메뉴 건너뛰기




Volumn 38, Issue 9, 2011, Pages 1845-1865

Missing data techniques for multilevel data: Implications of model misspecification

Author keywords

Maximum likelihood; Missing data; Monte Carlo; Multilevel data; Multiple imputation

Indexed keywords


EID: 79961137307     PISSN: 02664763     EISSN: 13600532     Source Type: Journal    
DOI: 10.1080/02664763.2010.529882     Document Type: Article
Times cited : (35)

References (40)
  • 1
    • 0345475379 scopus 로고    scopus 로고
    • Missing data techniques for structural equation modeling
    • P.D. Allison, Missing data techniques for structural equation modeling, J. Abnorm. Psychol. 11 (2003), pp. 545-557.
    • (2003) J. Abnorm. Psychol. , vol.11 , pp. 545-557
    • Allison, P.D.1
  • 2
    • 84914149011 scopus 로고    scopus 로고
    • Multiple Imputation of Categorical Variables under the Multivariate Normal Model
    • Montreal, QC, available at
    • P.D. Allison, Multiple Imputation of Categorical Variables under the Multivariate Normal Model, Meeting of the American Sociological Association, Montreal, QC, 2006; available at http://www.allacademic.com/meta/p102543_index.html.
    • (2006) Meeting of the American Sociological Association
    • Allison, P.D.1
  • 3
    • 0035755636 scopus 로고    scopus 로고
    • A comparison of inclusive and restrictive strategies in modern missing data procedures
    • L.M. Collins, J.L. Schafer, and C. Kam, A comparison of inclusive and restrictive strategies in modern missing data procedures, Psychol. Methods 6 (2001), pp. 330-351.
    • (2001) Psychol. Methods , vol.6 , pp. 330-351
    • Collins, L.M.1    Schafer, J.L.2    Kam, C.3
  • 5
    • 0002543932 scopus 로고    scopus 로고
    • A primer on maximum likelihood algorithms available for use with missing data
    • C.K. Enders, A primer on maximum likelihood algorithms available for use with missing data, Struct. Equ. Model. 8 (2001), pp. 128-141.
    • (2001) Struct. Equ. Model. , vol.8 , pp. 128-141
    • Enders, C.K.1
  • 6
    • 33645894571 scopus 로고    scopus 로고
    • Analyzing structural equation models with missing data
    • in, G.R. Hancock and R.O. Mueller, eds., Information Age Publishing, Greenwich, CT
    • C.K. Enders, Analyzing structural equation models with missing data, in Structural Equation Modeling: A Second Course, G.R. Hancock and R.O. Mueller, eds., Information Age Publishing, Greenwich, CT, 2006, pp. 313-342.
    • (2006) Structural Equation Modeling: A Second Course , pp. 313-342
    • Enders, C.K.1
  • 8
    • 0347249765 scopus 로고    scopus 로고
    • Adding missing-data-relevant variables to FIML-based structural equation models
    • J.W. Graham, Adding missing-data-relevant variables to FIML-based structural equation models, Struct. Equ. Model. 10 (2003), pp. 80-100.
    • (2003) Struct. Equ. Model. , vol.10 , pp. 80-100
    • Graham, J.W.1
  • 9
    • 34548451124 scopus 로고    scopus 로고
    • How many imputations are really needed? Some practical clarifications of multiple imputation theory
    • J.W. Graham, A.E. Olchowski, and T.D. Gilreath, How many imputations are really needed? Some practical clarifications of multiple imputation theory, Prev. Sci. 8 (2007), pp. 206-213.
    • (2007) Prev. Sci. , vol.8 , pp. 206-213
    • Graham, J.W.1    Olchowski, A.E.2    Gilreath, T.D.3
  • 10
    • 33845210459 scopus 로고    scopus 로고
    • Inferences on missing information under multiple imputation and two-stage multiple imputation
    • O. Harel, Inferences on missing information under multiple imputation and two-stage multiple imputation, Statist. Methodol. 4 (2007), pp. 75-89.
    • (2007) Statist. Methodol. , vol.4 , pp. 75-89
    • Harel, O.1
  • 11
    • 34250686456 scopus 로고    scopus 로고
    • Multiple imputation-review of theory, implementation and software
    • O. Harel and X. Zhou, Multiple imputation-review of theory, implementation and software, Stat. Med. 26 (2007), pp. 3057-3077.
    • (2007) Stat. Med. , vol.26 , pp. 3057-3077
    • Harel, O.1    Zhou, X.2
  • 12
    • 3042719018 scopus 로고    scopus 로고
    • A note on determining the number of imputations for missing data
    • S.L. Hershberger and D.G. Fisher, A note on determining the number of imputations for missing data, Struct. Equ. Model. 10 (2003), pp. 648-650.
    • (2003) Struct. Equ. Model. , vol.10 , pp. 648-650
    • Hershberger, S.L.1    Fisher, D.G.2
  • 14
    • 79961145775 scopus 로고    scopus 로고
    • software available at
    • G.W. Jacobusse, winMICE; software available at http://www.multiple-imputation.com.
    • WinMICE
    • Jacobusse, G.W.1
  • 15
    • 84965572693 scopus 로고
    • The analysis of social science data with missing values
    • R.J.A. Little and D.B. Rubin, The analysis of social science data with missing values, Sociol. Methods Res. 18 (1989), pp. 292-326.
    • (1989) Sociol. Methods Res. , vol.18 , pp. 292-326
    • Little, R.J.A.1    Rubin, D.B.2
  • 18
    • 12744272198 scopus 로고    scopus 로고
    • Missing data in educational research: A review of reporting practices and suggestions for improvement
    • J.L. Peugh and C.K. Enders, Missing data in educational research: A review of reporting practices and suggestions for improvement, Rev. Educ. Res. 74 (2004), pp. 525-556.
    • (2004) Rev. Educ. Res. , vol.74 , pp. 525-556
    • Peugh, J.L.1    Enders, C.K.2
  • 19
    • 5344244656 scopus 로고    scopus 로고
    • R Foundation for Statistical Computing, Vienna, Austria, software available at
    • R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, 2006; software available at http://www.R-project.org.
    • (2006) R: A Language and Environment for Statistical Computing
  • 22
    • 79961159518 scopus 로고    scopus 로고
    • Software options for multilevel models
    • in, A.A. O'Connell and D. Betsy McCoach, eds., Information Age Publishing, Inc., Charlotte, NC
    • J.K. Roberts and P. McLeod, Software options for multilevel models, in Multilevel Modeling of Educational Data, A.A. O'Connell and D. Betsy McCoach, eds., Information Age Publishing, Inc., Charlotte, NC, 2008, pp. 427-467.
    • (2008) Multilevel Modeling of Educational Data , pp. 427-467
    • Roberts, J.K.1    McLeod, P.2
  • 23
    • 0017133178 scopus 로고
    • Inference and missing data
    • D.B. Rubin, Inference and missing data, Biometrika 63 (1976), pp. 581-592.
    • (1976) Biometrika , vol.63 , pp. 581-592
    • Rubin, D.B.1
  • 25
    • 0030539070 scopus 로고    scopus 로고
    • Multiple imputation after 18+ years
    • D.B. Rubin, Multiple imputation after 18+ years, J. Am. Statist. Assoc. 91 (1996), pp. 473-489.
    • (1996) J. Am. Statist. Assoc. , vol.91 , pp. 473-489
    • Rubin, D.B.1
  • 28
    • 0004211748 scopus 로고    scopus 로고
    • Multiple imputation with PAN
    • in, L.M. Collins and A.G. Sayer, eds., American Psychological Association, Washington, DC
    • J.L. Schafer, Multiple imputation with PAN, in New Methods for the Analysis of Change, L.M. Collins and A.G. Sayer, eds., American Psychological Association, Washington, DC, 2001, pp. 357-377.
    • (2001) New Methods for the Analysis of Change , pp. 357-377
    • Schafer, J.L.1
  • 29
    • 28444485368 scopus 로고    scopus 로고
    • Multiple imputation in multivariate problems when the imputation and analysis models differ
    • J.L. Schafer, Multiple imputation in multivariate problems when the imputation and analysis models differ, Stat. Neerl. 57 (2003), pp. 19-35.
    • (2003) Stat. Neerl. , vol.57 , pp. 19-35
    • Schafer, J.L.1
  • 31
    • 85047673373 scopus 로고    scopus 로고
    • Missing data: Our view of the state of the art
    • J.L. Schafer and J.W. Graham, Missing data: Our view of the state of the art, Psychol. Methods 7 (2002), pp. 147-177.
    • (2002) Psychol. Methods , vol.7 , pp. 147-177
    • Schafer, J.L.1    Graham, J.W.2
  • 32
    • 0032219074 scopus 로고    scopus 로고
    • Multiple imputation for multivariate missing-data problems: A data analyst's perspective
    • J.L. Schafer and M.K. Olsen, Multiple imputation for multivariate missing-data problems: A data analyst's perspective, Multivariate Behav. Res. 33 (1998), pp. 545-571.
    • (1998) Multivariate Behav. Res. , vol.33 , pp. 545-571
    • Schafer, J.L.1    Olsen, M.K.2
  • 33
    • 0036017469 scopus 로고    scopus 로고
    • Computational strategies for multivariate linear mixed-effects models with missing values
    • J.L. Schafer and R.M. Yucel, Computational strategies for multivariate linear mixed-effects models with missing values, J. Comput. Graph. Stat. 11 (2002), pp. 437-457.
    • (2002) J. Comput. Graph. Stat. , vol.11 , pp. 437-457
    • Schafer, J.L.1    Yucel, R.M.2
  • 34
    • 0035748192 scopus 로고    scopus 로고
    • The use of multiple imputation for the analysis of missing data
    • S. Sinharay, H.S. Stern, and D. Russell, The use of multiple imputation for the analysis of missing data, Psychol. Methods 6 (2001), pp. 317-329.
    • (2001) Psychol. Methods , vol.6 , pp. 317-329
    • Sinharay, S.1    Stern, H.S.2    Russell, D.3
  • 36
    • 67649384086 scopus 로고    scopus 로고
    • Tibco Software, Inc., Palo Alto, CA, software available at
    • S-PLUS Version 8, Tibco Software, Inc., Palo Alto, CA, 2007; software available at http://www.tibco.com.
    • (2007) S-PLUS Version 8
  • 37
    • 77951653540 scopus 로고    scopus 로고
    • Estimation procedures for hierarchical linear models
    • in, A.A. O'Connell and D. Betsy McCoach, eds., Information Age Publishing, Inc., Charlotte, NC
    • H. Swaminathan and H.J. Rogers, Estimation procedures for hierarchical linear models, in Multilevel Modeling of Educational Data, A.A. O'Connell and D. Betsy McCoach, eds., Information Age Publishing, Inc., Charlotte, NC, 2008, pp. 469-519.
    • (2008) Multilevel Modeling of Educational Data , pp. 469-519
    • Swaminathan, H.1    Rogers, H.J.2
  • 38
    • 84950758368 scopus 로고
    • The calculation of posterior distributions by data augmentation
    • M.A. Tanner and W.H. Wong, The calculation of posterior distributions by data augmentation, J. Am. Statist. Assoc. 82 (1987), pp. 528-540.
    • (1987) J. Am. Statist. Assoc. , vol.82 , pp. 528-540
    • Tanner, M.A.1    Wong, W.H.2
  • 40
    • 70549084402 scopus 로고    scopus 로고
    • Impact of non-normal random effects on inference by multiple imputation. A simulation assessment
    • R.M. Yucel and H. Demirtas, Impact of non-normal random effects on inference by multiple imputation. A simulation assessment, Comput. Stat. Data Anal. 54 (2010), pp. 790-801.
    • (2010) Comput. Stat. Data Anal. , vol.54 , pp. 790-801
    • Yucel, R.M.1    Demirtas, H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.