메뉴 건너뛰기




Volumn 54, Issue 3, 2010, Pages 790-801

Impact of non-normal random effects on inference by multiple imputation: A simulation assessment

Author keywords

[No Author keywords available]

Indexed keywords

ASSOCIATION MEASURES; COVERAGE RATE; ERROR TERMS; ESTIMATION QUALITY; INCOMPLETE DATA; LINEAR MIXED-EFFECTS MODEL; MISSING DATA; MISSPECIFICATION; MULTIPLE IMPUTATION; PREDICTIVE DISTRIBUTIONS; RANDOM EFFECTS; REGRESSION COEFFICIENT; SIMULATION ASSESSMENT; SIMULATION STUDIES; SUBJECT-SPECIFIC;

EID: 70549084402     PISSN: 01679473     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.csda.2009.01.016     Document Type: Article
Times cited : (26)

References (22)
  • 1
    • 70649111528 scopus 로고    scopus 로고
    • Bates, D., Sarkar, D., 2007. lme4: Linear mixed-effects models using s4 classes
    • Bates, D., Sarkar, D., 2007. lme4: Linear mixed-effects models using s4 classes
  • 2
    • 70649113077 scopus 로고    scopus 로고
    • Browne, W.J, 2003. MCMC estimation in MLwiN version 2.0, Institute of Education, University of London, London, UK
    • Browne, W.J., 2003. MCMC estimation in MLwiN (version 2.0). Institute of Education, University of London, London, UK
  • 4
    • 0035755636 scopus 로고    scopus 로고
    • A comparison of inclusive and restrictive strategies in modern missing data procedures
    • Collins L., Schafer J., and Kam C.-M. A comparison of inclusive and restrictive strategies in modern missing data procedures. Psychological Methods 6 (2001) 330-351
    • (2001) Psychological Methods , vol.6 , pp. 330-351
    • Collins, L.1    Schafer, J.2    Kam, C.-M.3
  • 6
    • 10944236293 scopus 로고    scopus 로고
    • Simulation-driven inferences for multiply imputed longitudinal datasets
    • Demirtas H. Simulation-driven inferences for multiply imputed longitudinal datasets. Statistica Neerlandica 58 (2004) 466-482
    • (2004) Statistica Neerlandica , vol.58 , pp. 466-482
    • Demirtas, H.1
  • 7
    • 23244447184 scopus 로고    scopus 로고
    • Multiple imputation under Bayesianly smoothed pattern-mixture models for non-ignorable drop-out
    • Demirtas H. Multiple imputation under Bayesianly smoothed pattern-mixture models for non-ignorable drop-out. Statistics in Medicine 24 (2005) 2345-2363
    • (2005) Statistics in Medicine , vol.24 , pp. 2345-2363
    • Demirtas, H.1
  • 8
    • 38349186156 scopus 로고    scopus 로고
    • Plausibility of multivariate normality assumption when multiply imputing non-Gaussian continuous outcomes: A simulation assessment
    • Demirtas H., Freels S., and Yucel R. Plausibility of multivariate normality assumption when multiply imputing non-Gaussian continuous outcomes: A simulation assessment. Journal of Statistical Computation and Simulation 78 (2008) 69-84
    • (2008) Journal of Statistical Computation and Simulation , vol.78 , pp. 69-84
    • Demirtas, H.1    Freels, S.2    Yucel, R.3
  • 10
    • 15044358532 scopus 로고    scopus 로고
    • Multiple imputation for model checking: Completed-data plots with missing and latent data
    • Gelman A., Mechelen I., Verbeke G., Heitjan D., and Meulders M. Multiple imputation for model checking: Completed-data plots with missing and latent data. Biometrics 61 (2005) 74-85
    • (2005) Biometrics , vol.61 , pp. 74-85
    • Gelman, A.1    Mechelen, I.2    Verbeke, G.3    Heitjan, D.4    Meulders, M.5
  • 11
    • 25444484077 scopus 로고    scopus 로고
    • Posterior predictive assessment of model fitness via realized discrepancies
    • Gelman A., Meng X., and Stern H. Posterior predictive assessment of model fitness via realized discrepancies. Statistica Sinica 6 (1996) 733-807
    • (1996) Statistica Sinica , vol.6 , pp. 733-807
    • Gelman, A.1    Meng, X.2    Stern, H.3
  • 13
    • 84972537494 scopus 로고
    • Multiple-imputation inferences with uncongenial sources of input
    • Meng X. Multiple-imputation inferences with uncongenial sources of input. Statistical Science 10 (1994) 538-573
    • (1994) Statistical Science , vol.10 , pp. 538-573
    • Meng, X.1
  • 14
    • 1842607847 scopus 로고    scopus 로고
    • R foundation for statistical Computing, Vienna, Australia. 3-900051-07-0 URL: http://www.R-project.org
    • R Development Core Team. R: A Language and Environment for Statistical Computing (2007), R foundation for statistical Computing, Vienna, Australia. 3-900051-07-0. http://www.R-project.org URL: http://www.R-project.org
    • (2007) R: A Language and Environment for Statistical Computing
    • R Development Core Team1
  • 16
    • 0017133178 scopus 로고
    • Inference and missing data
    • Rubin D.B. Inference and missing data. Biometrika 63 (1976) 581-590
    • (1976) Biometrika , vol.63 , pp. 581-590
    • Rubin, D.B.1
  • 19
    • 85047673373 scopus 로고    scopus 로고
    • Missing data: Our view of the state of the art
    • Schafer J., and Graham J. Missing data: Our view of the state of the art. Psychological Methods 7 (2002) 147-177
    • (2002) Psychological Methods , vol.7 , pp. 147-177
    • Schafer, J.1    Graham, J.2
  • 20
    • 0036017469 scopus 로고    scopus 로고
    • Computational strategies for multivariate linear mixed-effects models with missing values
    • Schafer J., and Yucel R. Computational strategies for multivariate linear mixed-effects models with missing values. Journal of Computational and Graphical Statistics 11 (2002) 421-442
    • (2002) Journal of Computational and Graphical Statistics , vol.11 , pp. 421-442
    • Schafer, J.1    Yucel, R.2
  • 22
    • 45749110814 scopus 로고    scopus 로고
    • Using calibration to improve rounding in imputation
    • Yucel R., He Y., and Zaslavsky A. Using calibration to improve rounding in imputation. The American Statistician 62 (2008) 125-129
    • (2008) The American Statistician , vol.62 , pp. 125-129
    • Yucel, R.1    He, Y.2    Zaslavsky, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.