vol.18
, Issue.7
, pp. 1527-1554
-
-
Hinton, G.E.1
Osindero, S.2
Teh, Y.-W.3
-
11
-
-
51849117118
-
-
Technical Report 07-49, University of Massachusetts, Amherst, 1
-
G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller. Labeled faces in the wild: A database for studying face recognition in unconstrained environments. Technical Report 07-49, University of Massachusetts, Amherst, 2007. 1
-
(2007)
Labeled Faces in the Wild: A Database for Studying Face Recognition in Unconstrained Environments
-
-
Huang, G.B.1
Ramesh, M.2
Berg, T.3
Learned-Miller, E.4
-
12
-
-
77953183471
-
What is the best multistage architecture for object recognition?
-
2, 3, 4
-
K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun. What is the best multistage architecture for object recognition? In ICCV, 2009. 2, 3, 4
-
(2009)
ICCV
-
-
Jarrett, K.1
Kavukcuoglu, K.2
Ranzato, M.3
Lecun, Y.4
-
14
-
-
50249093806
-
An empirical evaluation of deep architectures on problems with many factors of variation
-
1
-
H. Larochelle, D. Erhan, A. Courville, J. Bergstra, and Y. Bengio. An empirical evaluation of deep architectures on problems with many factors of variation. In ICML, 2007. 1
-
(2007)
ICML
-
-
Larochelle, H.1
Erhan, D.2
Courville, A.3
Bergstra, J.4
Bengio, Y.5
-
16
-
-
71149119164
-
Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations
-
2, 3
-
H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng. Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In ICML, 2009. 2, 3
-
(2009)
ICML
-
-
Lee, H.1
Grosse, R.2
Ranganath, R.3
Ng, A.Y.4
-
17
-
-
80053540444
-
Unsupervised learning of hierarchical representations with convolutional deep belief networks
-
4
-
H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng. Unsupervised learning of hierarchical representations with convolutional deep belief networks. Communications of the ACM, 54(10):95-103, 2011. 4
-
(2011)
Communications of the ACM
, vol.54
, Issue.10
, pp. 95-103
-
-
Lee, H.1
Grosse, R.2
Ranganath, R.3
Ng, A.Y.4
-
18
-
-
3042535216
-
Distinctive image features from scale-invariant keypoints
-
1
-
D. G. Lowe. Distinctive image features from scale-invariant keypoints. IJCV, 60(2):91-110, 2004. 1
-
(2004)
IJCV
, vol.60
, Issue.2
, pp. 91-110
-
-
Lowe, D.G.1
-
19
-
-
77956509090
-
Rectified linear units improve restricted boltzmann machines
-
2, 7
-
V. Nair and G. E. Hinton. Rectified linear units improve restricted boltzmann machines. In ICML, 2010. 2, 7
-
(2010)
ICML
-
-
Nair, V.1
Hinton, G.E.2
-
20
-
-
79958716412
-
Cosine similarity metric learning for face verification
-
2, 5, 7
-
H. V. Nguyen and L. Bai. Cosine similarity metric learning for face verification. In ACCV, 2010. 2, 5, 7
-
(2010)
ACCV
-
-
Nguyen, H.V.1
Bai, L.2
-
21
-
-
0033886806
-
Text classification from labeled and unlabeled documents using em
-
3
-
K. Nigam, A. K. McCallum, S. Thrun, and T. Mitchell. Text classification from labeled and unlabeled documents using EM. Machine Learning, 39:103-134, 2000. 3
-
(2000)
Machine Learning
, vol.39
, pp. 103-134
-
-
Nigam, K.1
McCallum, A.K.2
Thrun, S.3
Mitchell, T.4
-
22
-
-
0029669420
-
A comparative study of texture measures with classification based on feature distributions
-
1
-
T. Ojala, M. Pietikinen, and D. Harwood. A comparative study of texture measures with classification based on feature distributions. Pattern Recognition, 19(3):51-59, 1996. 1
-
(1996)
Pattern Recognition
, vol.19
, Issue.3
, pp. 51-59
-
-
Ojala, T.1
Pietikinen, M.2
Harwood, D.3
-
23
-
-
0029938380
-
Emergence of simple-cell receptive field properties by learning a sparse code for natural images
-
2, 4
-
B. A. Olshausen and D. J. Field. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 381:607-609, 1996. 2, 4
-
(1996)
Nature
, vol.381
, pp. 607-609
-
-
Olshausen, B.A.1
Field, D.J.2
-
24
-
-
79958697382
-
Beyond simple features: A large-scale feature search approach to unconstrained face recognition
-
2
-
N. Pinto and D. Cox. Beyond simple features: A large-scale feature search approach to unconstrained face recognition. In Automatic Face and Gesture Recognition, 2011. 2
-
(2011)
Automatic Face and Gesture Recognition
-
-
Pinto, N.1
Cox, D.2
-
25
-
-
70450172604
-
How far can you get with a modern face recognition test set using only simple features?
-
7
-
N. Pinto, J. J. DiCarlo, and D. D. Cox. How far can you get with a modern face recognition test set using only simple features? In CVPR, 2009. 7
-
(2009)
CVPR
-
-
Pinto, N.1
Dicarlo, J.J.2
Cox, D.D.3
-
26
-
-
51949106645
-
Self-taught learning: Transfer learning from unlabeled data
-
3
-
R. Raina, A. Battle, H. Lee, B. Packer, and A. Y. Ng. Self-taught learning: Transfer learning from unlabeled data. In ICML, 2007. 3
-
(2007)
ICML
-
-
Raina, R.1
Battle, A.2
Lee, H.3
Packer, B.4
Ng, A.Y.5
-
27
-
-
70049094447
-
Sparse feature learning for deep belief networks
-
1
-
M. Ranzato, Y. Boureau, and Y. LeCun. Sparse feature learning for deep belief networks. NIPS, 2007. 1
-
(2007)
NIPS
-
-
Ranzato, M.1
Boureau, Y.2
Lecun, Y.3
-
28
-
-
77955989954
-
Modeling pixel means and covariances using factorized third-order Boltzmann machines
-
2
-
M. Ranzato and G. E. Hinton. Modeling Pixel Means and Covariances Using Factorized Third-Order Boltzmann Machines. In CVPR, 2010. 2
-
(2010)
CVPR
-
-
Ranzato, M.1
Hinton, G.E.2
-
29
-
-
34948870900
-
Unsupervised learning of invariant feature hierarchies with applications to object recognition
-
2
-
M. Ranzato, F.-J. Huang, Y.-L. Boureau, and Y. LeCun. Unsupervised learning of invariant feature hierarchies with applications to object recognition. In CVPR, 2007. 2
-
(2007)
CVPR
-
-
Ranzato, M.1
Huang, F.-J.2
Boureau, Y.-L.3
Lecun, Y.4
-
30
-
-
85112276587
-
Efficient learning of sparse representations with an energy-based model
-
1, 4
-
M. Ranzato, C. Poultney, S. Chopra, and Y. LeCun. Efficient learning of sparse representations with an energy-based model. In NIPS, 2006. 1, 4
-
(2006)
NIPS
-
-
Ranzato, M.1
Poultney, C.2
Chopra, S.3
Lecun, Y.4
-
31
-
-
80052877144
-
On deep generative models with applications to recognition
-
3, 4
-
M. Ranzato, J. Susskind, V. Mnih, and G. Hinton. On deep generative models with applications to recognition. In CVPR, 2011. 3, 4
-
(2011)
CVPR
-
-
Ranzato, M.1
Susskind, J.2
Mnih, V.3
Hinton, G.4
-
32
-
-
60449120149
-
Fields of experts
-
4
-
S. Roth and M. J. Black. Fields of experts. IJCV, 82(2):205-229, 2009. 4
-
(2009)
IJCV
, vol.82
, Issue.2
, pp. 205-229
-
-
Roth, S.1
Black, M.J.2
-
33
-
-
80053448548
-
On random weights and unsupervised feature learning
-
2, 3, 6
-
A. Saxe, P. W. Koh, Z. Chen, M. Bhand, B. Suresh, and A. Ng. On random weights and unsupervised feature learning. In ICML, 2011. 2, 3, 6
-
(2011)
ICML
-
-
Saxe, A.1
Koh, P.W.2
Chen, Z.3
Bhand, M.4
Suresh, B.5
Ng, A.6
-
34
-
-
84863049755
-
Efficient learning of sparse, distributed, convolutional feature representations for object recognition
-
4
-
K. Sohn, D. Y. Jung, H. Lee, and A. Hero III. Efficient learning of sparse, distributed, convolutional feature representations for object recognition. In ICCV, 2011. 4
-
(2011)
ICCV
-
-
Sohn, K.1
Jung, D.Y.2
Lee, H.3
Hero III, A.4
-
35
-
-
77954666305
-
The SHOGUN machine learning toolbox
-
June, 6
-
S. Sonnenburg, G. Raetsch, S. Henschel, C. Widmer, J. Behr, A. Zien, F. de Bona, A. Binder, C. Gehl, and V. Franc. The SHOGUN machine learning toolbox. JMLR, 11:1799-1802, June 2010. 6
-
(2010)
JMLR
, vol.11
, pp. 1799-1802
-
-
Sonnenburg, S.1
Raetsch, G.2
Henschel, S.3
Widmer, C.4
Behr, J.5
Zien, A.6
De Bona, F.7
Binder, A.8
Gehl, C.9
Franc, V.10
-
36
-
-
80052885960
-
Modeling the joint density of two images under a variety of transformations
-
3
-
J. Susskind, G. Hinton, R. Memisevic, and M. Pollefeys. Modeling the joint density of two images under a variety of transformations. In CVPR, 2011. 3
-
(2011)
CVPR
-
-
Susskind, J.1
Hinton, G.2
Memisevic, R.3
Pollefeys, M.4
-
37
-
-
84898970768
-
Learning sparse topographic representations with products of student-t distributions
-
4
-
M.Welling, G. E. Hinton, and S. Osindero. Learning sparse topographic representations with products of student-t distributions. In NIPS, 2003. 4
-
(2003)
NIPS
-
-
Welling, M.1
Hinton, G.E.2
Osindero, S.3
-
38
-
-
79958695571
-
Similarity scores based on background samples
-
1, 2, 6, 7
-
L. Wolf, T. Hassner, and Y. Taigman. Similarity scores based on background samples. In ACCV, 2009. 1, 2, 6, 7
-
(2009)
ACCV
-
-
Wolf, L.1
Hassner, T.2
Taigman, Y.3
-
39
-
-
70450209196
-
Linear spatial pyramid matching using sparse coding for image classification
-
2
-
J. Yang, K. Yu, Y. Gong, and T. S. Huang. Linear spatial pyramid matching using sparse coding for image classification. In CVPR, 2009. 2
-
(2009)
CVPR
-
-
Yang, J.1
Yu, K.2
Gong, Y.3
Huang, T.S.4
-
40
-
-
80052874106
-
An associate-predict model for face recognition
-
2, 7
-
Q. Yin, X. Tang, and J. Sun. An associate-predict model for face recognition. In CVPR, 2011. 2, 7
-
(2011)
CVPR
-
-
Yin, Q.1
Tang, X.2
Sun, J.3
|