메뉴 건너뛰기




Volumn 25, Issue 8, 2015, Pages 1309-1321

Background Prior-Based Salient Object Detection via Deep Reconstruction Residual

Author keywords

deep reconstruction residual; salient object detection; stacked denoising autoencoder

Indexed keywords

LEARNING SYSTEMS; OBJECT RECOGNITION;

EID: 84926497888     PISSN: 10518215     EISSN: None     Source Type: Journal    
DOI: 10.1109/TCSVT.2014.2381471     Document Type: Article
Times cited : (436)

References (51)
  • 1
    • 84863073181 scopus 로고    scopus 로고
    • Scale and object aware image retargeting for thumbnail browsing
    • Nov
    • J. Sun and H. Ling, "Scale and object aware image retargeting for thumbnail browsing," in Proc. IEEE Int. Conf. Comput. Vis., Nov. 2011, pp. 1511-1518.
    • (2011) Proc. IEEE Int. Conf. Comput. Vis , pp. 1511-1518
    • Sun, J.1    Ling, H.2
  • 2
    • 77749271171 scopus 로고    scopus 로고
    • Sketch2photo: Internet image montage
    • Dec., Art. ID 124
    • T. Chen, M.-M. Cheng, P. Tan, A. Shamir, and S.-M. Hu, "Sketch2Photo: Internet image montage," ACM Trans. Graph., vol. 28, no. 5, Dec. 2009, Art. ID 124.
    • (2009) ACM Trans. Graph , vol.28 , Issue.5
    • Chen, T.1    Cheng, M.-M.2    Tan, P.3    Shamir, A.4    Hu, S.-M.5
  • 3
    • 84904651934 scopus 로고    scopus 로고
    • Action recognition by spatio-temporal oriented energies
    • Oct
    • X. Zhen, L. Shao, and X. Li, "Action recognition by spatio-temporal oriented energies," Inf. Sci., vol. 281, pp. 295-309, Oct. 2014.
    • (2014) Inf. Sci , vol.281 , pp. 295-309
    • Zhen, X.1    Shao, L.2    Li, X.3
  • 4
    • 84902279254 scopus 로고    scopus 로고
    • Weakly-supervised cross-domain dictionary learning for visual recognition
    • Aug
    • F. Zhu and L. Shao, "Weakly-supervised cross-domain dictionary learning for visual recognition," Int. J. Comput. Vis., vol. 109, nos. 1-2, pp. 42-59, Aug. 2014.
    • (2014) Int. J. Comput. Vis , vol.109 , Issue.1-2 , pp. 42-59
    • Zhu, F.1    Shao, L.2
  • 5
    • 0032204063 scopus 로고    scopus 로고
    • A model of saliency-based visual attention for rapid scene analysis
    • Nov
    • L. Itti, C. Koch, and E. Niebur, "A model of saliency-based visual attention for rapid scene analysis," IEEE Trans. Pattern Anal. Mach. Intell., vol. 20, no. 11, pp. 1254-1259, Nov. 1998.
    • (1998) IEEE Trans. Pattern Anal. Mach. Intell , vol.20 , Issue.11 , pp. 1254-1259
    • Itti, L.1    Koch, C.2    Niebur, E.3
  • 7
    • 84866641899 scopus 로고    scopus 로고
    • Boosting bottom-up and top-down visual features for saliency estimation
    • Jun
    • A. Borji, "Boosting bottom-up and top-down visual features for saliency estimation," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2012, pp. 438-445.
    • (2012) Proc. IEEE Conf. Comput. Vis. Pattern Recognit , pp. 438-445
    • Borji, A.1
  • 8
    • 58149506125 scopus 로고    scopus 로고
    • Sun: A Bayesian framework for saliency using natural statistics
    • Dec., Art. ID 32
    • L. Zhang, M. H. Tong, T. K. Marks, H. Shan, and G. W. Cottrell, "SUN: A Bayesian framework for saliency using natural statistics," J. Vis., vol. 8, no. 7, Dec. 2008, Art. ID 32.
    • (2008) J. Vis , vol.8 , Issue.7
    • Zhang, L.1    Tong, M.H.2    Marks, T.K.3    Shan, H.4    Cottrell, G.W.5
  • 9
    • 84897583648 scopus 로고    scopus 로고
    • An objectoriented visual saliency detection framework based on sparse coding representations
    • Dec
    • J. Han, S. He, X. Qian, D. Wang, L. Guo, and T. Liu, "An objectoriented visual saliency detection framework based on sparse coding representations," IEEE Trans. Circuits Syst. Video Technol., vol. 23, no. 12, pp. 2009-2021, Dec. 2013.
    • (2013) IEEE Trans. Circuits Syst. Video Technol , vol.23 , Issue.12 , pp. 2009-2021
    • Han, J.1    He, S.2    Qian, X.3    Wang, D.4    Guo, L.5    Liu, T.6
  • 10
    • 84863359424 scopus 로고    scopus 로고
    • Dynamic visual attention: Searching for coding length increments
    • Red Hook, NY, USA: Curran & Associates Inc
    • X. Hou and L. Zhang, "Dynamic visual attention: Searching for coding length increments," in Advances in Neural Information Processing Systems. Red Hook, NY, USA: Curran & Associates Inc., 2008, pp. 681-688.
    • (2008) Advances in Neural Information Processing Systems , pp. 681-688
    • Hou, X.1    Zhang, L.2
  • 11
    • 84866672748 scopus 로고    scopus 로고
    • A unified approach to salient object detection via low rank matrix recovery
    • Jun
    • X. Shen and Y. Wu, "A unified approach to salient object detection via low rank matrix recovery," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2012, pp. 853-860.
    • (2012) Proc. IEEE Conf. Comput. Vis. Pattern Recognit , pp. 853-860
    • Shen, X.1    Wu, Y.2
  • 12
    • 84455208536 scopus 로고    scopus 로고
    • Bottom-up saliency based on weighted sparse coding residual
    • B. Han, H. Zhu, and Y. Ding, "Bottom-up saliency based on weighted sparse coding residual," in Proc. ACM Int. Conf. Multimedia, 2011, pp. 1117-1120.
    • (2011) Proc. ACM Int. Conf. Multimedia , pp. 1117-1120
    • Han, B.1    Zhu, H.2    Ding, Y.3
  • 13
    • 78650512633 scopus 로고    scopus 로고
    • Learning to detect a salient object
    • Feb
    • T. Liu et al., "Learning to detect a salient object," IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, no. 2, pp. 353-367, Feb. 2011.
    • (2011) IEEE Trans. Pattern Anal. Mach. Intell , vol.33 , Issue.2 , pp. 353-367
    • Liu, T.1
  • 14
    • 77950364024 scopus 로고    scopus 로고
    • Static and space-time visual saliency detection by self-resemblance
    • Nov., Art. ID 15
    • H. J. Seo and P. Milanfar, "Static and space-time visual saliency detection by self-resemblance," J. Vis., vol. 9, no. 12, Nov. 2009, Art. ID 15.
    • (2009) J. Vis , vol.9 , Issue.12
    • Seo, H.J.1    Milanfar, P.2
  • 20
    • 34547975052 scopus 로고    scopus 로고
    • Scaling learning algorithms towards ai
    • L. Bottou, O. Chapelle D. DeCoste, and J. Weston, Eds. Cambridge, MA, USA: MIT Press
    • Y. Bengio and Y. LeCun, "Scaling learning algorithms towards AI," in Large-Scale Kernel Machines, L. Bottou, O. Chapelle, D. DeCoste, and J. Weston, Eds. Cambridge, MA, USA: MIT Press, 2007.
    • (2007) Large-Scale Kernel Machines
    • Bengio, Y.1    LeCun, Y.2
  • 22
    • 84910597067 scopus 로고    scopus 로고
    • Learning deep and wide: A spectral method for learning deep networks
    • Dec
    • L. Shao, D. Wu, and X. Li, "Learning deep and wide: A spectral method for learning deep networks," IEEE Trans. Neural Netw. Learn. Syst., vol. 25, no. 12, pp. 2303-2308, Dec. 2014.
    • (2014) IEEE Trans. Neural Netw. Learn. Syst , vol.25 , Issue.12 , pp. 2303-2308
    • Shao, L.1    Wu, D.2    Li, X.3
  • 23
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • Jul
    • G. E. Hinton and R. R. Salakhutdinov, "Reducing the dimensionality of data with neural networks," Science, vol. 313, no. 5786, pp. 504-507, Jul. 2006.
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 24
    • 84879854889 scopus 로고    scopus 로고
    • Representation learning: A review and new perspectives
    • Aug
    • Y. Bengio, A. Courville, and P. Vincent, "Representation learning: A review and new perspectives," IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 8, pp. 1798-1828, Aug. 2013.
    • (2013) IEEE Trans. Pattern Anal. Mach. Intell , vol.35 , Issue.8 , pp. 1798-1828
    • Bengio, Y.1    Courville, A.2    Vincent, P.3
  • 25
    • 79551480483 scopus 로고    scopus 로고
    • Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
    • Jan
    • P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol, "Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion," J. Mach. Learn. Res., vol. 11, pp. 3371-3408, Jan. 2010.
    • (2010) J. Mach. Learn. Res , vol.11 , pp. 3371-3408
    • Vincent, P.1    Larochelle, H.2    Lajoie, I.3    Bengio, Y.4    Manzagol, P.-A.5
  • 26
    • 84897417038 scopus 로고    scopus 로고
    • Sparse autoencoder
    • Stanford Univ., Stanford, CA, USA, Tech. Rep
    • A. Ng, "Sparse autoencoder," CS294A Lecture Notes, Stanford Univ., Stanford, CA, USA, Tech. Rep., 2011, p. 72.
    • (2011) CS294A Lecture Notes , pp. 72
    • Ng, A.1
  • 27
    • 84879853539 scopus 로고    scopus 로고
    • Stacked autoencoders for unsupervised feature learning and multiple organ detection in a pilot study using 4d patient data
    • Aug
    • H. C. Shin, M. R. Orton, D. J. Collins, S. J. Doran, and M. O. Leach, "Stacked autoencoders for unsupervised feature learning and multiple organ detection in a pilot study using 4D patient data," IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 8, pp. 1930-1943, Aug. 2013.
    • (2013) IEEE Trans. Pattern Anal. Mach. Intell , vol.35 , Issue.8 , pp. 1930-1943
    • Shin, H.C.1    Orton, M.R.2    Collins, D.J.3    Doran, S.J.4    Leach, M.O.5
  • 28
    • 84897978322 scopus 로고    scopus 로고
    • Spatiotemporal saliency detection using textural contrast and its applications
    • Apr
    • W. Kim and C. Kim, "Spatiotemporal saliency detection using textural contrast and its applications," IEEE Trans. Circuits Syst. Video Technol., vol. 24, no. 4, pp. 646-659, Apr. 2014.
    • (2014) IEEE Trans. Circuits Syst. Video Technol , vol.24 , Issue.4 , pp. 646-659
    • Kim, W.1    Kim, C.2
  • 29
    • 84877819812 scopus 로고    scopus 로고
    • Optimal contrast based saliency detection
    • Aug
    • X. Qian, J. Han, G. Cheng, and L. Guo, "Optimal contrast based saliency detection," Pattern Recognit. Lett., vol. 34, no. 11, pp. 1270-1278, Aug. 2013.
    • (2013) Pattern Recognit. Lett , vol.34 , Issue.11 , pp. 1270-1278
    • Qian, X.1    Han, J.2    Cheng, G.3    Guo, L.4
  • 30
    • 84872560515 scopus 로고    scopus 로고
    • Practical recommendations for gradient-based training of deep architectures
    • K.-R. Müller, G. Montavon, and G. B. Orr, Eds. Berlin, Germany: Springer-Verlag
    • Y. Bengio, "Practical recommendations for gradient-based training of deep architectures," in Neural Networks: Tricks Trade, K.-R. Müller, G. Montavon, and G. B. Orr, Eds. Berlin, Germany: Springer-Verlag, 2013.
    • (2013) Neural Networks: Tricks Trade
    • Bengio, Y.1
  • 32
    • 84865581203 scopus 로고    scopus 로고
    • An analysis of Gaussian-binary restricted boltzmann machines for natural images
    • N. Wang, J. Melchior, and L. Wiskott, "An analysis of Gaussian-binary restricted Boltzmann machines for natural images," in Proc. ESANN, 2012, pp. 287-292.
    • (2012) Proc. ESANN , pp. 287-292
    • Wang, N.1    Melchior, J.2    Wiskott, L.3
  • 36
    • 9644254228 scopus 로고    scopus 로고
    • Efficient graph-based image segmentation
    • Sep
    • P. F. Felzenszwalb and D. P. Huttenlocher, "Efficient graph-based image segmentation," Int. J. Comput. Vis., vol. 59, no. 2, pp. 167-181, Sep. 2004.
    • (2004) Int. J. Comput. Vis , vol.59 , Issue.2 , pp. 167-181
    • Felzenszwalb, P.F.1    Huttenlocher, D.P.2
  • 37
    • 84863014339 scopus 로고    scopus 로고
    • Fusing generic objectness and visual saliency for salient object detection
    • Nov
    • K.-Y. Chang, T.-L. Liu, H.-T. Chen, and S.-H. Lai, "Fusing generic objectness and visual saliency for salient object detection," in Proc. IEEE Int. Conf. Comput. Vis., Nov. 2011, pp. 914-921.
    • (2011) Proc. IEEE Int. Conf. Comput. Vis , pp. 914-921
    • Chang, K.-Y.1    Liu, T.-L.2    Chen, H.-T.3    Lai, S.-H.4
  • 39
    • 84889245941 scopus 로고    scopus 로고
    • Bayesian saliency via low and mid level cues
    • May
    • Y. Xie, H. Lu, and M.-H. Yang, "Bayesian saliency via low and mid level cues," IEEE Trans. Image Process., vol. 22, no. 5, pp. 1689-1698, May 2013.
    • (2013) IEEE Trans. Image Process , vol.22 , Issue.5 , pp. 1689-1698
    • Xie, Y.1    Lu, H.2    Yang, M.-H.3
  • 43
    • 84863359424 scopus 로고    scopus 로고
    • Dynamic visual attention: Searching for coding length increments
    • Red Hook, NY, USA: Curran & Associates Inc
    • X. Hou and L. Zhang, "Dynamic visual attention: Searching for coding length increments," in Advances in Neural Information Processing Systems. Red Hook, NY, USA: Curran & Associates Inc., 2008, pp. 681-688.
    • (2008) Advances in Neural Information Processing Systems , pp. 681-688
    • Hou, X.1    Zhang, L.2
  • 44
    • 84898830857 scopus 로고    scopus 로고
    • Category-independent object-level saliency detection
    • Dec
    • Y. Jia and M. Han, "Category-independent object-level saliency detection," in Proc. IEEE Int. Conf. Comput. Vis., Dec. 2013, pp. 1761-1768.
    • (2013) Proc. IEEE Int. Conf. Comput. Vis , pp. 1761-1768
    • Jia, Y.1    Han, M.2
  • 45
    • 84886598638 scopus 로고    scopus 로고
    • Saliency detection by multipleinstance learning
    • Apr
    • Q. Wang, Y. Yuan, P. Yan, and X. Li, "Saliency detection by multipleinstance learning," IEEE Trans. Cybern., vol. 43, no. 2, pp. 660-672, Apr. 2013.
    • (2013) IEEE Trans. Cybern , vol.43 , Issue.2 , pp. 660-672
    • Wang, Q.1    Yuan, Y.2    Yan, P.3    Li, X.4
  • 46
    • 3042525106 scopus 로고    scopus 로고
    • Learning to detect natural image boundaries using local brightness, color, and texture cues
    • May
    • D. R. Martin, C. C. Fowlkes, and J. Malik, "Learning to detect natural image boundaries using local brightness, color, and texture cues," IEEE Trans. Pattern Anal. Mach. Intell., vol. 26, no. 5, pp. 530-549, May 2004.
    • (2004) IEEE Trans. Pattern Anal. Mach. Intell , vol.26 , Issue.5 , pp. 530-549
    • Martin, D.R.1    Fowlkes, C.C.2    Malik, J.3
  • 47
    • 84900534604 scopus 로고    scopus 로고
    • Unsupervised object extraction by contour delineation and texture discrimination based on oriented edge features
    • May
    • L. Sun and T. Shibata, "Unsupervised object extraction by contour delineation and texture discrimination based on oriented edge features," IEEE Trans. Circuits Syst. Video Technol., vol. 24, no. 5, pp. 780-788, May 2014.
    • (2014) IEEE Trans. Circuits Syst. Video Technol , vol.24 , Issue.5 , pp. 780-788
    • Sun, L.1    Shibata, T.2
  • 48
    • 84863124316 scopus 로고    scopus 로고
    • Saliency detection by multitask sparsity pursuit
    • Mar
    • C. Lang, G. Liu, J. Yu, and S. Yan, "Saliency detection by multitask sparsity pursuit," IEEE Trans. Image Process., vol. 21, no. 3, pp. 1327-1338, Mar. 2012.
    • (2012) IEEE Trans. Image Process , vol.21 , Issue.3 , pp. 1327-1338
    • Lang, C.1    Liu, G.2    Yu, J.3    Yan, S.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.