메뉴 건너뛰기




Volumn 22, Issue 2, 2015, Pages 178-192

Bias and Efficiency for SEM With Missing Data and Auxiliary Variables: Two-Stage Robust Method Versus Two-Stage ML

Author keywords

M estimator; missing not at random; nonnormally distributed data; root mean square error; structural equation modeling

Indexed keywords

MEAN SQUARE ERROR; NORMAL DISTRIBUTION;

EID: 84926255940     PISSN: 10705511     EISSN: 15328007     Source Type: Journal    
DOI: 10.1080/10705511.2014.935750     Document Type: Article
Times cited : (19)

References (43)
  • 1
    • 0000752804 scopus 로고
    • The asymptotic normal distribution of estimators in factor analysis under general conditions
    • Anderson, T. W., & Amemiya, Y. (1988). The asymptotic normal distribution of estimators in factor analysis under general conditions. Annals of Statistics, 16, 759–771.
    • (1988) Annals of Statistics , vol.16 , pp. 759-771
    • Anderson, T.W.1    Amemiya, Y.2
  • 3
    • 85004870441 scopus 로고
    • Asymptotic distribution-free methods for the analysis of covariance structures
    • Browne, M. W. (1984). Asymptotic distribution-free methods for the analysis of covariance structures. British Journal of Mathematical and Statistical Psychology, 37, 62–83.
    • (1984) British Journal of Mathematical and Statistical Psychology , vol.37 , pp. 62-83
    • Browne, M.W.1
  • 6
    • 0035755636 scopus 로고    scopus 로고
    • A comparison of inclusive and restrictive strategies in modern missing-data procedures
    • Collins, L. M., Schafer, J. L., & Kam, C. K. (2001). A comparison of inclusive and restrictive strategies in modern missing-data procedures. Psychological Methods, 6, 330–351.
    • (2001) Psychological Methods , vol.6 , pp. 330-351
    • Collins, L.M.1    Schafer, J.L.2    Kam, C.K.3
  • 7
    • 84952503973 scopus 로고
    • A suggestion for using powerful and informative tests of normality
    • D’Agostino, R. B., Belanger, A., & D’Agostino, R. B., Jr. (1990). A suggestion for using powerful and informative tests of normality. American Statistician, 44, 316–321.
    • (1990) American Statistician , vol.44 , pp. 316-321
    • D’Agostino, R.B.1    Belanger, A.2    D’Agostino, R.B.3
  • 9
    • 0002543932 scopus 로고    scopus 로고
    • A primer on maximum likelihood algorithms available for use with missing data
    • Enders, C. K. (2001). A primer on maximum likelihood algorithms available for use with missing data. Structural Equation Modeling, 8, 128–141.
    • (2001) Structural Equation Modeling , vol.8 , pp. 128-141
    • Enders, C.K.1
  • 11
    • 0000885702 scopus 로고    scopus 로고
    • The relative performance of full information maximum likelihood estimation for missing data in structural equation models
    • Enders, C. K., & Bandalos, D. L. (2001). The relative performance of full information maximum likelihood estimation for missing data in structural equation models. Structural Equation Modeling, 8, 430–457.
    • (2001) Structural Equation Modeling , vol.8 , pp. 430-457
    • Enders, C.K.1    Bandalos, D.L.2
  • 12
    • 0000424522 scopus 로고
    • Testing for normality
    • Geary, R. C. (1947). Testing for normality. Biometrika, 34, 209–242.
    • (1947) Biometrika , vol.34 , pp. 209-242
    • Geary, R.C.1
  • 14
    • 0026919385 scopus 로고
    • Can test statistics in covariance structure analysis be trusted?
    • Hu, L., Bentler, P. M., & Kano, Y. (1992). Can test statistics in covariance structure analysis be trusted? Psychological Bulletin, 112, 351–362.
    • (1992) Psychological Bulletin , vol.112 , pp. 351-362
    • Hu, L.1    Bentler, P.M.2    Kano, Y.3
  • 15
    • 34250481868 scopus 로고
    • A general approach to confirmatory maximum likelihood factor analysis
    • Jöreskog, K. G. (1969). A general approach to confirmatory maximum likelihood factor analysis. Psychometrika, 34, 183–202.
    • (1969) Psychometrika , vol.34 , pp. 183-202
    • Jöreskog, K.G.1
  • 16
    • 0023842809 scopus 로고
    • Robust estimation of the mean and covariance matrix from data with missing values
    • Little, R. J. A. (1988). Robust estimation of the mean and covariance matrix from data with missing values. Applied Statistics, 37, 23–38.
    • (1988) Applied Statistics , vol.37 , pp. 23-38
    • Little, R.J.A.1
  • 18
    • 0008602520 scopus 로고    scopus 로고
    • ML estimation of the multivariate t distribution and the EM algorithm
    • Liu, C. (1997). ML estimation of the multivariate t distribution and the EM algorithm. Journal of Multivariate Analysis, 63, 296–312.
    • (1997) Journal of Multivariate Analysis , vol.63 , pp. 296-312
    • Liu, C.1
  • 19
    • 77949340433 scopus 로고    scopus 로고
    • EQS goes R: Simulations for SEM using the package REQS
    • Mair, P., Wu, E., & Bentler, P. M. (2010). EQS goes R: Simulations for SEM using the package REQS. Structural Equation Modeling, 17, 333–349.
    • (2010) Structural Equation Modeling , vol.17 , pp. 333-349
    • Mair, P.1    Wu, E.2    Bentler, P.M.3
  • 20
    • 0002063041 scopus 로고
    • Robust M-estimators of multivariate location and scatter
    • Maronna, R. A. (1976). Robust M-estimators of multivariate location and scatter. Annals of Statistics, 4, 51–67.
    • (1976) Annals of Statistics , vol.4 , pp. 51-67
    • Maronna, R.A.1
  • 21
    • 58149368765 scopus 로고
    • The unicorn, the normal curve, and other improbable creatures
    • Micceri, T. (1989). The unicorn, the normal curve, and other improbable creatures. Psychological Bulletin, 105, 156–166.
    • (1989) Psychological Bulletin , vol.105 , pp. 156-166
    • Micceri, T.1
  • 22
    • 84926252498 scopus 로고    scopus 로고
    • R Core Team. (2013). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from http://www.R-project.org/
    • (2013)
  • 23
    • 24944454343 scopus 로고    scopus 로고
    • Analysis of longitudinal studies with missing data using covariance structure modeling with full-information maximum likelihood
    • Raykov, T. (2005). Analysis of longitudinal studies with missing data using covariance structure modeling with full-information maximum likelihood. Structural Equation Modeling, 12, 493–505.
    • (2005) Structural Equation Modeling , vol.12 , pp. 493-505
    • Raykov, T.1
  • 24
    • 0030500928 scopus 로고    scopus 로고
    • Robustness properties of S-estimators of multivariate location and shape in high dimension
    • Rocke, D. M. (1996). Robustness properties of S-estimators of multivariate location and shape in high dimension. Annals of Statistics, 24, 1327–1345.
    • (1996) Annals of Statistics , vol.24 , pp. 1327-1345
    • Rocke, D.M.1
  • 25
    • 0017133178 scopus 로고
    • Inference and missing data (with discussions)
    • Rubin, D. B. (1976). Inference and missing data (with discussions). Biometrika, 63, 581–592.
    • (1976) Biometrika , vol.63 , pp. 581-592
    • Rubin, D.B.1
  • 26
    • 84863306901 scopus 로고    scopus 로고
    • lavaan: An R package for structural equation modeling
    • Rosseel, Y. (2012). lavaan: An R package for structural equation modeling. Journal of Statistical Software, 48, 1–36.
    • (2012) Journal of Statistical Software , vol.48 , pp. 1-36
    • Rosseel, Y.1
  • 27
    • 70449595827 scopus 로고    scopus 로고
    • A two-stage ML approach to missing data: Theory and application to auxiliary variables
    • Savalei, V., & Bentler, P. M. (2009). A two-stage ML approach to missing data: Theory and application to auxiliary variables. Structural Equation Modeling, 16, 477–497.
    • (2009) Structural Equation Modeling , vol.16 , pp. 477-497
    • Savalei, V.1    Bentler, P.M.2
  • 28
    • 84898070391 scopus 로고    scopus 로고
    • Robust two-stage approach outperforms robust FIML with incomplete nonnormal data
    • Savalei, V., & Falk, C. (2014). Robust two-stage approach outperforms robust FIML with incomplete nonnormal data. Structural Equation Modeling, 21, 280–302.
    • (2014) Structural Equation Modeling , vol.21 , pp. 280-302
    • Savalei, V.1    Falk, C.2
  • 29
    • 84927578279 scopus 로고    scopus 로고
    • Evaluation of test statistics for robust structural equation modeling with nonnormal missing data
    • Tong, X., Zhang, Z., & Yuan, K.-H. (2014). Evaluation of test statistics for robust structural equation modeling with nonnormal missing data. Structural Equation Modeling. Advance online publication. doi:10.1080/10705511.2014.919820
    • (2014) Structural Equation Modeling. Advance online publication
    • Tong, X.1    Zhang, Z.2    Yuan, K.-H.3
  • 30
    • 0001076947 scopus 로고
    • Robustness and efficiency properties of scatter matrices
    • Tyler, D. E. (1983). Robustness and efficiency properties of scatter matrices. Biometrika, 70, 411–420.
    • (1983) Biometrika , vol.70 , pp. 411-420
    • Tyler, D.E.1
  • 31
    • 67349175062 scopus 로고    scopus 로고
    • Identifying variables responsible for data not missing at random
    • Yuan, K.-H. (2009). Identifying variables responsible for data not missing at random. Psychometrika, 74, 233–256.
    • (2009) Psychometrika , vol.74 , pp. 233-256
    • Yuan, K.-H.1
  • 32
    • 0032263957 scopus 로고    scopus 로고
    • Structural equation modeling with robust covariances
    • Yuan, K.-H., & Bentler, P. M. (1998). Structural equation modeling with robust covariances. Sociological Methodology, 28, 363–396.
    • (1998) Sociological Methodology , vol.28 , pp. 363-396
    • Yuan, K.-H.1    Bentler, P.M.2
  • 33
    • 0033115516 scopus 로고    scopus 로고
    • On asymptotic distributions of normal theory MLE in covariance structure analysis under some nonnormal distributions
    • Yuan, K.-H., & Bentler, P. M. (1999). On asymptotic distributions of normal theory MLE in covariance structure analysis under some nonnormal distributions. Statistics & Probability Letters, 42, 107–113.
    • (1999) Statistics & Probability Letters , vol.42 , pp. 107-113
    • Yuan, K.-H.1    Bentler, P.M.2
  • 34
    • 0034555721 scopus 로고    scopus 로고
    • Three likelihood-based methods for mean and covariance structure analysis with nonnormal missing data
    • Yuan, K.-H., & Bentler, P. M. (2000). Three likelihood-based methods for mean and covariance structure analysis with nonnormal missing data. Sociological Methodology, 30, 167–202.
    • (2000) Sociological Methodology , vol.30 , pp. 167-202
    • Yuan, K.-H.1    Bentler, P.M.2
  • 35
    • 12344329387 scopus 로고    scopus 로고
    • Structural equation modeling with heavy tailed distributions
    • Yuan, K.-H., Bentler, P. M., & Chan, W. (2004). Structural equation modeling with heavy tailed distributions. Psychometrika, 69, 421–436.
    • (2004) Psychometrika , vol.69 , pp. 421-436
    • Yuan, K.-H.1    Bentler, P.M.2    Chan, W.3
  • 37
    • 57849140613 scopus 로고    scopus 로고
    • SEM with missing data and unknown population using two-stage ML: Theory and its application
    • Yuan, K.-H., & Lu, L. (2008). SEM with missing data and unknown population using two-stage ML: Theory and its application. Multivariate Behavioral Research, 62, 621–652.
    • (2008) Multivariate Behavioral Research , vol.62 , pp. 621-652
    • Yuan, K.-H.1    Lu, L.2
  • 39
    • 84868121050 scopus 로고    scopus 로고
    • ML versus MI for missing data with violation of distribution conditions
    • Yuan, K.-H., Yang-Wallentin, F., & Bentler, P. M. (2012). ML versus MI for missing data with violation of distribution conditions. Sociological Methods & Research, 41, 598–629.
    • (2012) Sociological Methods & Research , vol.41 , pp. 598-629
    • Yuan, K.-H.1    Yang-Wallentin, F.2    Bentler, P.M.3
  • 40
    • 84926254235 scopus 로고    scopus 로고
    • Yuan, K.-H., & Zhang, Z. (2011). rsem: An R package for robust non-normal SEM with missing data. Retrieved from http://cran.r-project.org/web/packages/rsem/index.html.
    • (2011)
    • Yuan, K.-H.1
  • 41
    • 84867839806 scopus 로고    scopus 로고
    • Robust structural equation modeling with missing data and auxiliary variables
    • Yuan, K.-H., & Zhang, Z. (2012). Robust structural equation modeling with missing data and auxiliary variables. Psychometrika, 77, 803–826.
    • (2012) Psychometrika , vol.77 , pp. 803-826
    • Yuan, K.-H.1    Zhang, Z.2
  • 42
    • 54049146889 scopus 로고    scopus 로고
    • Outliers, leverage observations and influential cases in factor analysis: Minimizing their effect using robust procedures
    • Yuan, K.-H., & Zhong, X. (2008). Outliers, leverage observations and influential cases in factor analysis: Minimizing their effect using robust procedures. Sociological Methodology, 38, 329–368.
    • (2008) Sociological Methodology , vol.38 , pp. 329-368
    • Yuan, K.-H.1    Zhong, X.2
  • 43
    • 79957592400 scopus 로고    scopus 로고
    • Bias and efficiency in structural equation modeling: Maximum likelihood versus robust methods
    • Zhong, X., & Yuan, K.-H. (2011). Bias and efficiency in structural equation modeling: Maximum likelihood versus robust methods. Multivariate Behavioral Research, 46, 229–265.
    • (2011) Multivariate Behavioral Research , vol.46 , pp. 229-265
    • Zhong, X.1    Yuan, K.-H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.