메뉴 건너뛰기




Volumn 22, Issue 1, 2017, Pages 141-165

Multiple imputation of missing data in multilevel designs: A comparison of different strategies

Author keywords

Intraclass correlation; Missing data; Multilevel data; Multilevel modeling; Multiple imputation

Indexed keywords

COMPUTER SIMULATION; HUMAN; MULTILEVEL ANALYSIS; PSYCHOLOGY; PSYCINFO; STATISTICAL MODEL; COMPARATIVE STUDY; METHODOLOGY; STATISTICAL ANALYSIS; STATISTICAL BIAS;

EID: 84986005436     PISSN: 1082989X     EISSN: None     Source Type: Journal    
DOI: 10.1037/met0000096     Document Type: Article
Times cited : (87)

References (82)
  • 1
    • 76749085787 scopus 로고    scopus 로고
    • Fixed effects regression models
    • Thousand Oaks, CA: Sage
    • Allison, P. D. (2009). Fixed effects regression models. Thousand Oaks, CA: Sage. http://dx.doi.org/10.4135/9781412993869.
    • (2009)
    • Allison, P.D.1
  • 2
    • 78851470246 scopus 로고    scopus 로고
    • Quantifying the impact of fixed effects modeling of clusters in multiple imputation for cluster randomized trials
    • Andridge, R. R. (2011). Quantifying the impact of fixed effects modeling of clusters in multiple imputation for cluster randomized trials. Biometrical Journal, 53, 57-74. http://dx.doi.org/10.1002/bimj.201000140.
    • (2011) Biometrical Journal , vol.53 , pp. 57-74
    • Andridge, R.R.1
  • 3
    • 84870558623 scopus 로고    scopus 로고
    • Multiple imputation with Mplus
    • Asparouhov, T., & Muthén, B. O. (2010). Multiple imputation with Mplus. Retrieved from http://www.statmodel.com/download/Imputations7.pdf.
    • (2010)
    • Asparouhov, T.1    Muthén, B.O.2
  • 4
    • 79961137307 scopus 로고    scopus 로고
    • Missing data techniques for multilevel data: Implications of model misspecification
    • Black, A. C., Harel, O., & McCoach, D. B. (2011). Missing data techniques for multilevel data: Implications of model misspecification. Journal of Applied Statistics, 38, 1845-1865. http://dx.doi.org/10.1080/02664763 .2010.529882.
    • (2011) Journal of Applied Statistics , vol.38 , pp. 1845-1865
    • Black, A.C.1    Harel, O.2    McCoach, D.B.3
  • 6
    • 54049109688 scopus 로고    scopus 로고
    • What improves with increased missing data imputations?
    • Bodner, T. E. (2008). What improves with increased missing data imputations? Structural Equation Modeling, 15, 651-675. http://dx.doi.org/ 10.1080/10705510802339072.
    • (2008) Structural Equation Modeling , vol.15 , pp. 651-675
    • Bodner, T.E.1
  • 8
    • 84856274182 scopus 로고    scopus 로고
    • REALCOMEIMPUTE software for multilevel multiple imputation with mixed response types
    • Carpenter, J. R., Goldstein, H., & Kenward, M. G. (2011). REALCOMEIMPUTE software for multilevel multiple imputation with mixed response types. Journal of Statistical Software, 45, 1-14. http://dx.doi.org/ 10.18637/jss.v045.i05.
    • (2011) Journal of Statistical Software , vol.45 , pp. 1-14
    • Carpenter, J.R.1    Goldstein, H.2    Kenward, M.G.3
  • 9
    • 84949747578 scopus 로고    scopus 로고
    • Multiple imputation and its application
    • Chichester, UK: Wiley
    • Carpenter, J. R., & Kenward, M. G. (2013). Multiple imputation and its application. Chichester, UK: Wiley. http://dx.doi.org/10.1002/ 9781119942283.
    • (2013)
    • Carpenter, J.R.1    Kenward, M.G.2
  • 10
    • 0003577917 scopus 로고
    • Statistical power for the behavioral sciences
    • Hillsdale, NJ: Erlbaum.
    • Cohen, J. (1988). Statistical power for the behavioral sciences. Hillsdale, NJ: Erlbaum.
    • (1988)
    • Cohen, J.1
  • 11
    • 0035755636 scopus 로고    scopus 로고
    • A comparison of inclusive and restrictive strategies in modern missing data procedures
    • Collins, L. M., Schafer, J. L., & Kam, C.-M. (2001). A comparison of inclusive and restrictive strategies in modern missing data procedures. Psychological Methods, 6, 330-351. http://dx.doi.org/10.1037/1082-989X.6.4.330.
    • (2001) Psychological Methods , vol.6 , pp. 330-351
    • Collins, L.M.1    Schafer, J.L.2    Kam, C.-M.3
  • 13
    • 34247207191 scopus 로고    scopus 로고
    • Predicting group-level outcome variables from variables measured at the individual level: A latent variable multilevel model
    • Croon, M. A., & van Veldhoven, M. J. P. M. (2007). Predicting group-level outcome variables from variables measured at the individual level: A latent variable multilevel model. Psychological Methods, 12, 45-57. http://dx.doi.org/10.1037/1082-989X.12.1.45.
    • (2007) Psychological Methods , vol.12 , pp. 45-57
    • Croon, M.A.1    van Veldhoven, M.J.P.M.2
  • 14
    • 38349186156 scopus 로고    scopus 로고
    • Plausibility of multivariate normality assumption when multiply imputing non-Gaussian continuous outcomes: A simulation assessment
    • Demirtas, H., Freels, S. A., & Yucel, R. M. (2008). Plausibility of multivariate normality assumption when multiply imputing non-Gaussian continuous outcomes: A simulation assessment. Journal of Statistical Computation and Simulation, 78, 69-84. http://dx.doi.org/10.1080/ 10629360600903866.
    • (2008) Journal of Statistical Computation and Simulation , vol.78 , pp. 69-84
    • Demirtas, H.1    Freels, S.A.2    Yucel, R.M.3
  • 15
    • 77955045089 scopus 로고    scopus 로고
    • Homework works if homework quality is high: Using multilevel modeling to predict the development of achievement in mathematics
    • Dettmers, S., Trautwein, U., Lüdtke, O., Kunter, M., & Baumert, J. (2010). Homework works if homework quality is high: Using multilevel modeling to predict the development of achievement in mathematics. Journal of Educational Psychology, 102, 467-482. http://dx.doi.org/10.1037/ a0018453.
    • (2010) Journal of Educational Psychology , vol.102 , pp. 467-482
    • Dettmers, S.1    Trautwein, U.2    Lüdtke, O.3    Kunter, M.4    Baumert, J.5
  • 17
    • 84921329943 scopus 로고    scopus 로고
    • Multiple imputation of multilevel missing data-Rigor versus simplicity
    • Drechsler, J. (2015). Multiple imputation of multilevel missing data-Rigor versus simplicity. Journal of Educational and Behavioral Statistics, 40, 69-95. http://dx.doi.org/10.3102/1076998614563393.
    • (2015) Journal of Educational and Behavioral Statistics , vol.40 , pp. 69-95
    • Drechsler, J.1
  • 19
    • 84897939402 scopus 로고    scopus 로고
    • Estimating interaction effects with incomplete predictor variables
    • Enders, C. K., Baraldi, A. N., & Cham, H. (2014). Estimating interaction effects with incomplete predictor variables. Psychological Methods, 19, 39-55. http://dx.doi.org/10.1037/a0035314.
    • (2014) Psychological Methods , vol.19 , pp. 39-55
    • Enders, C.K.1    Baraldi, A.N.2    Cham, H.3
  • 20
    • 84951310155 scopus 로고    scopus 로고
    • Multilevel multiple imputation: A review and evaluation of joint modeling and chained equations imputation
    • Enders, C. K., Mistler, S. A., & Keller, B. T. (2016). Multilevel multiple imputation: A review and evaluation of joint modeling and chained equations imputation. Psychological Methods, 21, 222-240. http://dx .doi.org/10.1037/met0000063.
    • (2016) Psychological Methods , vol.21 , pp. 222-240
    • Enders, C.K.1    Mistler, S.A.2    Keller, B.T.3
  • 22
    • 0037278514 scopus 로고    scopus 로고
    • Treatment of missing data at the second level of hierarchical linear models
    • Gibson, N. M., & Olejnik, S. (2003). Treatment of missing data at the second level of hierarchical linear models. Educational and Psychological Measurement, 63, 204-238. http://dx.doi.org/10.1177/ 0013164402250987.
    • (2003) Educational and Psychological Measurement , vol.63 , pp. 204-238
    • Gibson, N.M.1    Olejnik, S.2
  • 24
    • 84893732515 scopus 로고    scopus 로고
    • Fitting multilevel multivariate models with missing data in responses and covariates that may include interactions and non-linear terms
    • Goldstein, H., Carpenter, J. R., & Browne, W. J. (2014). Fitting multilevel multivariate models with missing data in responses and covariates that may include interactions and non-linear terms. Journal of the Royal Statistical Society: Series A (Statistics in Society), 177, 553-564. http:// dx.doi.org/10.1111/rssa.12022.
    • (2014) Journal of the Royal Statistical Society: Series A (Statistics in Society) , vol.177 , pp. 553-564
    • Goldstein, H.1    Carpenter, J.R.2    Browne, W.J.3
  • 25
    • 60549085055 scopus 로고    scopus 로고
    • Missing data analysis: Making it work in the real world
    • Graham, J. W. (2009). Missing data analysis: Making it work in the real world. Annual Review of Psychology, 60, 549-576. http://dx.doi.org/10 .1146/annurev.psych.58.110405.085530.
    • (2009) Annual Review of Psychology , vol.60 , pp. 549-576
    • Graham, J.W.1
  • 27
    • 33845671300 scopus 로고    scopus 로고
    • Planned missing data designs in psychological research
    • Graham, J. W., Taylor, B. J., Olchowski, A. E., & Cumsille, P. E. (2006). Planned missing data designs in psychological research. Psychological Methods, 11, 323-343. http://dx.doi.org/10.1037/1082-989X.11.4.323.
    • (2006) Psychological Methods , vol.11 , pp. 323-343
    • Graham, J.W.1    Taylor, B.J.2    Olchowski, A.E.3    Cumsille, P.E.4
  • 28
    • 84928744218 scopus 로고    scopus 로고
    • Multiple imputation of missing covariate values in multilevel models with random slopes: A cautionary note
    • Grund, S., Lüdtke, O., & Robitzsch, A. (2016). Multiple imputation of missing covariate values in multilevel models with random slopes: A cautionary note. Behavior Research Methods, 48, 640-649. http://dx .doi.org/10.3758/s13428-015-0590-3.
    • (2016) Behavior Research Methods , vol.48 , pp. 640-649
    • Grund, S.1    Lüdtke, O.2    Robitzsch, A.3
  • 29
    • 34247269174 scopus 로고    scopus 로고
    • Intraclass correlation values for planning group-randomized trials in education
    • Hedges, L. V., & Hedberg, E. C. (2007). Intraclass correlation values for planning group-randomized trials in education. Educational Evaluation and Policy Analysis, 29, 60-87. http://dx.doi.org/10.3102/ 0162373707299706.
    • (2007) Educational Evaluation and Policy Analysis , vol.29 , pp. 60-87
    • Hedges, L.V.1    Hedberg, E.C.2
  • 30
    • 70349881844 scopus 로고    scopus 로고
    • Individual and contextual effects of school adjustment on adolescent alcohol use
    • Henry, K. L., Stanley, L. R., Edwards, R. W., Harkabus, L. C., & Chapin, L. A. (2009). Individual and contextual effects of school adjustment on adolescent alcohol use. Prevention Science, 10, 236-247. http://dx.doi .org/10.1007/s11121-009-0124-2.
    • (2009) Prevention Science , vol.10 , pp. 236-247
    • Henry, K.L.1    Stanley, L.R.2    Edwards, R.W.3    Harkabus, L.C.4    Chapin, L.A.5
  • 31
    • 73549085327 scopus 로고    scopus 로고
    • A first course in Bayesian statistical methods
    • New York, NY: Springer
    • Hoff, P. D. (2009). A first course in Bayesian statistical methods. New York, NY: Springer. http://dx.doi.org/10.1007/978-0-387-92407-6.
    • (2009)
    • Hoff, P.D.1
  • 32
    • 0003421982 scopus 로고    scopus 로고
    • Multilevel analysis: Techniques and applications
    • Mahwah, NJ: Erlbaum.
    • Hox, J. J. (2010). Multilevel analysis: Techniques and applications. Mahwah, NJ: Erlbaum.
    • (2010)
    • Hox, J.J.1
  • 33
    • 85014348105 scopus 로고    scopus 로고
    • In J. Harring, L. M. Stapleton, & S. N. Beretvas (Eds.), Multilevel modeling for educational research: Addressing practical issues found in realworld applications New York, NY: Information Age.
    • Hox, J., van Buuren, S., & Jolani, S. (2016). Incomplete multilevel data. In J. Harring, L. M. Stapleton, & S. N. Beretvas (Eds.), Multilevel modeling for educational research: Addressing practical issues found in realworld applications (pp. 39-61). New York, NY: Information Age.
    • (2016) Incomplete multilevel data , pp. 39-61
    • Hox, J.1    van Buuren, S.2    Jolani, S.3
  • 34
    • 67651085618 scopus 로고    scopus 로고
    • Use of missing data methods in longitudinal studies: The persistence of bad practices in developmental psychology
    • Jelicić, H., Phelps, E., & Lerner, R. M. (2009). Use of missing data methods in longitudinal studies: The persistence of bad practices in developmental psychology. Developmental Psychology, 45, 1195-1199. http://dx.doi.org/10.1037/a0015665.
    • (2009) Developmental Psychology , vol.45 , pp. 1195-1199
    • Jelicić, H.1    Phelps, E.2    Lerner, R.M.3
  • 35
    • 14644409937 scopus 로고    scopus 로고
    • The analysis of dyadic data
    • New York, NY: Guilford Press
    • Kenny, D. A., Kashy, D. A., & Cook, W. L. (2006). The analysis of dyadic data. New York, NY: Guilford Press.
    • (2006)
    • Kenny, D.A.1    Kashy, D.A.2    Cook, W.L.3
  • 37
    • 0003542129 scopus 로고
    • Discipline and group management in classrooms
    • New York, NY: Holt, Rinehart & Winston.
    • Kounin, J. S. (1970). Discipline and group management in classrooms. New York, NY: Holt, Rinehart & Winston.
    • (1970)
    • Kounin, J.S.1
  • 38
    • 85101444608 scopus 로고    scopus 로고
    • Statistical analysis with missing data
    • New York, NY: Wiley
    • Little, R. J. A., & Rubin, D. B. (2002). Statistical analysis with missing data. New York, NY: Wiley. http://dx.doi.org/10.1002/9781119013563.
    • (2002)
    • Little, R.J.A.1    Rubin, D.B.2
  • 39
    • 48449087653 scopus 로고    scopus 로고
    • The multilevel latent covariate model: A new, more reliable approach to group-level effects in contextual studies
    • Lüdtke, O., Marsh, H. W., Robitzsch, A., Trautwein, U., Asparouhov, T., & Muthén, B. (2008). The multilevel latent covariate model: A new, more reliable approach to group-level effects in contextual studies. Psychological Methods, 13, 203-229. http://dx.doi.org/10.1037/ a0012869.
    • (2008) Psychological Methods , vol.13 , pp. 203-229
    • Lüdtke, O.1    Marsh, H.W.2    Robitzsch, A.3    Trautwein, U.4    Asparouhov, T.5    Muthén, B.6
  • 41
    • 85144859648 scopus 로고
    • Matrix differential calculus with applications in statistics and econometrics
    • Hoboken, NJ: Wiley.
    • Magnus, J. R., & Neudecker, H. (1988). Matrix differential calculus with applications in statistics and econometrics. Hoboken, NJ: Wiley.
    • (1988)
    • Magnus, J.R.1    Neudecker, H.2
  • 42
    • 84871695255 scopus 로고    scopus 로고
    • Understanding and estimating the power to detect cross-level interaction effects in multilevel modeling
    • Mathieu, J. E., Aguinis, H., Culpepper, S. A., & Chen, G. (2012). Understanding and estimating the power to detect cross-level interaction effects in multilevel modeling. Journal of Applied Psychology, 97, 951-966. http://dx.doi.org/10.1037/a0028380.
    • (2012) Journal of Applied Psychology , vol.97 , pp. 951-966
    • Mathieu, J.E.1    Aguinis, H.2    Culpepper, S.A.3    Chen, G.4
  • 43
    • 27344454846 scopus 로고    scopus 로고
    • People are variables too: Multilevel structural equations modeling
    • Mehta, P. D., & Neale, M. C. (2005). People are variables too: Multilevel structural equations modeling. Psychological Methods, 10, 259-284. http://dx.doi.org/10.1037/1082-989X.10.3.259.
    • (2005) Psychological Methods , vol.10 , pp. 259-284
    • Mehta, P.D.1    Neale, M.C.2
  • 44
    • 85014352029 scopus 로고    scopus 로고
    • Proceedings of the SAS Global Forum 2013. Contributed paper (Statistics and Data Analysis . San Francisco, CA. Retrieved from
    • Mistler, S. A. (2013). A SAS macro for applying multiple imputation to multilevel data. In Proceedings of the SAS Global Forum 2013. Contributed paper (Statistics and Data Analysis) 438-2013. San Francisco, CA. Retrieved from https://support.sas.com/resources/papers/ proceedings13/438-2013.pdf.
    • (2013) A SAS macro for applying multiple imputation to multilevel data , pp. 438-2013
    • Mistler, S.A.1
  • 45
    • 85008681747 scopus 로고    scopus 로고
    • Multilevel multiple imputation: An examination of competing methods
    • Unpublished doctoral dissertation). Arizona State University, Tempe, AZ.
    • Mistler, S. A. (2015). Multilevel multiple imputation: An examination of competing methods (Unpublished doctoral dissertation). Arizona State University, Tempe, AZ.
    • (2015)
    • Mistler, S.A.1
  • 47
    • 85042450712 scopus 로고    scopus 로고
    • Beyond multilevel regression modeling: Multilevel analysis in a general latent variable framework
    • In J. J. Hox & J. K. Roberts, The handbook of advanced multilevel analysis Milton Park, UK: Routledge.
    • Muthén, B. O., & Asparouhov, T. (2011) Beyond multilevel regression modeling: Multilevel analysis in a general latent variable framework. In J. J. Hox & J. K. Roberts, The handbook of advanced multilevel analysis (pp. 15-40). Milton Park, UK: Routledge.
    • (2011) , pp. 15-40
    • Muthén, B.O.1    Asparouhov, T.2
  • 49
    • 21144462781 scopus 로고
    • Comparing correlations based on individual-level and aggregated data
    • Ostroff, C. (1993). Comparing correlations based on individual-level and aggregated data. Journal of Applied Psychology, 78, 569-582. http://dx .doi.org/10.1037/0021-9010.78.4.569.
    • (1993) Journal of Applied Psychology , vol.78 , pp. 569-582
    • Ostroff, C.1
  • 50
    • 12744272198 scopus 로고    scopus 로고
    • Missing data in educational research: A review of reporting practices and suggestions for improvement
    • Peugh, J. L., & Enders, C. K. (2004). Missing data in educational research: A review of reporting practices and suggestions for improvement. Review of Educational Research, 74, 525-556. http://dx.doi.org/10.3102/ 00346543074004525.
    • (2004) Review of Educational Research , vol.74 , pp. 525-556
    • Peugh, J.L.1    Enders, C.K.2
  • 51
    • 84949921242 scopus 로고    scopus 로고
    • Multilevel structural equation models for assessing moderation within and across levels of analysis
    • Preacher, K. J., Zhang, Z., & Zyphur, M. J. (2016). Multilevel structural equation models for assessing moderation within and across levels of analysis. Psychological Methods, 21, 189-205. http://dx.doi.org/10 .1037/met0000052.
    • (2016) Psychological Methods , vol.21 , pp. 189-205
    • Preacher, K.J.1    Zhang, Z.2    Zyphur, M.J.3
  • 52
    • 77956838713 scopus 로고    scopus 로고
    • A general multilevel SEM framework for assessing multilevel mediation
    • Preacher, K. J., Zyphur, M. J., & Zhang, Z. (2010). A general multilevel SEM framework for assessing multilevel mediation. Psychological Methods, 15, 209-233. http://dx.doi.org/10.1037/a0020141.
    • (2010) Psychological Methods , vol.15 , pp. 209-233
    • Preacher, K.J.1    Zyphur, M.J.2    Zhang, Z.3
  • 54
    • 0002344593 scopus 로고    scopus 로고
    • A multivariate technique for multiply imputing missing values using a sequence of regression models
    • Raghunathan, T. E., Lepkowski, J. E., Hoewyk, J. V., & Solenberger, P. (2001). A multivariate technique for multiply imputing missing values using a sequence of regression models. Survey Methodology, 27, 85-96.
    • (2001) Survey Methodology , vol.27 , pp. 85-96
    • Raghunathan, T.E.1    Lepkowski, J.E.2    Hoewyk, J.V.3    Solenberger, P.4
  • 55
    • 0003967354 scopus 로고    scopus 로고
    • Hierarchical linear models
    • Thousand Oaks, CA: Sage
    • Raudenbush, S. W., & Bryk, A. S. (2002). Hierarchical linear models (2nd ed.). Thousand Oaks, CA: Sage.
    • (2002)
    • Raudenbush, S.W.1    Bryk, A.S.2
  • 56
    • 0017133178 scopus 로고
    • Inference and missing data
    • Rubin, D. B. (1976). Inference and missing data. Biometrika, 63, 581-592. http://dx.doi.org/10.1093/biomet/63.3.581.
    • (1976) Biometrika , vol.63 , pp. 581-592
    • Rubin, D.B.1
  • 57
    • 0003738155 scopus 로고
    • Multiple imputation for nonresponse in surveys
    • Hoboken, NJ: Wiley
    • Rubin, D. B. (1987). Multiple imputation for nonresponse in surveys. Hoboken, NJ: Wiley. http://dx.doi.org/10.1002/9780470316696.
    • (1987)
    • Rubin, D.B.1
  • 58
    • 84898070391 scopus 로고    scopus 로고
    • Robust two-stage approach outperforms robust full information maximum likelihood with incomplete nonnormal data
    • Savalei, V., & Falk, C. (2014). Robust two-stage approach outperforms robust full information maximum likelihood with incomplete nonnormal data. Structural Equation Modeling, 21, 280-302. http://dx.doi.org/10 .1080/10705511.2014.882692.
    • (2014) Structural Equation Modeling , vol.21 , pp. 280-302
    • Savalei, V.1    Falk, C.2
  • 60
    • 0004211748 scopus 로고    scopus 로고
    • L. M. Collins & A. G. Sayer (Eds.), New methods for the analysis of change ). Washington, DC: American Psychological Association.
    • Schafer, J. L. (2001). Multiple imputation with PAN. In L. M. Collins & A. G. Sayer (Eds.), New methods for the analysis of change (pp. 357-377). Washington, DC: American Psychological Association. http://dx.doi.org/10.1037/10409-012.
    • (2001) Multiple imputation with PAN , pp. 357-377
    • Schafer, J.L.1
  • 61
    • 85047673373 scopus 로고    scopus 로고
    • Missing data: Our view of the state of the art
    • Schafer, J. L., & Graham, J. W. (2002). Missing data: Our view of the state of the art. Psychological Methods, 7, 147-177.
    • (2002) Psychological Methods , vol.7 , pp. 147-177
    • Schafer, J.L.1    Graham, J.W.2
  • 62
    • 0032219074 scopus 로고    scopus 로고
    • Multiple imputation for multivariate missing-data problems: A data analyst's perspective
    • Schafer, J. L., & Olsen, M. K. (1998). Multiple imputation for multivariate missing-data problems: A data analyst's perspective. Multivariate Behavioral Research, 33, 545-571. http://dx.doi.org/10.1207/ s15327906mbr3304_5.
    • (1998) Multivariate Behavioral Research , vol.33 , pp. 545-571
    • Schafer, J.L.1    Olsen, M.K.2
  • 63
    • 0036017469 scopus 로고    scopus 로고
    • Computational strategies for multivariate linear mixed-effects models with missing values
    • Schafer, J. L., & Yucel, R. M. (2002). Computational strategies for multivariate linear mixed-effects models with missing values. Journal of Computational and Graphical Statistics, 11, 437-457. http://dx.doi.org/ 10.1198/106186002760180608.
    • (2002) Journal of Computational and Graphical Statistics , vol.11 , pp. 437-457
    • Schafer, J.L.1    Yucel, R.M.2
  • 64
    • 84921324428 scopus 로고    scopus 로고
    • Pan: Multiple imputation for multivariate panel or clustered data
    • R package version 0.9) [Computer program
    • Schafer, J. L., & Zhao, J. H. (2013). pan: Multiple imputation for multivariate panel or clustered data (R package version 0.9) [Computer program]. Retrieved from http://CRAN.R-project.org/package=pan.
    • (2013)
    • Schafer, J.L.1    Zhao, J.H.2
  • 65
    • 85094131643 scopus 로고    scopus 로고
    • L. Rutkowski, M. von Davier, & D. Rutkowski (Eds.), A handbook of international large-scale assessment data analysis: Background, technical issues, and methods of data analysis ). London, UK: Chapman & Hall/CRC Press.
    • Shin, Y. (2013). Efficient handling of predictors and outcomes having missing values. In L. Rutkowski, M. von Davier, & D. Rutkowski (Eds.), A handbook of international large-scale assessment data analysis: Background, technical issues, and methods of data analysis (pp. 451-479). London, UK: Chapman & Hall/CRC Press.
    • (2013) Efficient handling of predictors and outcomes having missing values , pp. 451-479
    • Shin, Y.1
  • 66
    • 77950545486 scopus 로고    scopus 로고
    • A latent cluster-mean approach to the contextual effects model with missing data
    • Shin, Y., & Raudenbush, S. W. (2010). A latent cluster-mean approach to the contextual effects model with missing data. Journal of Educational and Behavioral Statistics, 35, 26-53. http://dx.doi.org/10.3102/ 1076998609345252.
    • (2010) Journal of Educational and Behavioral Statistics , vol.35 , pp. 26-53
    • Shin, Y.1    Raudenbush, S.W.2
  • 68
    • 49849097915 scopus 로고    scopus 로고
    • Imputation strategies for missing continuous outcomes in cluster randomized trials
    • Taljaard, M., Donner, A., & Klar, N. (2008). Imputation strategies for missing continuous outcomes in cluster randomized trials. Biometrical Journal, 50, 329-345. http://dx.doi.org/10.1002/bimj.200710423.
    • (2008) Biometrical Journal , vol.50 , pp. 329-345
    • Taljaard, M.1    Donner, A.2    Klar, N.3
  • 69
    • 84950758368 scopus 로고
    • The calculation of posterior distributions by data augmentation
    • Tanner, M. A., & Wong, W. H. (1987). The calculation of posterior distributions by data augmentation. Journal of the American Statistical Association, 82, 528-540. http://dx.doi.org/10.1080/01621459.1987 .10478458.
    • (1987) Journal of the American Statistical Association , vol.82 , pp. 528-540
    • Tanner, M.A.1    Wong, W.H.2
  • 70
    • 85130029608 scopus 로고    scopus 로고
    • Multiple imputation of multilevel data
    • J. J. Hox & J. K. Roberts ). Milton Park, UK: Routledge.
    • van Buuren, S. (2011). Multiple imputation of multilevel data. In J. J. Hox & J. K. Roberts, The handbook of advanced multilevel analysis (pp. 173-196). Milton Park, UK: Routledge.
    • (2011) The handbook of advanced multilevel analysis , pp. 173-196
    • van Buuren, S.1
  • 71
    • 85119155005 scopus 로고    scopus 로고
    • Flexible imputation of missing data
    • Boca Raton, FL: Chapman & Hall/CRC Press
    • van Buuren, S. (2012). Flexible imputation of missing data. Boca Raton, FL: Chapman & Hall/CRC Press. http://dx.doi.org/10.1201/b11826.
    • (2012)
    • van Buuren, S.1
  • 73
    • 69149105188 scopus 로고    scopus 로고
    • How to impute square, interactions, and other transformed variables
    • von Hippel, P. T. (2009). How to impute square, interactions, and other transformed variables. Sociological Methodology, 39, 265-291. http:// dx.doi.org/10.1111/j.1467-9531.2009.01215.x.
    • (2009) Sociological Methodology , vol.39 , pp. 265-291
    • von Hippel, P.T.1
  • 74
    • 77950572904 scopus 로고    scopus 로고
    • A multilevel model of the effects of equal opportunity climate on job satisfaction in the military
    • Walsh, B. M., Matthews, R. A., Tuller, M. D., Parks, K. M., & McDonald, D. P. (2010). A multilevel model of the effects of equal opportunity climate on job satisfaction in the military. Journal of Occupational Health Psychology, 15, 191-207. http://dx.doi.org/10 .1037/a0018756.
    • (2010) Journal of Occupational Health Psychology , vol.15 , pp. 191-207
    • Walsh, B.M.1    Matthews, R.A.2    Tuller, M.D.3    Parks, K.M.4    McDonald, D.P.5
  • 75
    • 0035748545 scopus 로고    scopus 로고
    • New approaches to missing data in psychological research: Introduction to the special section
    • West, S. G. (2001). New approaches to missing data in psychological research: Introduction to the special section. Psychological Methods, 6, 315-316. http://dx.doi.org/10.1037/1082-989X.6.4.315.
    • (2001) Psychological Methods , vol.6 , pp. 315-316
    • West, S.G.1
  • 76
    • 78651256743 scopus 로고    scopus 로고
    • Multiple imputation using chained equations: Issues and guidance for practice
    • White, I. R., Royston, P., & Wood, A. M. (2011). Multiple imputation using chained equations: Issues and guidance for practice. Statistics in Medicine, 30, 377-399. http://dx.doi.org/10.1002/sim.4067.
    • (2011) Statistics in Medicine , vol.30 , pp. 377-399
    • White, I.R.1    Royston, P.2    Wood, A.M.3
  • 77
    • 34548794766 scopus 로고    scopus 로고
    • Multilevel covariance structure analysis by fitting multiple single-level models
    • Yuan, K.-H., & Bentler, P. M. (2007). Multilevel covariance structure analysis by fitting multiple single-level models. Sociological Methodology, 37, 53-82. http://dx.doi.org/10.1111/j.1467-9531.2007. 00182.x.
    • (2007) Sociological Methodology , vol.37 , pp. 53-82
    • Yuan, K.-H.1    Bentler, P.M.2
  • 78
    • 84926255940 scopus 로고    scopus 로고
    • Bias and efficiency for SEM with missing data and auxiliary variables: Two-stage robust method versus two-stage ML
    • Yuan, K.-H., Tong, X., & Zhang, Z. (2015). Bias and efficiency for SEM with missing data and auxiliary variables: Two-stage robust method versus two-stage ML. Structural Equation Modeling, 22, 178-192. http://dx.doi.org/10.1080/10705511.2014.935750.
    • (2015) Structural Equation Modeling , vol.22 , pp. 178-192
    • Yuan, K.-H.1    Tong, X.2    Zhang, Z.3
  • 79
    • 84868121050 scopus 로고    scopus 로고
    • ML versus MI for missing data with violation of distribution conditions
    • Yuan, K.-H., Yang-Wallentin, F., & Bentler, P. M. (2012). ML versus MI for missing data with violation of distribution conditions. Sociological Methods & Research, 41, 598-629. http://dx.doi.org/10.1177/0049 124112460373.
    • (2012) Sociological Methods & Research , vol.41 , pp. 598-629
    • Yuan, K.-H.1    Yang-Wallentin, F.2    Bentler, P.M.3
  • 80
    • 45749108295 scopus 로고    scopus 로고
    • Multiple imputation inference for multivariate multilevel continuous data with ignorable non-response
    • Yucel, R. M. (2008). Multiple imputation inference for multivariate multilevel continuous data with ignorable non-response. Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences, 366, 2389-2403. http://dx.doi.org/10.1098/rsta.2008.0038.
    • (2008) Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences , vol.366 , pp. 2389-2403
    • Yucel, R.M.1
  • 81
    • 80051757583 scopus 로고    scopus 로고
    • Random-covariances and mixed-effects models for imputing multivariate multilevel continuous data
    • Yucel, R. M. (2011). Random-covariances and mixed-effects models for imputing multivariate multilevel continuous data. Statistical Modelling, 11, 351-370. http://dx.doi.org/10.1177/1471082X1001 100404.
    • (2011) Statistical Modelling , vol.11 , pp. 351-370
    • Yucel, R.M.1
  • 82
    • 70549084402 scopus 로고    scopus 로고
    • Impact of non-normal random effects on inference by multiple imputation: A simulation assessment
    • Yucel, R. M., & Demirtas, H. (2010). Impact of non-normal random effects on inference by multiple imputation: A simulation assessment. Computational Statistics & Data Analysis, 54, 790-801. http://dx.doi.org/10 .1016/j.csda.2009.01.016.
    • (2010) Computational Statistics & Data Analysis , vol.54 , pp. 790-801
    • Yucel, R.M.1    Demirtas, H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.