메뉴 건너뛰기




Volumn , Issue , 2013, Pages 451-479

Efficient handling of predictors and outcomes having missing values

Author keywords

[No Author keywords available]

Indexed keywords


EID: 85094131643     PISSN: None     EISSN: None     Source Type: Book    
DOI: None     Document Type: Chapter
Times cited : (3)

References (53)
  • 6
    • 10044274635 scopus 로고    scopus 로고
    • Multilevel factor analysis modelling using Markov Chain Monte Carlo estimation
    • G. Marcoulides and I. Moustaki (eds.), London: Lawrence Erlbaum
    • Goldstein, H. and Browne, W. 2002. Multilevel factor analysis modelling using Markov Chain Monte Carlo estimation. In G. Marcoulides and I. Moustaki (eds.), Latent Variable and Latent Structure Models, London: Lawrence Erlbaum.
    • (2002) Latent Variable and Latent Structure Models
    • Goldstein, H.1    Browne, W.2
  • 8
    • 33847304390 scopus 로고    scopus 로고
    • Multilevel factor analysis models for continuous and discrete data
    • A. Olivares and J.J. McArdle (eds.), Mahwah, NJ: Lawrence Erlbaum
    • Goldstein, H. and Browne, W. 2005. Multilevel factor analysis models for continuous and discrete data. In A. Olivares and J.J. McArdle (eds.), Contemporary Psychometrics. A Festschrift to Roderick P. McDonald. Mahwah, NJ: Lawrence Erlbaum.
    • (2005) Contemporary Psychometrics. A Festschrift to Roderick P. McDonald
    • Goldstein, H.1    Browne, W.2
  • 9
    • 0030227939 scopus 로고    scopus 로고
    • Modelling the sampling design in the analysis of health surveys
    • Graubard, B.I. and Korn, E.L. 1996. Modelling the sampling design in the analysis of health surveys. Statistical Methods in Medical Research, 5, 263-281.
    • (1996) Statistical Methods in Medical Research , vol.5 , pp. 263-281
    • Graubard, B.I.1    Korn, E.L.2
  • 10
    • 33846873244 scopus 로고    scopus 로고
    • Much ado about nothing: A comparison of missing data methods and software to fit incomplete data regression models
    • Horton, N.J. and Kleinman, K.P. 2007. Much ado about nothing: A comparison of missing data methods and software to fit incomplete data regression models. The American Statistician, 61, 79-90.
    • (2007) The American Statistician , vol.61 , pp. 79-90
    • Horton, N.J.1    Kleinman, K.P.2
  • 12
    • 0000842056 scopus 로고    scopus 로고
    • Experimental estimates of education production functions
    • Krueger, A.B. 1999. Experimental estimates of education production functions. The Quarterly Journal of Economics, 114, 497-532.
    • (1999) The Quarterly Journal of Economics , vol.114 , pp. 497-532
    • Krueger, A.B.1
  • 13
    • 0040630186 scopus 로고
    • Significance levels from repeated p-values with multiply-imputed data
    • Li, K., Meng, X., Raghunathan, T.E., and Rubin D.B. 1991. Significance levels from repeated p-values with multiply-imputed data. Statistica Sinica, 1, 65-92.
    • (1991) Statistica Sinica , vol.1 , pp. 65-92
    • Li, K.1    Meng, X.2    Raghunathan, T.E.3    Rubin, D.B.4
  • 14
    • 84950452119 scopus 로고
    • Modeling the drop-out mechanism in repeated-measures studies
    • Little, R.J.A. 1995. Modeling the drop-out mechanism in repeated-measures studies. Journal of the American Statistical Association, 90, 1112-1121.
    • (1995) Journal of the American Statistical Association , vol.90 , pp. 1112-1121
    • Little, R.J.A.1
  • 16
    • 85057445352 scopus 로고    scopus 로고
    • Selection and pattern-mixture models
    • G. Fitzmaurice, M. Davidian, G. Verbeke, and G. Molenberghs (eds.), Boca Raton, FL: Chapman & Hall/CRC
    • Little, R.J.A. 2009. Selection and pattern-mixture models. In G. Fitzmaurice, M. Davidian, G. Verbeke, and G. Molenberghs (eds.), Longitudinal Data Analysis (pp. 409-431), Boca Raton, FL: Chapman & Hall/CRC.
    • (2009) Longitudinal Data Analysis , pp. 409-431
    • Little, R.J.A.1
  • 17
    • 70449411807 scopus 로고    scopus 로고
    • The BUGS project: Evolution, critique and future directions
    • Lunn, D., Spiegelhalter, D., Thomas, A., and Best, N. 2009. The BUGS project: Evolution, critique and future directions. Statistics in Medicine, 28, 3049-3082.
    • (2009) Statistics in Medicine , vol.28 , pp. 3049-3082
    • Lunn, D.1    Spiegelhalter, D.2    Thomas, A.3    Best, N.4
  • 19
    • 0001109923 scopus 로고
    • Performing likelihood ratio tests with multiply-imputed data sets
    • Meng, X. and Rubin, D.B. 1992. Performing likelihood ratio tests with multiply-imputed data sets. Biometrika, 79, 103-111.
    • (1992) Biometrika , vol.79 , pp. 103-111
    • Meng, X.1    Rubin, D.B.2
  • 20
    • 84972537494 scopus 로고
    • Multiple-imputation inferences with uncongenial sources of input
    • Meng, X. 1994. Multiple-imputation inferences with uncongenial sources of input. Statistical Science, 9, 538-558.
    • (1994) Statistical Science , vol.9 , pp. 538-558
    • Meng, X.1
  • 21
    • 0003753978 scopus 로고    scopus 로고
    • (6th ed.). Los Angeles, CA: Muthén and Muthén
    • Muthén, L. and Muthén, B. 2010. Mplus Users Guide (6th ed.). Los Angeles, CA: Muthén and Muthén.
    • (2010) Mplus Users Guide
    • Muthén, L.1    Muthén, B.2
  • 22
    • 79952582418 scopus 로고    scopus 로고
    • Growth modeling with nonignorable dropout: Alternative analyses of the STAR*D antidepressant trial
    • Muthén, B., Asparouhov, T., Hunter, A.M., and Leuchter, A.F. 2011. Growth modeling with nonignorable dropout: alternative analyses of the STAR*D antidepressant trial. Psychological Methods, 16, 17-33.
    • (2011) Psychological Methods , vol.16 , pp. 17-33
    • Muthén, B.1    Asparouhov, T.2    Hunter, A.M.3    Leuchter, A.F.4
  • 26
    • 0002344593 scopus 로고    scopus 로고
    • A mul-tivariate technique for multiply imputing missing values using a sequence of regression models
    • Raghunathan, T., Lepkowski, J., Van Hoewyk, J., and Solenberger, P. 2001. A mul-tivariate technique for multiply imputing missing values using a sequence of regression models. Survey Methodology, 27, 85-95.
    • (2001) Survey Methodology , vol.27 , pp. 85-95
    • Raghunathan, T.1    Lepkowski, J.2    Van Hoewyk, J.3    Solenberger, P.4
  • 30
    • 0017133178 scopus 로고
    • Inference and missing data
    • Rubin, D.B. 1976. Inference and missing data. Biometrika, 63, 581-592.
    • (1976) Biometrika , vol.63 , pp. 581-592
    • Rubin, D.B.1
  • 32
    • 0030539070 scopus 로고    scopus 로고
    • Multiple imputation after 18+ years
    • Rubin, D.B. 1996. Multiple imputation after 18+ years. JASA, 91, 473-489.
    • (1996) JASA , vol.91 , pp. 473-489
    • Rubin, D.B.1
  • 33
    • 0345241817 scopus 로고    scopus 로고
    • Nested multiple imputation of NMES via partially incompatible MCMC
    • Rubin, D.B. 2003. Nested multiple imputation of NMES via partially incompatible MCMC. Statistica Neerlandica, 57, 3-18.
    • (2003) Statistica Neerlandica , vol.57 , pp. 3-18
    • Rubin, D.B.1
  • 36
    • 0036017469 scopus 로고    scopus 로고
    • Computational strategies for multivariate linear mixed-effects models with missing values
    • Schafer, J.L. and Yucel, R.M. 2002. Computational strategies for multivariate linear mixed-effects models with missing values. Journal of Computational and Graphical Statistics, 11, 437-457.
    • (2002) Journal of Computational and Graphical Statistics , vol.11 , pp. 437-457
    • Schafer, J.L.1    Yucel, R.M.2
  • 37
    • 28444485368 scopus 로고    scopus 로고
    • Multiple imputation in multivariate problems when imputation and analysis models differ
    • Schafer, J.L. 2003. Multiple imputation in multivariate problems when imputation and analysis models differ. Statistica Neerlandica, 57, 19-35.
    • (2003) Statistica Neerlandica , vol.57 , pp. 19-35
    • Schafer, J.L.1
  • 39
    • 84864329497 scopus 로고    scopus 로고
    • Do black children benefit more from small classes? Multivariate instrumental variable estimators with ignorable missing data
    • Shin, Y. 2012. Do black children benefit more from small classes? Multivariate instrumental variable estimators with ignorable missing data. Journal of Educational and Behavioral Statistics, 37, 543-574.
    • (2012) Journal of Educational and Behavioral Statistics , vol.37 , pp. 543-574
    • Shin, Y.1
  • 40
    • 36749004402 scopus 로고    scopus 로고
    • Just-identified versus over-identified two-level hierarchical linear models with missing data
    • Shin, Y. and Raudenbush, S.W. 2007. Just-identified versus over-identified two-level hierarchical linear models with missing data. Biometrics, 63, 1262-1268.
    • (2007) Biometrics , vol.63 , pp. 1262-1268
    • Shin, Y.1    Raudenbush, S.W.2
  • 41
    • 77950545486 scopus 로고    scopus 로고
    • A latent cluster mean approach to the contextual effects model with missing data
    • Shin, Y. and Raudenbush, S.W. 2010. A latent cluster mean approach to the contextual effects model with missing data. Journal of Educational and Behavioral Statistics, 35, 26-53.
    • (2010) Journal of Educational and Behavioral Statistics , vol.35 , pp. 26-53
    • Shin, Y.1    Raudenbush, S.W.2
  • 42
    • 79955051771 scopus 로고    scopus 로고
    • The causal effect of class size on academic achievement: Multivariate instrumental variable estimators with data missing at random
    • Shin, Y. and Raudenbush, S.W. 2011. The causal effect of class size on academic achievement: Multivariate instrumental variable estimators with data missing at random. Journal of Educational and Behavioral Statistics, 36, 154-185.
    • (2011) Journal of Educational and Behavioral Statistics , vol.36 , pp. 154-185
    • Shin, Y.1    Raudenbush, S.W.2
  • 43
    • 84927685006 scopus 로고    scopus 로고
    • Efficient analysis of Q-level nested hierarchical general linear models given ignorable missing data
    • (to appear)
    • Shin, Y. and Raudenbush, S.W. 2013. Efficient analysis of Q-level nested hierarchical general linear models given ignorable missing data. International Journal of Biostatistics (to appear).
    • (2013) International Journal of Biostatistics
    • Shin, Y.1    Raudenbush, S.W.2
  • 46
    • 0028641810 scopus 로고
    • Variance components testing in the longitudinal mixed effects model
    • Stram, D.O. and Lee, J.W. 1994. Variance components testing in the longitudinal mixed effects model. Biometrics, 50, 1171-1177.
    • (1994) Biometrics , vol.50 , pp. 1171-1177
    • Stram, D.O.1    Lee, J.W.2
  • 50
    • 85130029608 scopus 로고    scopus 로고
    • Multiple imputation of multilevel data
    • J.J. Hoxand and J.K. Roberts. (eds.), Chapter 10, Milton Park, UK: Routledge
    • Van Buuren, S. 2011. Multiple imputation of multilevel data. In J.J. Hoxand and J.K. Roberts. (eds.), The Handbook of Advanced Multilevel Analysis, Chapter 10, pp. 173-196. Milton Park, UK: Routledge.
    • (2011) The Handbook of Advanced Multilevel Analysis , pp. 173-196
    • Van Buuren, S.1
  • 53
    • 45749108295 scopus 로고    scopus 로고
    • Multiple imputation inference for multivariate multilevel continuous data with ignorable non-response
    • Yucel, R.M. 2008. Multiple imputation inference for multivariate multilevel continuous data with ignorable non-response. Philosophical Transactions of the Royal Society A, 366, 2389-2403.
    • (2008) Philosophical Transactions of the Royal Society A , vol.366 , pp. 2389-2403
    • Yucel, R.M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.