-
1
-
-
79953048649
-
Contour detection and hierarchical image segmentation
-
1, 2, 4, 5, 7
-
P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik. Contour detection and hierarchical image segmentation. PAMI, 33, 2011. 1, 2, 4, 5, 7
-
(2011)
PAMI
, vol.33
-
-
Arbelaez, P.1
Maire, M.2
Fowlkes, C.3
Malik, J.4
-
2
-
-
0035478854
-
Random forests
-
Oct. 2, 4
-
L. Breiman. Random forests. Machine Learning, 45(1):5-32, Oct. 2001. 2, 4
-
(2001)
Machine Learning
, vol.45
, Issue.1
, pp. 5-32
-
-
Breiman, L.1
-
3
-
-
0022808786
-
A computational approach to edge detection
-
November 1, 4, 7
-
J. Canny. A computational approach to edge detection. PAMI, 8(6):679-698, November 1986. 1, 4, 7
-
(1986)
PAMI
, vol.8
, Issue.6
, pp. 679-698
-
-
Canny, J.1
-
4
-
-
84859414659
-
Decision forests: A unified framework for classification, regression, density estimation, manifold learning and semi-supervised learning
-
February 2, 4
-
A. Criminisi, J. Shotton, and E. Konukoglu. Decision forests: A unified framework for classification, regression, density estimation, manifold learning and semi-supervised learning. Foundations and Trends in Computer Graphics and Vision, 7(2-3):81-227, February 2012. 2, 4
-
(2012)
Foundations and Trends in Computer Graphics and Vision
, vol.7
, Issue.2-3
, pp. 81-227
-
-
Criminisi, A.1
Shotton, J.2
Konukoglu, E.3
-
5
-
-
33645146449
-
Histograms of oriented gradients for human detection
-
1, 2, 3, 5, 6
-
N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In CVPR, 2005. 1, 2, 3, 5, 6
-
(2005)
CVPR
-
-
Dalal, N.1
Triggs, B.2
-
6
-
-
33845580709
-
Supervised learning of edges and object boundaries
-
2, 5
-
P. Dollár, Z. Tu, and S. Belongie. Supervised learning of edges and object boundaries. In CVPR, 2006. 2, 5
-
(2006)
CVPR
-
-
Dollár, P.1
Tu, Z.2
Belongie, S.3
-
7
-
-
84898842272
-
Integral channel features
-
2, 3, 5, 6
-
P. Dollár, Z. Tu, P. Perona, and S. Belongie. Integral channel features. In BMVC, 2009. 2, 3, 5, 6
-
(2009)
BMVC
-
-
Dollár, P.1
Tu, Z.2
Perona, P.3
Belongie, S.4
-
8
-
-
0015285440
-
Use of the hough transformation to detect lines and curves in pictures. Commun
-
Jan. 1
-
R. O. Duda and P. E. Hart. Use of the hough transformation to detect lines and curves in pictures. Commun. ACM, 15(1):11-15, Jan. 1972. 1
-
(1972)
ACM
, vol.15
, Issue.1
, pp. 11-15
-
-
Duda, R.O.1
Hart, P.E.2
-
10
-
-
77951298115
-
The PASCAL visual object classes (VOC) challenge
-
June. 1, 2, 5, 6
-
M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The PASCAL visual object classes (VOC) challenge. IJCV, 88(2):303-338, June 2010. 1, 2, 5, 6
-
(2010)
IJCV
, vol.88
, Issue.2
, pp. 303-338
-
-
Everingham, M.1
Van Gool, L.2
Williams, C.K.I.3
Winn, J.4
Zisserman, A.5
-
11
-
-
77955422240
-
Object detection with discriminatively trained part based models
-
2, 6
-
P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ramanan. Object detection with discriminatively trained part based models. PAMI, 32(9):1627-1645, 2010. 2, 6
-
(2010)
PAMI
, vol.32
, Issue.9
, pp. 1627-1645
-
-
Felzenszwalb, P.1
Girshick, R.2
McAllester, D.3
Ramanan, D.4
-
12
-
-
9644254228
-
Efficient graphbased image segmentation
-
5
-
P. F. Felzenszwalb and D. P. Huttenlocher. Efficient graphbased image segmentation. IJCV, 59(2):167-181, 2004. 5
-
(2004)
IJCV
, vol.59
, Issue.2
, pp. 167-181
-
-
Felzenszwalb, P.F.1
Huttenlocher, D.P.2
-
14
-
-
84856686500
-
Semantic contours from inverse detectors
-
1
-
B. Hariharan, P. Arbelaez, L. Bourdev, S. Maji, and J. Malik. Semantic contours from inverse detectors. In ICCV, 2011. 1
-
(2011)
ICCV
-
-
Hariharan, B.1
Arbelaez, P.2
Bourdev, L.3
Maji, S.4
Malik, J.5
-
15
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
1, 2, 6
-
G. E. Hinton, S. Osindero, and Y. Teh. A fast learning algorithm for deep belief nets. Neural Comp., 18(7), 2006. 1, 2, 6
-
(2006)
Neural Comp.
, vol.18
, Issue.7
-
-
Hinton, G.E.1
Osindero, S.2
Teh, Y.3
-
16
-
-
0000494466
-
Handwritten digit recognition with a back-prop network
-
1, 2, 6
-
Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel. Handwritten digit recognition with a back-prop. network. In NIPS, 1990. 1, 2, 6
-
(1990)
NIPS
-
-
Lecun, Y.1
Boser, B.2
Denker, J.S.3
Henderson, D.4
Howard, R.E.5
Hubbard, W.6
Jackel, L.D.7
-
17
-
-
3042535216
-
Distinctive image features from scale-invariant keypoints
-
1, 2, 3
-
D. G. Lowe. Distinctive image features from scale-invariant keypoints. IJCV, 60(2):91-110, 2004. 1, 2, 3
-
(2004)
IJCV
, vol.60
, Issue.2
, pp. 91-110
-
-
Lowe, D.G.1
-
18
-
-
70450159995
-
Discriminative sparse image models for class-specific edge detection and image interpretation
-
2
-
J. Mairal, M. Leordeanu, F. Bach, M. Hebert, and J. Ponce. Discriminative sparse image models for class-specific edge detection and image interpretation. In ECCV, 2008. 2
-
(2008)
ECCV
-
-
Mairal, J.1
Leordeanu, M.2
Bach, F.3
Hebert, M.4
Ponce, J.5
-
20
-
-
0034850577
-
A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics
-
2, 4
-
D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In ICCV, 2001. 2, 4
-
(2001)
ICCV
-
-
Martin, D.1
Fowlkes, C.2
Tal, D.3
Malik, J.4
-
21
-
-
33845593841
-
A boundary-fragment-model for object detection
-
1, 2
-
A. Opelt and A. Zisserman. A boundary-fragment-model for object detection. In ECCV, 2006. 1, 2
-
(2006)
ECCV
-
-
Opelt, A.1
Zisserman, A.2
-
22
-
-
0032124295
-
Junctions: Detection, classification, and reconstruction
-
1
-
L. Parida, D. Geiger, and R. Hummel. Junctions: detection, classification, and reconstruction. PAMI, 20(7), 1998. 1
-
(1998)
PAMI
, vol.20
, Issue.7
-
-
Parida, L.1
Geiger, D.2
Hummel, R.3
-
23
-
-
76249103771
-
Learning class-specific edges for object detection and segmentation
-
1, 2
-
M. Prasad, A. Zisserman, A. Fitzgibbon, M. Kumar, and P. Torr. Learning class-specific edges for object detection and segmentation. CVGIP, 2006. 1, 2
-
(2006)
CVGIP
-
-
Prasad, M.1
Zisserman, A.2
Fitzgibbon, A.3
Kumar, M.4
Torr, P.5
-
24
-
-
84877752264
-
Discriminatively trained sparse code gradients for contour detection
-
2, 5, 7
-
X. Ren and B. Liefeng. Discriminatively trained sparse code gradients for contour detection. In NIPS, 2012. 2, 5, 7
-
(2012)
NIPS
-
-
Ren, X.1
Liefeng, B.2
-
25
-
-
0001878659
-
Machine perception of 3d solids
-
J. T. T. et al., editor. MIT Press, 1
-
L. G. Roberts. Machine perception of 3d solids. In J. T. T. et al., editor, Optical and Electro-optical Information Processing, pages 159-197. MIT Press, 1965. 1
-
(1965)
Optical and Electro-optical Information Processing
, pp. 159-197
-
-
Roberts, L.G.1
-
26
-
-
34948845616
-
Matching local self-similarities across images and videos
-
2, 3
-
E. Shechtman and M. Irani. Matching local self-similarities across images and videos. In CVPR, 2007. 2, 3
-
(2007)
CVPR
-
-
Shechtman, E.1
Irani, M.2
-
27
-
-
33745868940
-
Contour-based learning for object detection
-
2
-
J. Shotton, A. Blake, and R. Cipolla. Contour-based learning for object detection. In ICCV, 2005. 2
-
(2005)
ICCV
-
-
Shotton, J.1
Blake, A.2
Cipolla, R.3
-
28
-
-
80052878786
-
Real-time human pose recognition in parts from single depth images
-
4
-
J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio, R. Moore, A. Kipman, and A. Blake. Real-time human pose recognition in parts from single depth images. In CVPR, 2011. 4
-
(2011)
CVPR
-
-
Shotton, J.1
Fitzgibbon, A.2
Cook, M.3
Sharp, T.4
Finocchio, M.5
Moore, R.6
Kipman, A.7
Blake, A.8
-
29
-
-
51949114829
-
Semantic texton forests for image categorization and segmentation
-
2
-
J. Shotton, M. Johnson, and R. Cipolla. Semantic texton forests for image categorization and segmentation. In CVPR, 2008. 2
-
(2008)
CVPR
-
-
Shotton, J.1
Johnson, M.2
Cipolla, R.3
-
30
-
-
58149151266
-
Textonboost for image understanding: Multi-class object recognition and segmentation by jointly modeling texture, layout, and context
-
2
-
J. Shotton, J. M. Winn, C. Rother, and A. Criminisi. Textonboost for image understanding: Multi-class object recognition and segmentation by jointly modeling texture, layout, and context. IJCV, 81(1):2-23, 2009. 2
-
(2009)
IJCV
, vol.81
, Issue.1
, pp. 2-23
-
-
Shotton, J.1
Winn, J.M.2
Rother, C.3
Criminisi, A.4
-
31
-
-
0041374147
-
Recognizing and tracking human action
-
1
-
J. Sullivan and S. Carlsson. Recognizing and tracking human action. ECCV, 2002. 1
-
(2002)
ECCV
-
-
Sullivan, J.1
Carlsson, S.2
-
32
-
-
0029406172
-
Structure and motion from line segments in multiple images
-
1
-
C. Taylor and D. Kriegman. Structure and motion from line segments in multiple images. PAMI, 17(11), 1995. 1
-
(1995)
PAMI
, vol.17
, Issue.11
-
-
Taylor, C.1
Kriegman, D.2
-
33
-
-
80052896768
-
Efficient object category recogn using classemes
-
1, 6
-
L. Torresani, M. Szummer, and A. Fitzgibbon. Efficient object category recogn. using classemes. In ECCV, 2010. 1, 6
-
(2010)
ECCV
-
-
Torresani, L.1
Szummer, M.2
Fitzgibbon, A.3
-
34
-
-
0026240594
-
Recognition by linear combinations of models
-
1
-
S. Ullman and R. Basri. Recognition by linear combinations of models. PAMI, 13(10), 1991. 1
-
(1991)
PAMI
, vol.13
, Issue.10
-
-
Ullman, S.1
Basri, R.2
-
35
-
-
2142812371
-
Robust real-time face det
-
5
-
P. A. Viola and M. J. Jones. Robust real-time face det. IJCV, 57(2):137-154, 2004. 5
-
(2004)
IJCV
, vol.57
, Issue.2
, pp. 137-154
-
-
Viola, P.A.1
Jones, M.J.2
-
37
-
-
33745948591
-
LOCUS: Learning object classes with unsupervised segmentation
-
1
-
J. Winn and N. Jojic. LOCUS: Learning object classes with unsupervised segmentation. In ICCV, 2005. 1
-
(2005)
ICCV
-
-
Winn, J.1
Jojic, N.2
-
38
-
-
34548102203
-
Detection and tracking of multiple, partially occluded humans by bayesian combination of edgelet part det
-
2
-
B. Wu and R. Nevatia. Detection and tracking of multiple, partially occluded humans by bayesian combination of edgelet part det. IJCV, 75(2):247-266, 2007. 2
-
(2007)
IJCV
, vol.75
, Issue.2
, pp. 247-266
-
-
Wu, B.1
Nevatia, R.2
-
39
-
-
35148895918
-
Compositional boosting for computing hierarchical image structures
-
1, 2
-
T. Wu, G. Xia, and S. Zhu. Compositional boosting for computing hierarchical image structures. In CVPR, 2007. 1, 2
-
(2007)
CVPR
-
-
Wu, T.1
Xia, G.2
Zhu, S.3
-
40
-
-
84856686379
-
Adaptive deconvolutional networks for mid and high level feature learning
-
1, 2, 6
-
M. Zeiler, G. Taylor, and R. Fergus. Adaptive deconvolutional networks for mid and high level feature learning. In ICCV, 2011. 1, 2, 6
-
(2011)
ICCV
-
-
Zeiler, M.1
Taylor, G.2
Fergus, R.3
-
41
-
-
34948814577
-
Detecting object boundaries using low-, mid-, and high-level information
-
2
-
S. Zheng, Z. Tu, and A. Yuille. Detecting object boundaries using low-, mid-, and high-level information. In CVPR, 2007. 2
-
(2007)
CVPR
-
-
Zheng, S.1
Tu, Z.2
Yuille, A.3
|