-
1
-
-
0007255040
-
Missing data estimators in the general linear model: An evaluation of simulated data as an experimental design
-
Basilvesky, A., Sabourin, D., Hum, D., & Anderson, A. (1985). Missing data estimators in the general linear model: An evaluation of simulated data as an experimental design, Communications in Statistics, 14, 371-394
-
(1985)
Communications in Statistics
, vol.14
, pp. 371-394
-
-
Basilvesky, A.1
Sabourin, D.2
Hum, D.3
Anderson, A.4
-
2
-
-
0037650754
-
Bias vs. precision: Combining estimates in multisite evaluation research
-
April 4-8, New Orleans, LA
-
Bernstein, L., & Burstein, N. (1994, April 4-8). Bias vs. precision: Combining estimates in multisite evaluation research. Paper presented at the annual meeting of the American Educational Research Association, New Orleans, LA
-
(1994)
Annual Meeting of the American Educational Research Association
-
-
Bernstein, L.1
Burstein, N.2
-
5
-
-
84963437008
-
Missing value problems in multiple linear regression with two independent variables
-
Donner, A., & Rosner, B. (1982). Missing value problems in multiple linear regression with two independent variables. Communications in Statistics-Theory and Methods, 11, 127-140
-
(1982)
Communications in Statistics-Theory and Methods
, vol.11
, pp. 127-140
-
-
Donner, A.1
Rosner, B.2
-
7
-
-
0004928597
-
A comparison of model- and multiple imputation-based approaches to longitudinal analyses with partial missingness
-
Duncan, T. E., Duncan, S. C., & Li, F. (1998). A comparison of model- and multiple imputation-based approaches to longitudinal analyses with partial missingness. Structural Equation Modeling, 5, 1-21
-
(1998)
Structural Equation Modeling
, vol.5
, pp. 1-21
-
-
Duncan, T.E.1
Duncan, S.C.2
Li, F.3
-
8
-
-
0001194903
-
A proposal for handling missing data
-
Gleason, T. C., & Staelin, R. (1975). A proposal for handling missing data. Psychometrika, 40, 229-251
-
(1975)
Psychometrika
, vol.40
, pp. 229-251
-
-
Gleason, T.C.1
Staelin, R.2
-
10
-
-
0030527014
-
Maximizing the usefulness of data obtained with planned missing value patterns: An application of maximum likelihood procedures
-
Graham J. W., Hofer, S. M., & MacKinnon, D. P. (1996). Maximizing the usefulness of data obtained with planned missing value patterns: An application of maximum likelihood procedures, Multivariate Behavioral Research, 31, 197-218
-
(1996)
Multivariate Behavioral Research
, vol.31
, pp. 197-218
-
-
Graham, J.W.1
Hofer, S.M.2
MacKinnon, D.P.3
-
12
-
-
0032378805
-
A comparison of four imputation procedures in a two-variable prediction system
-
Hegamin-Younger, C., & Forsyth, R. (1998). A comparison of four imputation procedures in a two-variable prediction system. Educational and Psychological Measurement, 58, 197-210
-
(1998)
Educational and Psychological Measurement
, vol.58
, pp. 197-210
-
-
Hegamin-Younger, C.1
Forsyth, R.2
-
13
-
-
0032347864
-
Multilevel modeling of educational data with cross-classification and missing identification for units
-
Hill, P. W., & Goldstein, H. (1998). Multilevel modeling of educational data with cross-classification and missing identification for units. Journal of Educational and Behavioral Statistics, 23, 117-128
-
(1998)
Journal of Educational and Behavioral Statistics
, vol.23
, pp. 117-128
-
-
Hill, P.W.1
Goldstein, H.2
-
14
-
-
0000830193
-
Sample and population score matrices and sample correlation matrices from an arbitrary population correlation matrix
-
Kaiser, H. F., & Dickman, K. (1962). Sample and population score matrices and sample correlation matrices from an arbitrary population correlation matrix. Psychometrika, 27, 179-182
-
(1962)
Psychometrika
, vol.27
, pp. 179-182
-
-
Kaiser, H.F.1
Dickman, K.2
-
15
-
-
84970352416
-
The treatment of missing data in multivariate analysis
-
Kim, J., & Curry, J. (1977). The treatment of missing data in multivariate analysis. Sociological Methods & Research, 6, 215-240
-
(1977)
Sociological Methods & Research
, vol.6
, pp. 215-240
-
-
Kim, J.1
Curry, J.2
-
17
-
-
21844485924
-
Nonrandomly missing data in multiple regression: An empirical comparison of common missing-data treatments
-
Kromrey, J. D., & Hines, C. V. (1994). Nonrandomly missing data in multiple regression: An empirical comparison of common missing-data treatments. Educational and Psychological Measurement, 54, 573-593
-
(1994)
Educational and Psychological Measurement
, vol.54
, pp. 573-593
-
-
Kromrey, J.D.1
Hines, C.V.2
-
18
-
-
0003605027
-
-
Cary, NC: SAS Institute, Inc
-
Littell, R. C., Milliken, G. A., Stroup, W. W., & Wolfinger, R. D. (1996). SAS® system for mixed models. Cary, NC: SAS Institute, Inc
-
(1996)
SAS® System for Mixed Models
-
-
Littell, R.C.1
Milliken, G.A.2
Stroup, W.W.3
Wolfinger, R.D.4
-
21
-
-
0002288950
-
A comparison of methods for treating incomplete data in selection research
-
Raymond, M. R., & Roberts, D. M. (1987). A comparison of methods for treating incomplete data in selection research, Educational and Psychological Measurement, 47, 13-26
-
(1987)
Educational and Psychological Measurement
, vol.47
, pp. 13-26
-
-
Raymond, M.R.1
Roberts, D.M.2
-
22
-
-
21844483562
-
Missing data: A conceptual review for applied psychologists
-
Roth, P. L. (1994). Missing data: A conceptual review for applied psychologists. Personnel Psychology, 47, 537-558
-
(1994)
Personnel Psychology
, vol.47
, pp. 537-558
-
-
Roth, P.L.1
-
23
-
-
0001523948
-
A Monte Carlo analysis of missing data techniques in a HRM setting
-
Roth, P. L., & Switzer, F. S. (1995). A Monte Carlo analysis of missing data techniques in a HRM setting. Journal of Management, 21, 1003-1023
-
(1995)
Journal of Management
, vol.21
, pp. 1003-1023
-
-
Roth, P.L.1
Switzer, F.S.2
-
24
-
-
0017133178
-
Inference and missing data
-
Rubin, D. B. (1976). Inference and missing data. Biometrika, 61, 581-592
-
(1976)
Biometrika
, vol.61
, pp. 581-592
-
-
Rubin, D.B.1
-
25
-
-
0001745892
-
Some applications of multilevel models to educational data
-
R. D. Bock (Ed.). San Diego, CA: Academic Press
-
Rubin, D. B. (1989). Some applications of multilevel models to educational data. In R. D. Bock (Ed.), Multilevel analysis of educational data (pp. 1-17). San Diego, CA: Academic Press
-
(1989)
Multilevel Analysis of Educational Data
, pp. 1-17
-
-
Rubin, D.B.1
-
29
-
-
0032251946
-
Using SAS PROC MIXED to fit multilevel models, hierarchical models, and individual growth models
-
Singer, J. (1998). Using SAS PROC MIXED to fit multilevel models, hierarchical models, and individual growth models. Journal of Educational and Behavioral Statistics, 23, 323-355
-
(1998)
Journal of Educational and Behavioral Statistics
, vol.23
, pp. 323-355
-
-
Singer, J.1
|