-
1
-
-
76749085787
-
Fixed effects regression models
-
Thousand Oaks, CA: Sage
-
Allison, P. D. (2009). Fixed effects regression models. Thousand Oaks, CA: Sage. http://dx.doi.org/10.4135/9781412993869.
-
(2009)
-
-
Allison, P.D.1
-
2
-
-
78851470246
-
Quantifying the impact of fixed effects modeling of clusters in multiple imputation for cluster randomized trials
-
Andridge, R. R. (2011). Quantifying the impact of fixed effects modeling of clusters in multiple imputation for cluster randomized trials. Biometrical Journal, 53, 57-74. http://dx.doi.org/10.1002/bimj.201000140.
-
(2011)
Biometrical Journal
, vol.53
, pp. 57-74
-
-
Andridge, R.R.1
-
3
-
-
84870558623
-
Multiple imputation with Mplus
-
Asparouhov, T., & Muthén, B. O. (2010). Multiple imputation with Mplus. Retrieved from http://www.statmodel.com/download/Imputations7.pdf.
-
(2010)
-
-
Asparouhov, T.1
Muthén, B.O.2
-
4
-
-
79961137307
-
Missing data techniques for multilevel data: Implications of model misspecification
-
Black, A. C., Harel, O., & McCoach, D. B. (2011). Missing data techniques for multilevel data: Implications of model misspecification. Journal of Applied Statistics, 38, 1845-1865. http://dx.doi.org/10.1080/02664763 .2010.529882.
-
(2011)
Journal of Applied Statistics
, vol.38
, pp. 1845-1865
-
-
Black, A.C.1
Harel, O.2
McCoach, D.B.3
-
5
-
-
0001772744
-
-
In K. J. Klein & S. W. Kozlowski (Eds.), Multilevel theory, research, and methods in organizations ). San Francisco, CA: Jossey-Bass.
-
Bliese, P. D. (2000). Within-group agreement, non-independence, and reliability: Implications for data aggregation and analysis. In K. J. Klein & S. W. Kozlowski (Eds.), Multilevel theory, research, and methods in organizations (pp. 349-381). San Francisco, CA: Jossey-Bass.
-
(2000)
Within-group agreement, non-independence, and reliability: Implications for data aggregation and analysis
, pp. 349-381
-
-
Bliese, P.D.1
-
6
-
-
54049109688
-
What improves with increased missing data imputations?
-
Bodner, T. E. (2008). What improves with increased missing data imputations? Structural Equation Modeling, 15, 651-675. http://dx.doi.org/ 10.1080/10705510802339072.
-
(2008)
Structural Equation Modeling
, vol.15
, pp. 651-675
-
-
Bodner, T.E.1
-
7
-
-
0842342331
-
Erste Ergebnisse aus IGLU
-
The first results from IGLU-An international comparison of student achievement at the end of fourth grade]. Münster, Germany: Waxmann.
-
Bos, W., Lankes, E.-M., Prenzel, M., Schwippert, K., Walther, G., & Valtin, R. (Eds.). (2003). Erste Ergebnisse aus IGLU. Schülerleistungen am Ende der vierten Jahrgangsstufe im internationalen Vergleich [The first results from IGLU-An international comparison of student achievement at the end of fourth grade]. Münster, Germany: Waxmann.
-
(2003)
Schülerleistungen am Ende der vierten Jahrgangsstufe im internationalen Vergleich
-
-
Bos, W.1
Lankes, E.-M.2
Prenzel, M.3
Schwippert, K.4
Walther, G.5
Valtin, R.6
-
8
-
-
84856274182
-
REALCOMEIMPUTE software for multilevel multiple imputation with mixed response types
-
Carpenter, J. R., Goldstein, H., & Kenward, M. G. (2011). REALCOMEIMPUTE software for multilevel multiple imputation with mixed response types. Journal of Statistical Software, 45, 1-14. http://dx.doi.org/ 10.18637/jss.v045.i05.
-
(2011)
Journal of Statistical Software
, vol.45
, pp. 1-14
-
-
Carpenter, J.R.1
Goldstein, H.2
Kenward, M.G.3
-
9
-
-
84949747578
-
Multiple imputation and its application
-
Chichester, UK: Wiley
-
Carpenter, J. R., & Kenward, M. G. (2013). Multiple imputation and its application. Chichester, UK: Wiley. http://dx.doi.org/10.1002/ 9781119942283.
-
(2013)
-
-
Carpenter, J.R.1
Kenward, M.G.2
-
10
-
-
0003577917
-
Statistical power for the behavioral sciences
-
Hillsdale, NJ: Erlbaum.
-
Cohen, J. (1988). Statistical power for the behavioral sciences. Hillsdale, NJ: Erlbaum.
-
(1988)
-
-
Cohen, J.1
-
11
-
-
0035755636
-
A comparison of inclusive and restrictive strategies in modern missing data procedures
-
Collins, L. M., Schafer, J. L., & Kam, C.-M. (2001). A comparison of inclusive and restrictive strategies in modern missing data procedures. Psychological Methods, 6, 330-351. http://dx.doi.org/10.1037/1082-989X.6.4.330.
-
(2001)
Psychological Methods
, vol.6
, pp. 330-351
-
-
Collins, L.M.1
Schafer, J.L.2
Kam, C.-M.3
-
13
-
-
34247207191
-
Predicting group-level outcome variables from variables measured at the individual level: A latent variable multilevel model
-
Croon, M. A., & van Veldhoven, M. J. P. M. (2007). Predicting group-level outcome variables from variables measured at the individual level: A latent variable multilevel model. Psychological Methods, 12, 45-57. http://dx.doi.org/10.1037/1082-989X.12.1.45.
-
(2007)
Psychological Methods
, vol.12
, pp. 45-57
-
-
Croon, M.A.1
van Veldhoven, M.J.P.M.2
-
14
-
-
38349186156
-
Plausibility of multivariate normality assumption when multiply imputing non-Gaussian continuous outcomes: A simulation assessment
-
Demirtas, H., Freels, S. A., & Yucel, R. M. (2008). Plausibility of multivariate normality assumption when multiply imputing non-Gaussian continuous outcomes: A simulation assessment. Journal of Statistical Computation and Simulation, 78, 69-84. http://dx.doi.org/10.1080/ 10629360600903866.
-
(2008)
Journal of Statistical Computation and Simulation
, vol.78
, pp. 69-84
-
-
Demirtas, H.1
Freels, S.A.2
Yucel, R.M.3
-
15
-
-
77955045089
-
Homework works if homework quality is high: Using multilevel modeling to predict the development of achievement in mathematics
-
Dettmers, S., Trautwein, U., Lüdtke, O., Kunter, M., & Baumert, J. (2010). Homework works if homework quality is high: Using multilevel modeling to predict the development of achievement in mathematics. Journal of Educational Psychology, 102, 467-482. http://dx.doi.org/10.1037/ a0018453.
-
(2010)
Journal of Educational Psychology
, vol.102
, pp. 467-482
-
-
Dettmers, S.1
Trautwein, U.2
Lüdtke, O.3
Kunter, M.4
Baumert, J.5
-
16
-
-
84927701136
-
Are missing data adequately handled in cluster randomised trials?
-
Díaz-Ordaz, K., Kenward, M. G., Cohen, A., Coleman, C. L., & Eldridge, S. (2014). Are missing data adequately handled in cluster randomised trials? A systematic review and guidelines. Clinical Trials, 11, 590-600. http://dx.doi.org/10.1177/1740774514537136.
-
(2014)
A systematic review and guidelines. Clinical Trials
, vol.11
, pp. 590-600
-
-
Díaz-Ordaz, K.1
Kenward, M.G.2
Cohen, A.3
Coleman, C.L.4
Eldridge, S.5
-
17
-
-
84921329943
-
Multiple imputation of multilevel missing data-Rigor versus simplicity
-
Drechsler, J. (2015). Multiple imputation of multilevel missing data-Rigor versus simplicity. Journal of Educational and Behavioral Statistics, 40, 69-95. http://dx.doi.org/10.3102/1076998614563393.
-
(2015)
Journal of Educational and Behavioral Statistics
, vol.40
, pp. 69-95
-
-
Drechsler, J.1
-
19
-
-
84897939402
-
Estimating interaction effects with incomplete predictor variables
-
Enders, C. K., Baraldi, A. N., & Cham, H. (2014). Estimating interaction effects with incomplete predictor variables. Psychological Methods, 19, 39-55. http://dx.doi.org/10.1037/a0035314.
-
(2014)
Psychological Methods
, vol.19
, pp. 39-55
-
-
Enders, C.K.1
Baraldi, A.N.2
Cham, H.3
-
20
-
-
84951310155
-
Multilevel multiple imputation: A review and evaluation of joint modeling and chained equations imputation
-
Enders, C. K., Mistler, S. A., & Keller, B. T. (2016). Multilevel multiple imputation: A review and evaluation of joint modeling and chained equations imputation. Psychological Methods, 21, 222-240. http://dx .doi.org/10.1037/met0000063.
-
(2016)
Psychological Methods
, vol.21
, pp. 222-240
-
-
Enders, C.K.1
Mistler, S.A.2
Keller, B.T.3
-
21
-
-
0004012196
-
-
London, UK: CRC Press.
-
Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. (2003). Bayesian data analysis. London, UK: CRC Press.
-
(2003)
Bayesian data analysis
-
-
Gelman, A.1
Carlin, J.B.2
Stern, H.S.3
Rubin, D.B.4
-
22
-
-
0037278514
-
Treatment of missing data at the second level of hierarchical linear models
-
Gibson, N. M., & Olejnik, S. (2003). Treatment of missing data at the second level of hierarchical linear models. Educational and Psychological Measurement, 63, 204-238. http://dx.doi.org/10.1177/ 0013164402250987.
-
(2003)
Educational and Psychological Measurement
, vol.63
, pp. 204-238
-
-
Gibson, N.M.1
Olejnik, S.2
-
24
-
-
84893732515
-
Fitting multilevel multivariate models with missing data in responses and covariates that may include interactions and non-linear terms
-
Goldstein, H., Carpenter, J. R., & Browne, W. J. (2014). Fitting multilevel multivariate models with missing data in responses and covariates that may include interactions and non-linear terms. Journal of the Royal Statistical Society: Series A (Statistics in Society), 177, 553-564. http:// dx.doi.org/10.1111/rssa.12022.
-
(2014)
Journal of the Royal Statistical Society: Series A (Statistics in Society)
, vol.177
, pp. 553-564
-
-
Goldstein, H.1
Carpenter, J.R.2
Browne, W.J.3
-
25
-
-
60549085055
-
Missing data analysis: Making it work in the real world
-
Graham, J. W. (2009). Missing data analysis: Making it work in the real world. Annual Review of Psychology, 60, 549-576. http://dx.doi.org/10 .1146/annurev.psych.58.110405.085530.
-
(2009)
Annual Review of Psychology
, vol.60
, pp. 549-576
-
-
Graham, J.W.1
-
27
-
-
33845671300
-
Planned missing data designs in psychological research
-
Graham, J. W., Taylor, B. J., Olchowski, A. E., & Cumsille, P. E. (2006). Planned missing data designs in psychological research. Psychological Methods, 11, 323-343. http://dx.doi.org/10.1037/1082-989X.11.4.323.
-
(2006)
Psychological Methods
, vol.11
, pp. 323-343
-
-
Graham, J.W.1
Taylor, B.J.2
Olchowski, A.E.3
Cumsille, P.E.4
-
28
-
-
84928744218
-
Multiple imputation of missing covariate values in multilevel models with random slopes: A cautionary note
-
Grund, S., Lüdtke, O., & Robitzsch, A. (2016). Multiple imputation of missing covariate values in multilevel models with random slopes: A cautionary note. Behavior Research Methods, 48, 640-649. http://dx .doi.org/10.3758/s13428-015-0590-3.
-
(2016)
Behavior Research Methods
, vol.48
, pp. 640-649
-
-
Grund, S.1
Lüdtke, O.2
Robitzsch, A.3
-
29
-
-
34247269174
-
Intraclass correlation values for planning group-randomized trials in education
-
Hedges, L. V., & Hedberg, E. C. (2007). Intraclass correlation values for planning group-randomized trials in education. Educational Evaluation and Policy Analysis, 29, 60-87. http://dx.doi.org/10.3102/ 0162373707299706.
-
(2007)
Educational Evaluation and Policy Analysis
, vol.29
, pp. 60-87
-
-
Hedges, L.V.1
Hedberg, E.C.2
-
30
-
-
70349881844
-
Individual and contextual effects of school adjustment on adolescent alcohol use
-
Henry, K. L., Stanley, L. R., Edwards, R. W., Harkabus, L. C., & Chapin, L. A. (2009). Individual and contextual effects of school adjustment on adolescent alcohol use. Prevention Science, 10, 236-247. http://dx.doi .org/10.1007/s11121-009-0124-2.
-
(2009)
Prevention Science
, vol.10
, pp. 236-247
-
-
Henry, K.L.1
Stanley, L.R.2
Edwards, R.W.3
Harkabus, L.C.4
Chapin, L.A.5
-
31
-
-
73549085327
-
A first course in Bayesian statistical methods
-
New York, NY: Springer
-
Hoff, P. D. (2009). A first course in Bayesian statistical methods. New York, NY: Springer. http://dx.doi.org/10.1007/978-0-387-92407-6.
-
(2009)
-
-
Hoff, P.D.1
-
32
-
-
0003421982
-
Multilevel analysis: Techniques and applications
-
Mahwah, NJ: Erlbaum.
-
Hox, J. J. (2010). Multilevel analysis: Techniques and applications. Mahwah, NJ: Erlbaum.
-
(2010)
-
-
Hox, J.J.1
-
33
-
-
85014348105
-
-
In J. Harring, L. M. Stapleton, & S. N. Beretvas (Eds.), Multilevel modeling for educational research: Addressing practical issues found in realworld applications New York, NY: Information Age.
-
Hox, J., van Buuren, S., & Jolani, S. (2016). Incomplete multilevel data. In J. Harring, L. M. Stapleton, & S. N. Beretvas (Eds.), Multilevel modeling for educational research: Addressing practical issues found in realworld applications (pp. 39-61). New York, NY: Information Age.
-
(2016)
Incomplete multilevel data
, pp. 39-61
-
-
Hox, J.1
van Buuren, S.2
Jolani, S.3
-
34
-
-
67651085618
-
Use of missing data methods in longitudinal studies: The persistence of bad practices in developmental psychology
-
Jelicić, H., Phelps, E., & Lerner, R. M. (2009). Use of missing data methods in longitudinal studies: The persistence of bad practices in developmental psychology. Developmental Psychology, 45, 1195-1199. http://dx.doi.org/10.1037/a0015665.
-
(2009)
Developmental Psychology
, vol.45
, pp. 1195-1199
-
-
Jelicić, H.1
Phelps, E.2
Lerner, R.M.3
-
35
-
-
14644409937
-
The analysis of dyadic data
-
New York, NY: Guilford Press
-
Kenny, D. A., Kashy, D. A., & Cook, W. L. (2006). The analysis of dyadic data. New York, NY: Guilford Press.
-
(2006)
-
-
Kenny, D.A.1
Kashy, D.A.2
Cook, W.L.3
-
36
-
-
85047670009
-
The statistical analysis of data from small groups
-
Kenny, D. A., Mannetti, L., Pierro, A., Livi, S., & Kashy, D. A. (2002). The statistical analysis of data from small groups. Journal of Personality and Social Psychology, 83, 126-137. http://dx.doi.org/10.1037/0022-3514.83.1.126.
-
(2002)
Journal of Personality and Social Psychology
, vol.83
, pp. 126-137
-
-
Kenny, D.A.1
Mannetti, L.2
Pierro, A.3
Livi, S.4
Kashy, D.A.5
-
37
-
-
0003542129
-
Discipline and group management in classrooms
-
New York, NY: Holt, Rinehart & Winston.
-
Kounin, J. S. (1970). Discipline and group management in classrooms. New York, NY: Holt, Rinehart & Winston.
-
(1970)
-
-
Kounin, J.S.1
-
38
-
-
85101444608
-
Statistical analysis with missing data
-
New York, NY: Wiley
-
Little, R. J. A., & Rubin, D. B. (2002). Statistical analysis with missing data. New York, NY: Wiley. http://dx.doi.org/10.1002/9781119013563.
-
(2002)
-
-
Little, R.J.A.1
Rubin, D.B.2
-
39
-
-
48449087653
-
The multilevel latent covariate model: A new, more reliable approach to group-level effects in contextual studies
-
Lüdtke, O., Marsh, H. W., Robitzsch, A., Trautwein, U., Asparouhov, T., & Muthén, B. (2008). The multilevel latent covariate model: A new, more reliable approach to group-level effects in contextual studies. Psychological Methods, 13, 203-229. http://dx.doi.org/10.1037/ a0012869.
-
(2008)
Psychological Methods
, vol.13
, pp. 203-229
-
-
Lüdtke, O.1
Marsh, H.W.2
Robitzsch, A.3
Trautwein, U.4
Asparouhov, T.5
Muthén, B.6
-
41
-
-
85144859648
-
Matrix differential calculus with applications in statistics and econometrics
-
Hoboken, NJ: Wiley.
-
Magnus, J. R., & Neudecker, H. (1988). Matrix differential calculus with applications in statistics and econometrics. Hoboken, NJ: Wiley.
-
(1988)
-
-
Magnus, J.R.1
Neudecker, H.2
-
42
-
-
84871695255
-
Understanding and estimating the power to detect cross-level interaction effects in multilevel modeling
-
Mathieu, J. E., Aguinis, H., Culpepper, S. A., & Chen, G. (2012). Understanding and estimating the power to detect cross-level interaction effects in multilevel modeling. Journal of Applied Psychology, 97, 951-966. http://dx.doi.org/10.1037/a0028380.
-
(2012)
Journal of Applied Psychology
, vol.97
, pp. 951-966
-
-
Mathieu, J.E.1
Aguinis, H.2
Culpepper, S.A.3
Chen, G.4
-
43
-
-
27344454846
-
People are variables too: Multilevel structural equations modeling
-
Mehta, P. D., & Neale, M. C. (2005). People are variables too: Multilevel structural equations modeling. Psychological Methods, 10, 259-284. http://dx.doi.org/10.1037/1082-989X.10.3.259.
-
(2005)
Psychological Methods
, vol.10
, pp. 259-284
-
-
Mehta, P.D.1
Neale, M.C.2
-
44
-
-
85014352029
-
-
Proceedings of the SAS Global Forum 2013. Contributed paper (Statistics and Data Analysis . San Francisco, CA. Retrieved from
-
Mistler, S. A. (2013). A SAS macro for applying multiple imputation to multilevel data. In Proceedings of the SAS Global Forum 2013. Contributed paper (Statistics and Data Analysis) 438-2013. San Francisco, CA. Retrieved from https://support.sas.com/resources/papers/ proceedings13/438-2013.pdf.
-
(2013)
A SAS macro for applying multiple imputation to multilevel data
, pp. 438-2013
-
-
Mistler, S.A.1
-
45
-
-
85008681747
-
Multilevel multiple imputation: An examination of competing methods
-
Unpublished doctoral dissertation). Arizona State University, Tempe, AZ.
-
Mistler, S. A. (2015). Multilevel multiple imputation: An examination of competing methods (Unpublished doctoral dissertation). Arizona State University, Tempe, AZ.
-
(2015)
-
-
Mistler, S.A.1
-
46
-
-
5644259859
-
-
countries. Boston, MA: International Study Center, Lynch School of Education, Boston College.
-
Mullis, I. V. S., Martin, M. O., Gonzales, E. J., & Kennedy, A. M. (2003). PIRLS 2001. international report: IEA's study of reading literacy achievement in primary schools in 35. countries. Boston, MA: International Study Center, Lynch School of Education, Boston College.
-
(2003)
PIRLS 2001. international report: IEA's study of reading literacy achievement in primary schools in 35
-
-
Mullis, I.V.S.1
Martin, M.O.2
Gonzales, E.J.3
Kennedy, A.M.4
-
47
-
-
85042450712
-
Beyond multilevel regression modeling: Multilevel analysis in a general latent variable framework
-
In J. J. Hox & J. K. Roberts, The handbook of advanced multilevel analysis Milton Park, UK: Routledge.
-
Muthén, B. O., & Asparouhov, T. (2011) Beyond multilevel regression modeling: Multilevel analysis in a general latent variable framework. In J. J. Hox & J. K. Roberts, The handbook of advanced multilevel analysis (pp. 15-40). Milton Park, UK: Routledge.
-
(2011)
, pp. 15-40
-
-
Muthén, B.O.1
Asparouhov, T.2
-
49
-
-
21144462781
-
Comparing correlations based on individual-level and aggregated data
-
Ostroff, C. (1993). Comparing correlations based on individual-level and aggregated data. Journal of Applied Psychology, 78, 569-582. http://dx .doi.org/10.1037/0021-9010.78.4.569.
-
(1993)
Journal of Applied Psychology
, vol.78
, pp. 569-582
-
-
Ostroff, C.1
-
50
-
-
12744272198
-
Missing data in educational research: A review of reporting practices and suggestions for improvement
-
Peugh, J. L., & Enders, C. K. (2004). Missing data in educational research: A review of reporting practices and suggestions for improvement. Review of Educational Research, 74, 525-556. http://dx.doi.org/10.3102/ 00346543074004525.
-
(2004)
Review of Educational Research
, vol.74
, pp. 525-556
-
-
Peugh, J.L.1
Enders, C.K.2
-
51
-
-
84949921242
-
Multilevel structural equation models for assessing moderation within and across levels of analysis
-
Preacher, K. J., Zhang, Z., & Zyphur, M. J. (2016). Multilevel structural equation models for assessing moderation within and across levels of analysis. Psychological Methods, 21, 189-205. http://dx.doi.org/10 .1037/met0000052.
-
(2016)
Psychological Methods
, vol.21
, pp. 189-205
-
-
Preacher, K.J.1
Zhang, Z.2
Zyphur, M.J.3
-
52
-
-
77956838713
-
A general multilevel SEM framework for assessing multilevel mediation
-
Preacher, K. J., Zyphur, M. J., & Zhang, Z. (2010). A general multilevel SEM framework for assessing multilevel mediation. Psychological Methods, 15, 209-233. http://dx.doi.org/10.1037/a0020141.
-
(2010)
Psychological Methods
, vol.15
, pp. 209-233
-
-
Preacher, K.J.1
Zyphur, M.J.2
Zhang, Z.3
-
54
-
-
0002344593
-
A multivariate technique for multiply imputing missing values using a sequence of regression models
-
Raghunathan, T. E., Lepkowski, J. E., Hoewyk, J. V., & Solenberger, P. (2001). A multivariate technique for multiply imputing missing values using a sequence of regression models. Survey Methodology, 27, 85-96.
-
(2001)
Survey Methodology
, vol.27
, pp. 85-96
-
-
Raghunathan, T.E.1
Lepkowski, J.E.2
Hoewyk, J.V.3
Solenberger, P.4
-
55
-
-
0003967354
-
Hierarchical linear models
-
Thousand Oaks, CA: Sage
-
Raudenbush, S. W., & Bryk, A. S. (2002). Hierarchical linear models (2nd ed.). Thousand Oaks, CA: Sage.
-
(2002)
-
-
Raudenbush, S.W.1
Bryk, A.S.2
-
56
-
-
0017133178
-
Inference and missing data
-
Rubin, D. B. (1976). Inference and missing data. Biometrika, 63, 581-592. http://dx.doi.org/10.1093/biomet/63.3.581.
-
(1976)
Biometrika
, vol.63
, pp. 581-592
-
-
Rubin, D.B.1
-
57
-
-
0003738155
-
Multiple imputation for nonresponse in surveys
-
Hoboken, NJ: Wiley
-
Rubin, D. B. (1987). Multiple imputation for nonresponse in surveys. Hoboken, NJ: Wiley. http://dx.doi.org/10.1002/9780470316696.
-
(1987)
-
-
Rubin, D.B.1
-
58
-
-
84898070391
-
Robust two-stage approach outperforms robust full information maximum likelihood with incomplete nonnormal data
-
Savalei, V., & Falk, C. (2014). Robust two-stage approach outperforms robust full information maximum likelihood with incomplete nonnormal data. Structural Equation Modeling, 21, 280-302. http://dx.doi.org/10 .1080/10705511.2014.882692.
-
(2014)
Structural Equation Modeling
, vol.21
, pp. 280-302
-
-
Savalei, V.1
Falk, C.2
-
60
-
-
0004211748
-
-
L. M. Collins & A. G. Sayer (Eds.), New methods for the analysis of change ). Washington, DC: American Psychological Association.
-
Schafer, J. L. (2001). Multiple imputation with PAN. In L. M. Collins & A. G. Sayer (Eds.), New methods for the analysis of change (pp. 357-377). Washington, DC: American Psychological Association. http://dx.doi.org/10.1037/10409-012.
-
(2001)
Multiple imputation with PAN
, pp. 357-377
-
-
Schafer, J.L.1
-
61
-
-
85047673373
-
Missing data: Our view of the state of the art
-
Schafer, J. L., & Graham, J. W. (2002). Missing data: Our view of the state of the art. Psychological Methods, 7, 147-177.
-
(2002)
Psychological Methods
, vol.7
, pp. 147-177
-
-
Schafer, J.L.1
Graham, J.W.2
-
62
-
-
0032219074
-
Multiple imputation for multivariate missing-data problems: A data analyst's perspective
-
Schafer, J. L., & Olsen, M. K. (1998). Multiple imputation for multivariate missing-data problems: A data analyst's perspective. Multivariate Behavioral Research, 33, 545-571. http://dx.doi.org/10.1207/ s15327906mbr3304_5.
-
(1998)
Multivariate Behavioral Research
, vol.33
, pp. 545-571
-
-
Schafer, J.L.1
Olsen, M.K.2
-
63
-
-
0036017469
-
Computational strategies for multivariate linear mixed-effects models with missing values
-
Schafer, J. L., & Yucel, R. M. (2002). Computational strategies for multivariate linear mixed-effects models with missing values. Journal of Computational and Graphical Statistics, 11, 437-457. http://dx.doi.org/ 10.1198/106186002760180608.
-
(2002)
Journal of Computational and Graphical Statistics
, vol.11
, pp. 437-457
-
-
Schafer, J.L.1
Yucel, R.M.2
-
64
-
-
84921324428
-
Pan: Multiple imputation for multivariate panel or clustered data
-
R package version 0.9) [Computer program
-
Schafer, J. L., & Zhao, J. H. (2013). pan: Multiple imputation for multivariate panel or clustered data (R package version 0.9) [Computer program]. Retrieved from http://CRAN.R-project.org/package=pan.
-
(2013)
-
-
Schafer, J.L.1
Zhao, J.H.2
-
65
-
-
85094131643
-
-
L. Rutkowski, M. von Davier, & D. Rutkowski (Eds.), A handbook of international large-scale assessment data analysis: Background, technical issues, and methods of data analysis ). London, UK: Chapman & Hall/CRC Press.
-
Shin, Y. (2013). Efficient handling of predictors and outcomes having missing values. In L. Rutkowski, M. von Davier, & D. Rutkowski (Eds.), A handbook of international large-scale assessment data analysis: Background, technical issues, and methods of data analysis (pp. 451-479). London, UK: Chapman & Hall/CRC Press.
-
(2013)
Efficient handling of predictors and outcomes having missing values
, pp. 451-479
-
-
Shin, Y.1
-
66
-
-
77950545486
-
A latent cluster-mean approach to the contextual effects model with missing data
-
Shin, Y., & Raudenbush, S. W. (2010). A latent cluster-mean approach to the contextual effects model with missing data. Journal of Educational and Behavioral Statistics, 35, 26-53. http://dx.doi.org/10.3102/ 1076998609345252.
-
(2010)
Journal of Educational and Behavioral Statistics
, vol.35
, pp. 26-53
-
-
Shin, Y.1
Raudenbush, S.W.2
-
68
-
-
49849097915
-
Imputation strategies for missing continuous outcomes in cluster randomized trials
-
Taljaard, M., Donner, A., & Klar, N. (2008). Imputation strategies for missing continuous outcomes in cluster randomized trials. Biometrical Journal, 50, 329-345. http://dx.doi.org/10.1002/bimj.200710423.
-
(2008)
Biometrical Journal
, vol.50
, pp. 329-345
-
-
Taljaard, M.1
Donner, A.2
Klar, N.3
-
69
-
-
84950758368
-
The calculation of posterior distributions by data augmentation
-
Tanner, M. A., & Wong, W. H. (1987). The calculation of posterior distributions by data augmentation. Journal of the American Statistical Association, 82, 528-540. http://dx.doi.org/10.1080/01621459.1987 .10478458.
-
(1987)
Journal of the American Statistical Association
, vol.82
, pp. 528-540
-
-
Tanner, M.A.1
Wong, W.H.2
-
70
-
-
85130029608
-
Multiple imputation of multilevel data
-
J. J. Hox & J. K. Roberts ). Milton Park, UK: Routledge.
-
van Buuren, S. (2011). Multiple imputation of multilevel data. In J. J. Hox & J. K. Roberts, The handbook of advanced multilevel analysis (pp. 173-196). Milton Park, UK: Routledge.
-
(2011)
The handbook of advanced multilevel analysis
, pp. 173-196
-
-
van Buuren, S.1
-
71
-
-
85119155005
-
Flexible imputation of missing data
-
Boca Raton, FL: Chapman & Hall/CRC Press
-
van Buuren, S. (2012). Flexible imputation of missing data. Boca Raton, FL: Chapman & Hall/CRC Press. http://dx.doi.org/10.1201/b11826.
-
(2012)
-
-
van Buuren, S.1
-
73
-
-
69149105188
-
How to impute square, interactions, and other transformed variables
-
von Hippel, P. T. (2009). How to impute square, interactions, and other transformed variables. Sociological Methodology, 39, 265-291. http:// dx.doi.org/10.1111/j.1467-9531.2009.01215.x.
-
(2009)
Sociological Methodology
, vol.39
, pp. 265-291
-
-
von Hippel, P.T.1
-
74
-
-
77950572904
-
A multilevel model of the effects of equal opportunity climate on job satisfaction in the military
-
Walsh, B. M., Matthews, R. A., Tuller, M. D., Parks, K. M., & McDonald, D. P. (2010). A multilevel model of the effects of equal opportunity climate on job satisfaction in the military. Journal of Occupational Health Psychology, 15, 191-207. http://dx.doi.org/10 .1037/a0018756.
-
(2010)
Journal of Occupational Health Psychology
, vol.15
, pp. 191-207
-
-
Walsh, B.M.1
Matthews, R.A.2
Tuller, M.D.3
Parks, K.M.4
McDonald, D.P.5
-
75
-
-
0035748545
-
New approaches to missing data in psychological research: Introduction to the special section
-
West, S. G. (2001). New approaches to missing data in psychological research: Introduction to the special section. Psychological Methods, 6, 315-316. http://dx.doi.org/10.1037/1082-989X.6.4.315.
-
(2001)
Psychological Methods
, vol.6
, pp. 315-316
-
-
West, S.G.1
-
76
-
-
78651256743
-
Multiple imputation using chained equations: Issues and guidance for practice
-
White, I. R., Royston, P., & Wood, A. M. (2011). Multiple imputation using chained equations: Issues and guidance for practice. Statistics in Medicine, 30, 377-399. http://dx.doi.org/10.1002/sim.4067.
-
(2011)
Statistics in Medicine
, vol.30
, pp. 377-399
-
-
White, I.R.1
Royston, P.2
Wood, A.M.3
-
77
-
-
34548794766
-
Multilevel covariance structure analysis by fitting multiple single-level models
-
Yuan, K.-H., & Bentler, P. M. (2007). Multilevel covariance structure analysis by fitting multiple single-level models. Sociological Methodology, 37, 53-82. http://dx.doi.org/10.1111/j.1467-9531.2007. 00182.x.
-
(2007)
Sociological Methodology
, vol.37
, pp. 53-82
-
-
Yuan, K.-H.1
Bentler, P.M.2
-
78
-
-
84926255940
-
Bias and efficiency for SEM with missing data and auxiliary variables: Two-stage robust method versus two-stage ML
-
Yuan, K.-H., Tong, X., & Zhang, Z. (2015). Bias and efficiency for SEM with missing data and auxiliary variables: Two-stage robust method versus two-stage ML. Structural Equation Modeling, 22, 178-192. http://dx.doi.org/10.1080/10705511.2014.935750.
-
(2015)
Structural Equation Modeling
, vol.22
, pp. 178-192
-
-
Yuan, K.-H.1
Tong, X.2
Zhang, Z.3
-
79
-
-
84868121050
-
ML versus MI for missing data with violation of distribution conditions
-
Yuan, K.-H., Yang-Wallentin, F., & Bentler, P. M. (2012). ML versus MI for missing data with violation of distribution conditions. Sociological Methods & Research, 41, 598-629. http://dx.doi.org/10.1177/0049 124112460373.
-
(2012)
Sociological Methods & Research
, vol.41
, pp. 598-629
-
-
Yuan, K.-H.1
Yang-Wallentin, F.2
Bentler, P.M.3
-
80
-
-
45749108295
-
Multiple imputation inference for multivariate multilevel continuous data with ignorable non-response
-
Yucel, R. M. (2008). Multiple imputation inference for multivariate multilevel continuous data with ignorable non-response. Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences, 366, 2389-2403. http://dx.doi.org/10.1098/rsta.2008.0038.
-
(2008)
Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences
, vol.366
, pp. 2389-2403
-
-
Yucel, R.M.1
-
81
-
-
80051757583
-
Random-covariances and mixed-effects models for imputing multivariate multilevel continuous data
-
Yucel, R. M. (2011). Random-covariances and mixed-effects models for imputing multivariate multilevel continuous data. Statistical Modelling, 11, 351-370. http://dx.doi.org/10.1177/1471082X1001 100404.
-
(2011)
Statistical Modelling
, vol.11
, pp. 351-370
-
-
Yucel, R.M.1
-
82
-
-
70549084402
-
Impact of non-normal random effects on inference by multiple imputation: A simulation assessment
-
Yucel, R. M., & Demirtas, H. (2010). Impact of non-normal random effects on inference by multiple imputation: A simulation assessment. Computational Statistics & Data Analysis, 54, 790-801. http://dx.doi.org/10 .1016/j.csda.2009.01.016.
-
(2010)
Computational Statistics & Data Analysis
, vol.54
, pp. 790-801
-
-
Yucel, R.M.1
Demirtas, H.2
|