메뉴 건너뛰기




Volumn 2016-December, Issue , 2016, Pages 678-686

DHSNet: Deep hierarchical saliency network for salient object detection

Author keywords

[No Author keywords available]

Indexed keywords

BENCHMARKING; COMPUTER VISION; CONVOLUTION; NEURAL NETWORKS; OBJECT DETECTION; OBJECT RECOGNITION; PROGRAM PROCESSORS;

EID: 84986250467     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2016.80     Document Type: Conference Paper
Times cited : (942)

References (42)
  • 1
    • 51949116409 scopus 로고    scopus 로고
    • Summarizing visual data using bidirectional similarity
    • D. Simakov, Y. Caspi, E. Shechtman, and M. Irani. Summarizing visual data using bidirectional similarity. in CVPR, 2008.
    • (2008) CVPR
    • Simakov, D.1    Caspi, Y.2    Shechtman, E.3    Irani, M.4
  • 3
    • 84871666061 scopus 로고    scopus 로고
    • Visual-textual joint relevance learning for tag-based social image search
    • Y. Gao, M. Wang, Z.-J. Zha, J. Shen, X. Li, and X. Wu. Visual-textual joint relevance learning for tag-based social image search. TIP, 22 (1): 363-376, 2013.
    • (2013) TIP , vol.22 , Issue.1 , pp. 363-376
    • Gao, Y.1    Wang, M.2    Zha, Z.-J.3    Shen, J.4    Li, X.5    Wu, X.6
  • 5
    • 0032204063 scopus 로고    scopus 로고
    • A model of saliency-based visual attention for rapid scene analysis
    • L. Itti, C. Koch, and E. Niebur. A model of saliency-based visual attention for rapid scene analysis. PAMI, 20 (11): 1254-1259, 1998.
    • (1998) PAMI , vol.20 , Issue.11 , pp. 1254-1259
    • Itti, L.1    Koch, C.2    Niebur, E.3
  • 6
    • 84856633724 scopus 로고    scopus 로고
    • Center-surround divergence of feature statistics for salient object detection
    • D. A. Klein and S. Frintrop. Center-surround divergence of feature statistics for salient object detection. in ICCV, 2011.
    • (2011) ICCV
    • Klein, D.A.1    Frintrop, S.2
  • 9
    • 84926497888 scopus 로고    scopus 로고
    • Background prior-based salient object detection via deep reconstruction residual
    • J. Han, D. Zhang, X. Hu, L. Guo, J. Ren, and F. Wu. Background Prior-Based Salient Object Detection via Deep Reconstruction Residual. IEEE Trans. CSVT, 25 (8): 1309-1321, 2015.
    • (2015) IEEE Trans. CSVT , vol.25 , Issue.8 , pp. 1309-1321
    • Han, J.1    Zhang, D.2    Hu, X.3    Guo, L.4    Ren, J.5    Wu, F.6
  • 10
    • 84887357058 scopus 로고    scopus 로고
    • Saliency detection via graph-based manifold ranking
    • C. Yang, L. Zhang, H. Lu, X. Ruan, and M.-H. Yang. Saliency detection via graph-based manifold ranking. in CVPR, 2013.
    • (2013) CVPR
    • Yang, C.1    Zhang, L.2    Lu, H.3    Ruan, X.4    Yang, M.-H.5
  • 11
    • 84887344857 scopus 로고    scopus 로고
    • Geodesic saliency using background priors
    • Y. Wei, F. Wen, W. Zhu, and J. Sun. Geodesic saliency using background priors. in ECCV, 2012.
    • (2012) ECCV
    • Wei, Y.1    Wen, F.2    Zhu, W.3    Sun, J.4
  • 12
    • 84866667038 scopus 로고    scopus 로고
    • Saliency filters: Contrast based filtering for salient region detection
    • F. Perazzi, P. Krahenbuhl, Y. Pritch, and A. Hornung. Saliency filters: Contrast based filtering for salient region detection. in CVPR, 2012.
    • (2012) CVPR
    • Perazzi, F.1    Krahenbuhl, P.2    Pritch, Y.3    Hornung, A.4
  • 13
    • 84863014339 scopus 로고    scopus 로고
    • Fusing generic objectness and visual saliency for salient object detection
    • K.-Y. Chang, T.-L. Liu, H.-T. Chen, and S.-H. Lai. Fusing generic objectness and visual saliency for salient object detection. in ICCV, 2011.
    • (2011) ICCV
    • Chang, K.-Y.1    Liu, T.-L.2    Chen, H.-T.3    Lai, S.-H.4
  • 17
    • 84911452200 scopus 로고    scopus 로고
    • Salient region detection via high-dimensional color transform
    • J. Kim, D. Han, Y.-W. Tai, and J. Kim. Salient region detection via high-dimensional color transform. in CVPR, 2014.
    • (2014) CVPR
    • Kim, J.1    Han, D.2    Tai, Y.-W.3    Kim, J.4
  • 18
    • 84887322898 scopus 로고    scopus 로고
    • Hierarchical saliency detection
    • Q. Yan, L. Xu, J. Shi, and J. Jia. Hierarchical saliency detection. in CVPR, 2013.
    • (2013) CVPR
    • Yan, Q.1    Xu, L.2    Shi, J.3    Jia, J.4
  • 19
    • 84887392014 scopus 로고    scopus 로고
    • Salient object detection: A discriminative regional feature integration approach
    • H. Jiang, J. Wang, Z. Yuan, Y. Wu, N. Zheng, and S. Li. Salient object detection: A discriminative regional feature integration approach. in CVPR, 2013.
    • (2013) CVPR
    • Jiang, H.1    Wang, J.2    Yuan, Z.3    Wu, Y.4    Zheng, N.5    Li, S.6
  • 20
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86 (11): 2278-2324, 1998.
    • (1998) Proceedings of the IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 21
    • 84959193001 scopus 로고    scopus 로고
    • Recurrent convolutional neural network for object recognition
    • M. Liang and X. Hu. Recurrent Convolutional Neural Network for Object Recognition. in CVPR, 2015.
    • (2015) CVPR
    • Liang, M.1    Hu, X.2
  • 22
    • 84876258641 scopus 로고    scopus 로고
    • Learning hierarchical features for scene labeling
    • C. Farabet, C. Couprie, L. Najman, and Y. LeCun. Learning hierarchical features for scene labeling. PAMI, 35 (8): 1915-1929, 2013.
    • (2013) PAMI , vol.35 , Issue.8 , pp. 1915-1929
    • Farabet, C.1    Couprie, C.2    Najman, L.3    LeCun, Y.4
  • 23
    • 84959205572 scopus 로고    scopus 로고
    • Fully convolutional networks for semantic segmentation
    • J. Long, E. Shelhamer, and T. Darrell. Fully Convolutional Networks for Semantic Segmentation. in CVPR, 2015.
    • (2015) CVPR
    • Long, J.1    Shelhamer, E.2    Darrell, T.3
  • 24
    • 84937943470 scopus 로고    scopus 로고
    • Depth map prediction from a single image using a multi-scale deep network
    • D. Eigen, C. Puhrsch, and R. Fergus. Depth map prediction from a single image using a multi-scale deep network. in NIPS, 2014.
    • (2014) NIPS
    • Eigen, D.1    Puhrsch, C.2    Fergus, R.3
  • 25
    • 85083953063 scopus 로고    scopus 로고
    • Very deep convolutional networks for large-scale image recognition
    • K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. in ICLR, 2015.
    • (2015) ICLR
    • Simonyan, K.1    Zisserman, A.2
  • 26
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. in NIPS, 2012.
    • (2012) NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 27
    • 85009918748 scopus 로고    scopus 로고
    • Spatial pyramid pooling in deep convolutional networks for visual recognition
    • K. He, X. Zhang, S. Ren, and J. Sun. Spatial pyramid pooling in deep convolutional networks for visual recognition. in ECCV, 2014.
    • (2014) ECCV
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 28
    • 84911400494 scopus 로고    scopus 로고
    • Rich feature hierarchies for accurate object detection and semantic segmentation
    • R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. in CVPR, 2014.
    • (2014) CVPR
    • Girshick, R.1    Donahue, J.2    Darrell, T.3    Malik, J.4
  • 29
    • 84911198048 scopus 로고    scopus 로고
    • Deepface: Closing the gap to human-level performance in face verification
    • Y. Taigman, M. Yang, M. A. Ranzato, and L. Wolf. Deepface: Closing the gap to human-level performance in face verification. in CVPR, 2014.
    • (2014) CVPR
    • Taigman, Y.1    Yang, M.2    Ranzato, M.A.3    Wolf, L.4
  • 30
    • 84973879016 scopus 로고    scopus 로고
    • Learning deconvolution network for semantic segmentation
    • H. Noh, S. Hong, and B. Han. Learning deconvolution network for semantic segmentation. in ICCV, 2015.
    • (2015) ICCV
    • Noh, H.1    Hong, S.2    Han, B.3
  • 32
    • 84946554818 scopus 로고    scopus 로고
    • Predicting eye fixations using convolutional neural networks
    • N. Liu, J. Han, D. Zhang, S. Wen, and T. Liu. Predicting eye fixations using convolutional neural networks. in CVPR, 2015.
    • (2015) CVPR
    • Liu, N.1    Han, J.2    Zhang, D.3    Wen, S.4    Liu, T.5
  • 33
    • 85083953536 scopus 로고    scopus 로고
    • Deep gaze i: Boosting saliency prediction with feature maps trained on imagenet
    • M. Kümmerer, L. Theis, and M. Bethge. Deep Gaze I: Boosting saliency prediction with feature maps trained on ImageNet. in ICLR Workshop, 2015.
    • (2015) ICLR Workshop
    • Kümmerer, M.1    Theis, L.2    Bethge, M.3
  • 34
    • 84959188465 scopus 로고    scopus 로고
    • Visual saliency based on multiscale deep features
    • G. Li and Y. Yu. Visual Saliency Based on Multiscale Deep Features. in CVPR, 2015.
    • (2015) CVPR
    • Li, G.1    Yu, Y.2
  • 35
    • 84959227715 scopus 로고    scopus 로고
    • Deep networks for saliency detection via local estimation and global search
    • L. Wang, H. Lu, X. Ruan, and M.-H. Yang. Deep Networks for Saliency Detection via Local Estimation and Global Search. in CVPR, 2015.
    • (2015) CVPR
    • Wang, L.1    Lu, H.2    Ruan, X.3    Yang, M.-H.4
  • 36
    • 84959212183 scopus 로고    scopus 로고
    • Saliency detection by multi-context deep learning
    • R. Zhao, W. Ouyang, H. Li, and X. Wang. Saliency detection by multi-context deep learning. in CVPR, 2015.
    • (2015) CVPR
    • Zhao, R.1    Ouyang, W.2    Li, H.3    Wang, X.4
  • 37
    • 84937874835 scopus 로고    scopus 로고
    • Do convnets learn correspondence
    • J. L. Long, N. Zhang, and T. Darrell. Do Convnets Learn Correspondence in NIPS, 2014.
    • (2014) NIPS
    • Long, J.L.1    Zhang, N.2    Darrell, T.3
  • 39
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by back-propagating errors. Nature, 323 (6088): 533-538, 1986.
    • (1986) Nature , vol.323 , Issue.6088 , pp. 533-538
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 41
    • 84911390996 scopus 로고    scopus 로고
    • Saliency optimization from robust background detection
    • W. Zhu, S. Liang, Y. Wei, and J. Sun. Saliency optimization from robust background detection. in CVPR, 2014.
    • (2014) CVPR
    • Zhu, W.1    Liang, S.2    Wei, Y.3    Sun, J.4
  • 42
    • 85083954148 scopus 로고    scopus 로고
    • Semantic image segmentation with deep convolutional nets and fully connected CRFs
    • L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille. Semantic image segmentation with deep convolutional nets and fully connected CRFs. in ICLR, 2015.
    • (2015) ICLR
    • Chen, L.-C.1    Papandreou, G.2    Kokkinos, I.3    Murphy, K.4    Yuille, A.L.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.