메뉴 건너뛰기




Volumn 07-12-June-2015, Issue , 2015, Pages 409-417

Learning Hypergraph-regularized Attribute Predictors

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER VISION; GRAPHIC METHODS;

EID: 84959245593     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2015.7298638     Document Type: Conference Paper
Times cited : (139)

References (38)
  • 1
    • 84887338331 scopus 로고    scopus 로고
    • Labelembedding for attribute-based classification
    • Z. Akata, F. Perronnin, Z. Harchaoui, and C. Schmid. Labelembedding for attribute-based classification. In CVPR, pages 819-826, 2013
    • (2013) CVPR , pp. 819-826
    • Akata, Z.1    Perronnin, F.2    Harchaoui, Z.3    Schmid, C.4
  • 2
    • 84906498422 scopus 로고    scopus 로고
    • Zero-shot learning via visual abstraction
    • S. Antol, C. L. Zitnick, and D. Parikh. Zero-shot learning via visual abstraction. In ECCV, pages 401-416. 2014
    • (2014) ECCV , pp. 401-416
    • Antol, S.1    Zitnick, C.L.2    Parikh, D.3
  • 3
    • 0042378381 scopus 로고    scopus 로고
    • Laplacian eigenmaps for dimensionality reduction and data representation
    • M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduction and data representation. Neural compu-tation, 15(6):1373-1396, 2003
    • (2003) Neural Compu-tation , vol.15 , Issue.6 , pp. 1373-1396
    • Belkin, M.1    Niyogi, P.2
  • 4
    • 84911419520 scopus 로고    scopus 로고
    • Inferring analogous attributes
    • C.-Y. Chen and K. Grauman. Inferring analogous attributes. In CVPR, 2014
    • (2014) CVPR
    • Chen, C.-Y.1    Grauman, K.2
  • 5
    • 70450163017 scopus 로고    scopus 로고
    • Efficient multi-label classification with hypergraph regularization
    • G. Chen, J. Zhang, F. Wang, C. Zhang, and Y. Gao. Efficient multi-label classification with hypergraph regularization. In CVPR, pages 1658-1665, 2009
    • (2009) CVPR , pp. 1658-1665
    • Chen, G.1    Zhang, J.2    Wang, F.3    Zhang, C.4    Gao, Y.5
  • 6
    • 84919881041 scopus 로고    scopus 로고
    • Decaf: A deep convolutional activation feature for generic visual recognition
    • J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and T. Darrell. Decaf: A deep convolutional activation feature for generic visual recognition. In ICML, pages 647-655, 2014
    • (2014) ICML , pp. 647-655
    • Donahue, J.1    Jia, Y.2    Vinyals, O.3    Hoffman, J.4    Zhang, N.5    Tzeng, E.6    Darrell, T.7
  • 7
    • 85026927311 scopus 로고    scopus 로고
    • Heterogeneous domain adaptation: Learning visual classifiers from textual description
    • M. Elhoseiny, B. Saleh, and A. Elgammal. Heterogeneous domain adaptation: Learning visual classifiers from textual description. In ICCVW, 2013
    • (2013) ICCVW
    • Elhoseiny, M.1    Saleh, B.2    Elgammal, A.3
  • 8
    • 84898803425 scopus 로고    scopus 로고
    • Write a classifier: Zero-shot learning using purely textual descriptions
    • M. Elhoseiny, B. Saleh, and A. Elgammal. Write a classifier: Zero-shot learning using purely textual descriptions. In ICCV, pages 2584-2591, 2013
    • (2013) ICCV , pp. 2584-2591
    • Elhoseiny, M.1    Saleh, B.2    Elgammal, A.3
  • 9
    • 70450207704 scopus 로고    scopus 로고
    • Describing objects by their attributes
    • A. Farhadi, I. Endres, D. Hoiem, and D. Forsyth. Describing objects by their attributes. In CVPR, pages 1778-1785, 2009
    • (2009) CVPR , pp. 1778-1785
    • Farhadi, A.1    Endres, I.2    Hoiem, D.3    Forsyth, D.4
  • 10
    • 84906511785 scopus 로고    scopus 로고
    • Transductive multi-view embedding for zero-shot recognition and annotation
    • Y. Fu, T. M. Hospedales, T. Xiang, Z. Fu, and S. Gong. Transductive multi-view embedding for zero-shot recognition and annotation. In ECCV, pages 584-599. 2014
    • (2014) ECCV , pp. 584-599
    • Fu, Y.1    Hospedales, T.M.2    Xiang, T.3    Fu, Z.4    Gong, S.5
  • 11
    • 84891603587 scopus 로고    scopus 로고
    • Learning multimodal latent attributes
    • Y. Fu, T. M. Hospedales, T. Xiang, and S. Gong. Learning multimodal latent attributes. TPAMI, 36(2):303-316, 2014
    • (2014) TPAMI , vol.36 , Issue.2 , pp. 303-316
    • Fu, Y.1    Hospedales, T.M.2    Xiang, T.3    Gong, S.4
  • 12
    • 15044358511 scopus 로고    scopus 로고
    • Face recognition using laplacianfaces
    • X. He, S. Yan, Y. Hu, P. Niyogi, and H.-J. Zhang. Face recognition using laplacianfaces. TPAMI, 27(3):328-340, 2005
    • (2005) TPAMI , vol.27 , Issue.3 , pp. 328-340
    • He, X.1    Yan, S.2    Hu, Y.3    Niyogi, P.4    Zhang, H.-J.5
  • 14
    • 77955997603 scopus 로고    scopus 로고
    • Image retrieval via probabilistic hypergraph ranking
    • Y. Huang, Q. Liu, S. Zhang, and D. N. Metaxas. Image retrieval via probabilistic hypergraph ranking. In CVPR, pages 3376-3383, 2010
    • (2010) CVPR , pp. 3376-3383
    • Huang, Y.1    Liu, Q.2    Zhang, S.3    Metaxas, D.N.4
  • 15
    • 84937837455 scopus 로고    scopus 로고
    • A unified semantic embedding: Relating taxonomies and attributes
    • S. J. Hwang and L. Sigal. A unified semantic embedding: Relating taxonomies and attributes. In NIPS, pages 271-279. 2014
    • (2014) NIPS , pp. 271-279
    • Hwang, S.J.1    Sigal, L.2
  • 16
    • 84937954530 scopus 로고    scopus 로고
    • Zero shot recognition with unreliable attributes
    • D. Jayaraman and K. Grauman. Zero shot recognition with unreliable attributes. In NIPS, 2014
    • (2014) NIPS
    • Jayaraman, D.1    Grauman, K.2
  • 17
    • 84911379042 scopus 로고    scopus 로고
    • Decorrelating semantic visual attributes by resisting the urge to share
    • D. Jayaraman, F. Sha, and K. Grauman. Decorrelating semantic visual attributes by resisting the urge to share. In CVPR, 2014
    • (2014) CVPR
    • Jayaraman, D.1    Sha, F.2    Grauman, K.3
  • 18
    • 70350627315 scopus 로고    scopus 로고
    • Multi-label multiple kernel learning
    • S. Ji, L. Sun, R. Jin, and J. Ye. Multi-label multiple kernel learning. In NIPS, pages 777-784, 2009
    • (2009) NIPS , pp. 777-784
    • Ji, S.1    Sun, L.2    Jin, R.3    Ye, J.4
  • 20
    • 84894522762 scopus 로고    scopus 로고
    • Attributebased classification for zero-shot visual object categorization
    • C. Lampert, H. Nickisch, and S. Harmeling. Attributebased classification for zero-shot visual object categorization. TPAMI, 36(3):453, 2014
    • (2014) TPAMI , vol.36 , Issue.3 , pp. 453
    • Lampert, C.1    Nickisch, H.2    Harmeling, S.3
  • 21
    • 70450172710 scopus 로고    scopus 로고
    • Learning to detect unseen object classes by between-class attribute transfer
    • C. H. Lampert, H. Nickisch, and S. Harmeling. Learning to detect unseen object classes by between-class attribute transfer. In CVPR, pages 951-958, 2009
    • (2009) CVPR , pp. 951-958
    • Lampert, C.H.1    Nickisch, H.2    Harmeling, S.3
  • 22
    • 84856659292 scopus 로고    scopus 로고
    • A joint learning framework for attribute models and object descriptions
    • D. Mahajan, S. Sellamanickam, and V. Nair. A joint learning framework for attribute models and object descriptions. In ICCV, pages 1227-1234, 2011
    • (2011) ICCV , pp. 1227-1234
    • Mahajan, D.1    Sellamanickam, S.2    Nair, V.3
  • 23
    • 84856670612 scopus 로고    scopus 로고
    • Relative attributes
    • D. Parikh and K. Grauman. Relative attributes. In ICCV, pages 503-510, 2011
    • (2011) ICCV , pp. 503-510
    • Parikh, D.1    Grauman, K.2
  • 24
    • 84867858853 scopus 로고    scopus 로고
    • Attributes for classifier feedback
    • A. Parkash and D. Parikh. Attributes for classifier feedback. In ECCV, pages 354-368. 2012
    • (2012) ECCV , pp. 354-368
    • Parkash, A.1    Parikh, D.2
  • 25
    • 84899001511 scopus 로고    scopus 로고
    • Transfer learning in a transductive setting
    • M. Rohrbach, S. Ebert, and B. Schiele. Transfer learning in a transductive setting. In NIPS, pages 46-54, 2013
    • (2013) NIPS , pp. 46-54
    • Rohrbach, M.1    Ebert, S.2    Schiele, B.3
  • 26
    • 80052892795 scopus 로고    scopus 로고
    • Evaluating knowledge transfer and zero-shot learning in a large-scale setting
    • M. Rohrbach, M. Stark, and B. Schiele. Evaluating knowledge transfer and zero-shot learning in a large-scale setting. In CVPR, pages 1641-1648, 2011
    • (2011) CVPR , pp. 1641-1648
    • Rohrbach, M.1    Stark, M.2    Schiele, B.3
  • 28
    • 84867856157 scopus 로고    scopus 로고
    • Augmented attribute representations
    • V. Sharmanska, N. Quadrianto, and C. H. Lampert. Augmented attribute representations. In ECCV, pages 242-255. 2012
    • (2012) ECCV , pp. 242-255
    • Sharmanska, V.1    Quadrianto, N.2    Lampert, C.H.3
  • 29
    • 0034244751 scopus 로고    scopus 로고
    • Normalized cuts and image segmentation
    • J. Shi and J. Malik. Normalized cuts and image segmentation. TPAMI, 22(8):888-905, 2000
    • (2000) TPAMI , vol.22 , Issue.8 , pp. 888-905
    • Shi, J.1    Malik, J.2
  • 30
    • 80052894348 scopus 로고    scopus 로고
    • Image ranking and retrieval based on multi-attribute queries
    • B. Siddiquie, R. S. Feris, and L. S. Davis. Image ranking and retrieval based on multi-attribute queries. In CVPR, pages 801-808, 2011
    • (2011) CVPR , pp. 801-808
    • Siddiquie, B.1    Feris, R.S.2    Davis, L.S.3
  • 31
    • 84898482244 scopus 로고    scopus 로고
    • Exploiting relationship between attributes for improved face verification
    • F. Song, X. Tan, and S. Chen. Exploiting relationship between attributes for improved face verification. In BMVC, 2011
    • (2011) BMVC
    • Song, F.1    Tan, X.2    Chen, S.3
  • 32
    • 65449185036 scopus 로고    scopus 로고
    • Hypergraph spectral learning for multi-label classification
    • L. Sun, S. Ji, and J. Ye. Hypergraph spectral learning for multi-label classification. In KDD, pages 668-676, 2008
    • (2008) KDD , pp. 668-676
    • Sun, L.1    Ji, S.2    Ye, J.3
  • 34
    • 78149314622 scopus 로고    scopus 로고
    • A discriminative latent model of object classes and attributes
    • Y. Wang and G. Mori. A discriminative latent model of object classes and attributes. In ECCV, pages 155-168. 2010
    • (2010) ECCV , pp. 155-168
    • Wang, Y.1    Mori, G.2
  • 35
    • 33947194180 scopus 로고    scopus 로고
    • Graph embedding and extensions: A general framework for dimensionality reduction
    • S. Yan, D. Xu, B. Zhang, H.-J. Zhang, Q. Yang, and S. Lin. Graph embedding and extensions: a general framework for dimensionality reduction. TPAMI, 29(1):40-51, 2007
    • (2007) TPAMI , vol.29 , Issue.1 , pp. 40-51
    • Yan, S.1    Xu, D.2    Zhang, B.3    Zhang, H.-J.4    Yang, Q.5    Lin, S.6
  • 36
    • 84887368641 scopus 로고    scopus 로고
    • Designing category-level attributes for discriminative visual recognition
    • F. X. Yu, L. Cao, R. S. Feris, J. R. Smith, and S.-F. Chang. Designing category-level attributes for discriminative visual recognition. In CVPR, pages 771-778, 2013
    • (2013) CVPR , pp. 771-778
    • Yu, F.X.1    Cao, L.2    Feris, R.S.3    Smith, J.R.4    Chang, S.-F.5
  • 37
    • 78149305536 scopus 로고    scopus 로고
    • Attribute-based transfer learning for object categorization with zero/one training example
    • X. Yu and Y. Aloimonos. Attribute-based transfer learning for object categorization with zero/one training example. In ECCV, pages 127-140. 2010
    • (2010) ECCV , pp. 127-140
    • Yu, X.1    Aloimonos, Y.2
  • 38
    • 84864027458 scopus 로고    scopus 로고
    • Learning with hypergraphs: Clustering, classification, and embedding
    • D. Zhou, J. Huang, and B. Schölkopf. Learning with hypergraphs: Clustering, classification, and embedding. In NIPS, pages 1601-1608, 2006.
    • (2006) NIPS , pp. 1601-1608
    • Zhou, D.1    Huang, J.2    Schölkopf, B.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.