메뉴 건너뛰기




Volumn , Issue , 2013, Pages 3158-3165

Sketch tokens: A learned mid-level representation for contour and object detection

Author keywords

[No Author keywords available]

Indexed keywords

CONTOUR DETECTION; DETECTION ACCURACY; EFFICIENT DETECTION; GRADIENT HISTOGRAMS; LOW-LEVEL FEATURES; MID-LEVEL FEATURES; MID-LEVEL REPRESENTATION; RANDOM FOREST CLASSIFIER;

EID: 84887354170     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2013.406     Document Type: Conference Paper
Times cited : (423)

References (41)
  • 1
    • 79953048649 scopus 로고    scopus 로고
    • Contour detection and hierarchical image segmentation
    • 1, 2, 4, 5, 7
    • P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik. Contour detection and hierarchical image segmentation. PAMI, 33, 2011. 1, 2, 4, 5, 7
    • (2011) PAMI , vol.33
    • Arbelaez, P.1    Maire, M.2    Fowlkes, C.3    Malik, J.4
  • 2
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Oct. 2, 4
    • L. Breiman. Random forests. Machine Learning, 45(1):5-32, Oct. 2001. 2, 4
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 3
    • 0022808786 scopus 로고
    • A computational approach to edge detection
    • November 1, 4, 7
    • J. Canny. A computational approach to edge detection. PAMI, 8(6):679-698, November 1986. 1, 4, 7
    • (1986) PAMI , vol.8 , Issue.6 , pp. 679-698
    • Canny, J.1
  • 4
    • 84859414659 scopus 로고    scopus 로고
    • Decision forests: A unified framework for classification, regression, density estimation, manifold learning and semi-supervised learning
    • February 2, 4
    • A. Criminisi, J. Shotton, and E. Konukoglu. Decision forests: A unified framework for classification, regression, density estimation, manifold learning and semi-supervised learning. Foundations and Trends in Computer Graphics and Vision, 7(2-3):81-227, February 2012. 2, 4
    • (2012) Foundations and Trends in Computer Graphics and Vision , vol.7 , Issue.2-3 , pp. 81-227
    • Criminisi, A.1    Shotton, J.2    Konukoglu, E.3
  • 5
    • 33645146449 scopus 로고    scopus 로고
    • Histograms of oriented gradients for human detection
    • 1, 2, 3, 5, 6
    • N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In CVPR, 2005. 1, 2, 3, 5, 6
    • (2005) CVPR
    • Dalal, N.1    Triggs, B.2
  • 6
    • 33845580709 scopus 로고    scopus 로고
    • Supervised learning of edges and object boundaries
    • 2, 5
    • P. Dollár, Z. Tu, and S. Belongie. Supervised learning of edges and object boundaries. In CVPR, 2006. 2, 5
    • (2006) CVPR
    • Dollár, P.1    Tu, Z.2    Belongie, S.3
  • 8
    • 0015285440 scopus 로고
    • Use of the hough transformation to detect lines and curves in pictures. Commun
    • Jan. 1
    • R. O. Duda and P. E. Hart. Use of the hough transformation to detect lines and curves in pictures. Commun. ACM, 15(1):11-15, Jan. 1972. 1
    • (1972) ACM , vol.15 , Issue.1 , pp. 11-15
    • Duda, R.O.1    Hart, P.E.2
  • 10
    • 77951298115 scopus 로고    scopus 로고
    • The PASCAL visual object classes (VOC) challenge
    • June. 1, 2, 5, 6
    • M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The PASCAL visual object classes (VOC) challenge. IJCV, 88(2):303-338, June 2010. 1, 2, 5, 6
    • (2010) IJCV , vol.88 , Issue.2 , pp. 303-338
    • Everingham, M.1    Van Gool, L.2    Williams, C.K.I.3    Winn, J.4    Zisserman, A.5
  • 11
    • 77955422240 scopus 로고    scopus 로고
    • Object detection with discriminatively trained part based models
    • 2, 6
    • P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ramanan. Object detection with discriminatively trained part based models. PAMI, 32(9):1627-1645, 2010. 2, 6
    • (2010) PAMI , vol.32 , Issue.9 , pp. 1627-1645
    • Felzenszwalb, P.1    Girshick, R.2    McAllester, D.3    Ramanan, D.4
  • 12
    • 9644254228 scopus 로고    scopus 로고
    • Efficient graphbased image segmentation
    • 5
    • P. F. Felzenszwalb and D. P. Huttenlocher. Efficient graphbased image segmentation. IJCV, 59(2):167-181, 2004. 5
    • (2004) IJCV , vol.59 , Issue.2 , pp. 167-181
    • Felzenszwalb, P.F.1    Huttenlocher, D.P.2
  • 15
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • 1, 2, 6
    • G. E. Hinton, S. Osindero, and Y. Teh. A fast learning algorithm for deep belief nets. Neural Comp., 18(7), 2006. 1, 2, 6
    • (2006) Neural Comp. , vol.18 , Issue.7
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.3
  • 17
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • 1, 2, 3
    • D. G. Lowe. Distinctive image features from scale-invariant keypoints. IJCV, 60(2):91-110, 2004. 1, 2, 3
    • (2004) IJCV , vol.60 , Issue.2 , pp. 91-110
    • Lowe, D.G.1
  • 18
    • 70450159995 scopus 로고    scopus 로고
    • Discriminative sparse image models for class-specific edge detection and image interpretation
    • 2
    • J. Mairal, M. Leordeanu, F. Bach, M. Hebert, and J. Ponce. Discriminative sparse image models for class-specific edge detection and image interpretation. In ECCV, 2008. 2
    • (2008) ECCV
    • Mairal, J.1    Leordeanu, M.2    Bach, F.3    Hebert, M.4    Ponce, J.5
  • 20
    • 0034850577 scopus 로고    scopus 로고
    • A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics
    • 2, 4
    • D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In ICCV, 2001. 2, 4
    • (2001) ICCV
    • Martin, D.1    Fowlkes, C.2    Tal, D.3    Malik, J.4
  • 21
    • 33845593841 scopus 로고    scopus 로고
    • A boundary-fragment-model for object detection
    • 1, 2
    • A. Opelt and A. Zisserman. A boundary-fragment-model for object detection. In ECCV, 2006. 1, 2
    • (2006) ECCV
    • Opelt, A.1    Zisserman, A.2
  • 22
    • 0032124295 scopus 로고    scopus 로고
    • Junctions: Detection, classification, and reconstruction
    • 1
    • L. Parida, D. Geiger, and R. Hummel. Junctions: detection, classification, and reconstruction. PAMI, 20(7), 1998. 1
    • (1998) PAMI , vol.20 , Issue.7
    • Parida, L.1    Geiger, D.2    Hummel, R.3
  • 23
    • 76249103771 scopus 로고    scopus 로고
    • Learning class-specific edges for object detection and segmentation
    • 1, 2
    • M. Prasad, A. Zisserman, A. Fitzgibbon, M. Kumar, and P. Torr. Learning class-specific edges for object detection and segmentation. CVGIP, 2006. 1, 2
    • (2006) CVGIP
    • Prasad, M.1    Zisserman, A.2    Fitzgibbon, A.3    Kumar, M.4    Torr, P.5
  • 24
    • 84877752264 scopus 로고    scopus 로고
    • Discriminatively trained sparse code gradients for contour detection
    • 2, 5, 7
    • X. Ren and B. Liefeng. Discriminatively trained sparse code gradients for contour detection. In NIPS, 2012. 2, 5, 7
    • (2012) NIPS
    • Ren, X.1    Liefeng, B.2
  • 25
    • 0001878659 scopus 로고
    • Machine perception of 3d solids
    • J. T. T. et al., editor. MIT Press, 1
    • L. G. Roberts. Machine perception of 3d solids. In J. T. T. et al., editor, Optical and Electro-optical Information Processing, pages 159-197. MIT Press, 1965. 1
    • (1965) Optical and Electro-optical Information Processing , pp. 159-197
    • Roberts, L.G.1
  • 26
    • 34948845616 scopus 로고    scopus 로고
    • Matching local self-similarities across images and videos
    • 2, 3
    • E. Shechtman and M. Irani. Matching local self-similarities across images and videos. In CVPR, 2007. 2, 3
    • (2007) CVPR
    • Shechtman, E.1    Irani, M.2
  • 27
    • 33745868940 scopus 로고    scopus 로고
    • Contour-based learning for object detection
    • 2
    • J. Shotton, A. Blake, and R. Cipolla. Contour-based learning for object detection. In ICCV, 2005. 2
    • (2005) ICCV
    • Shotton, J.1    Blake, A.2    Cipolla, R.3
  • 29
    • 51949114829 scopus 로고    scopus 로고
    • Semantic texton forests for image categorization and segmentation
    • 2
    • J. Shotton, M. Johnson, and R. Cipolla. Semantic texton forests for image categorization and segmentation. In CVPR, 2008. 2
    • (2008) CVPR
    • Shotton, J.1    Johnson, M.2    Cipolla, R.3
  • 30
    • 58149151266 scopus 로고    scopus 로고
    • Textonboost for image understanding: Multi-class object recognition and segmentation by jointly modeling texture, layout, and context
    • 2
    • J. Shotton, J. M. Winn, C. Rother, and A. Criminisi. Textonboost for image understanding: Multi-class object recognition and segmentation by jointly modeling texture, layout, and context. IJCV, 81(1):2-23, 2009. 2
    • (2009) IJCV , vol.81 , Issue.1 , pp. 2-23
    • Shotton, J.1    Winn, J.M.2    Rother, C.3    Criminisi, A.4
  • 31
    • 0041374147 scopus 로고    scopus 로고
    • Recognizing and tracking human action
    • 1
    • J. Sullivan and S. Carlsson. Recognizing and tracking human action. ECCV, 2002. 1
    • (2002) ECCV
    • Sullivan, J.1    Carlsson, S.2
  • 32
    • 0029406172 scopus 로고
    • Structure and motion from line segments in multiple images
    • 1
    • C. Taylor and D. Kriegman. Structure and motion from line segments in multiple images. PAMI, 17(11), 1995. 1
    • (1995) PAMI , vol.17 , Issue.11
    • Taylor, C.1    Kriegman, D.2
  • 33
    • 80052896768 scopus 로고    scopus 로고
    • Efficient object category recogn using classemes
    • 1, 6
    • L. Torresani, M. Szummer, and A. Fitzgibbon. Efficient object category recogn. using classemes. In ECCV, 2010. 1, 6
    • (2010) ECCV
    • Torresani, L.1    Szummer, M.2    Fitzgibbon, A.3
  • 34
    • 0026240594 scopus 로고
    • Recognition by linear combinations of models
    • 1
    • S. Ullman and R. Basri. Recognition by linear combinations of models. PAMI, 13(10), 1991. 1
    • (1991) PAMI , vol.13 , Issue.10
    • Ullman, S.1    Basri, R.2
  • 35
    • 2142812371 scopus 로고    scopus 로고
    • Robust real-time face det
    • 5
    • P. A. Viola and M. J. Jones. Robust real-time face det. IJCV, 57(2):137-154, 2004. 5
    • (2004) IJCV , vol.57 , Issue.2 , pp. 137-154
    • Viola, P.A.1    Jones, M.J.2
  • 37
    • 33745948591 scopus 로고    scopus 로고
    • LOCUS: Learning object classes with unsupervised segmentation
    • 1
    • J. Winn and N. Jojic. LOCUS: Learning object classes with unsupervised segmentation. In ICCV, 2005. 1
    • (2005) ICCV
    • Winn, J.1    Jojic, N.2
  • 38
    • 34548102203 scopus 로고    scopus 로고
    • Detection and tracking of multiple, partially occluded humans by bayesian combination of edgelet part det
    • 2
    • B. Wu and R. Nevatia. Detection and tracking of multiple, partially occluded humans by bayesian combination of edgelet part det. IJCV, 75(2):247-266, 2007. 2
    • (2007) IJCV , vol.75 , Issue.2 , pp. 247-266
    • Wu, B.1    Nevatia, R.2
  • 39
    • 35148895918 scopus 로고    scopus 로고
    • Compositional boosting for computing hierarchical image structures
    • 1, 2
    • T. Wu, G. Xia, and S. Zhu. Compositional boosting for computing hierarchical image structures. In CVPR, 2007. 1, 2
    • (2007) CVPR
    • Wu, T.1    Xia, G.2    Zhu, S.3
  • 40
    • 84856686379 scopus 로고    scopus 로고
    • Adaptive deconvolutional networks for mid and high level feature learning
    • 1, 2, 6
    • M. Zeiler, G. Taylor, and R. Fergus. Adaptive deconvolutional networks for mid and high level feature learning. In ICCV, 2011. 1, 2, 6
    • (2011) ICCV
    • Zeiler, M.1    Taylor, G.2    Fergus, R.3
  • 41
    • 34948814577 scopus 로고    scopus 로고
    • Detecting object boundaries using low-, mid-, and high-level information
    • 2
    • S. Zheng, Z. Tu, and A. Yuille. Detecting object boundaries using low-, mid-, and high-level information. In CVPR, 2007. 2
    • (2007) CVPR
    • Zheng, S.1    Tu, Z.2    Yuille, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.