메뉴 건너뛰기




Volumn 63, Issue 2, 2003, Pages 204-238

Treatment of missing data at the second level of hierarchical linear models

Author keywords

Hierarchical linear models; Missing data; Missing data treatments

Indexed keywords


EID: 0037278514     PISSN: 00131644     EISSN: None     Source Type: Journal    
DOI: 10.1177/0013164402250987     Document Type: Article
Times cited : (36)

References (31)
  • 1
    • 0007255040 scopus 로고
    • Missing data estimators in the general linear model: An evaluation of simulated data as an experimental design
    • Basilvesky, A., Sabourin, D., Hum, D., & Anderson, A. (1985). Missing data estimators in the general linear model: An evaluation of simulated data as an experimental design, Communications in Statistics, 14, 371-394
    • (1985) Communications in Statistics , vol.14 , pp. 371-394
    • Basilvesky, A.1    Sabourin, D.2    Hum, D.3    Anderson, A.4
  • 5
    • 84963437008 scopus 로고
    • Missing value problems in multiple linear regression with two independent variables
    • Donner, A., & Rosner, B. (1982). Missing value problems in multiple linear regression with two independent variables. Communications in Statistics-Theory and Methods, 11, 127-140
    • (1982) Communications in Statistics-Theory and Methods , vol.11 , pp. 127-140
    • Donner, A.1    Rosner, B.2
  • 7
    • 0004928597 scopus 로고    scopus 로고
    • A comparison of model- and multiple imputation-based approaches to longitudinal analyses with partial missingness
    • Duncan, T. E., Duncan, S. C., & Li, F. (1998). A comparison of model- and multiple imputation-based approaches to longitudinal analyses with partial missingness. Structural Equation Modeling, 5, 1-21
    • (1998) Structural Equation Modeling , vol.5 , pp. 1-21
    • Duncan, T.E.1    Duncan, S.C.2    Li, F.3
  • 8
    • 0001194903 scopus 로고
    • A proposal for handling missing data
    • Gleason, T. C., & Staelin, R. (1975). A proposal for handling missing data. Psychometrika, 40, 229-251
    • (1975) Psychometrika , vol.40 , pp. 229-251
    • Gleason, T.C.1    Staelin, R.2
  • 10
    • 0030527014 scopus 로고    scopus 로고
    • Maximizing the usefulness of data obtained with planned missing value patterns: An application of maximum likelihood procedures
    • Graham J. W., Hofer, S. M., & MacKinnon, D. P. (1996). Maximizing the usefulness of data obtained with planned missing value patterns: An application of maximum likelihood procedures, Multivariate Behavioral Research, 31, 197-218
    • (1996) Multivariate Behavioral Research , vol.31 , pp. 197-218
    • Graham, J.W.1    Hofer, S.M.2    MacKinnon, D.P.3
  • 12
    • 0032378805 scopus 로고    scopus 로고
    • A comparison of four imputation procedures in a two-variable prediction system
    • Hegamin-Younger, C., & Forsyth, R. (1998). A comparison of four imputation procedures in a two-variable prediction system. Educational and Psychological Measurement, 58, 197-210
    • (1998) Educational and Psychological Measurement , vol.58 , pp. 197-210
    • Hegamin-Younger, C.1    Forsyth, R.2
  • 13
    • 0032347864 scopus 로고    scopus 로고
    • Multilevel modeling of educational data with cross-classification and missing identification for units
    • Hill, P. W., & Goldstein, H. (1998). Multilevel modeling of educational data with cross-classification and missing identification for units. Journal of Educational and Behavioral Statistics, 23, 117-128
    • (1998) Journal of Educational and Behavioral Statistics , vol.23 , pp. 117-128
    • Hill, P.W.1    Goldstein, H.2
  • 14
    • 0000830193 scopus 로고
    • Sample and population score matrices and sample correlation matrices from an arbitrary population correlation matrix
    • Kaiser, H. F., & Dickman, K. (1962). Sample and population score matrices and sample correlation matrices from an arbitrary population correlation matrix. Psychometrika, 27, 179-182
    • (1962) Psychometrika , vol.27 , pp. 179-182
    • Kaiser, H.F.1    Dickman, K.2
  • 15
    • 84970352416 scopus 로고
    • The treatment of missing data in multivariate analysis
    • Kim, J., & Curry, J. (1977). The treatment of missing data in multivariate analysis. Sociological Methods & Research, 6, 215-240
    • (1977) Sociological Methods & Research , vol.6 , pp. 215-240
    • Kim, J.1    Curry, J.2
  • 17
    • 21844485924 scopus 로고
    • Nonrandomly missing data in multiple regression: An empirical comparison of common missing-data treatments
    • Kromrey, J. D., & Hines, C. V. (1994). Nonrandomly missing data in multiple regression: An empirical comparison of common missing-data treatments. Educational and Psychological Measurement, 54, 573-593
    • (1994) Educational and Psychological Measurement , vol.54 , pp. 573-593
    • Kromrey, J.D.1    Hines, C.V.2
  • 21
    • 0002288950 scopus 로고
    • A comparison of methods for treating incomplete data in selection research
    • Raymond, M. R., & Roberts, D. M. (1987). A comparison of methods for treating incomplete data in selection research, Educational and Psychological Measurement, 47, 13-26
    • (1987) Educational and Psychological Measurement , vol.47 , pp. 13-26
    • Raymond, M.R.1    Roberts, D.M.2
  • 22
    • 21844483562 scopus 로고
    • Missing data: A conceptual review for applied psychologists
    • Roth, P. L. (1994). Missing data: A conceptual review for applied psychologists. Personnel Psychology, 47, 537-558
    • (1994) Personnel Psychology , vol.47 , pp. 537-558
    • Roth, P.L.1
  • 23
    • 0001523948 scopus 로고
    • A Monte Carlo analysis of missing data techniques in a HRM setting
    • Roth, P. L., & Switzer, F. S. (1995). A Monte Carlo analysis of missing data techniques in a HRM setting. Journal of Management, 21, 1003-1023
    • (1995) Journal of Management , vol.21 , pp. 1003-1023
    • Roth, P.L.1    Switzer, F.S.2
  • 24
    • 0017133178 scopus 로고
    • Inference and missing data
    • Rubin, D. B. (1976). Inference and missing data. Biometrika, 61, 581-592
    • (1976) Biometrika , vol.61 , pp. 581-592
    • Rubin, D.B.1
  • 25
    • 0001745892 scopus 로고
    • Some applications of multilevel models to educational data
    • R. D. Bock (Ed.). San Diego, CA: Academic Press
    • Rubin, D. B. (1989). Some applications of multilevel models to educational data. In R. D. Bock (Ed.), Multilevel analysis of educational data (pp. 1-17). San Diego, CA: Academic Press
    • (1989) Multilevel Analysis of Educational Data , pp. 1-17
    • Rubin, D.B.1
  • 29
    • 0032251946 scopus 로고    scopus 로고
    • Using SAS PROC MIXED to fit multilevel models, hierarchical models, and individual growth models
    • Singer, J. (1998). Using SAS PROC MIXED to fit multilevel models, hierarchical models, and individual growth models. Journal of Educational and Behavioral Statistics, 23, 323-355
    • (1998) Journal of Educational and Behavioral Statistics , vol.23 , pp. 323-355
    • Singer, J.1
  • 30


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.