메뉴 건너뛰기




Volumn 35, Issue 29, 2016, Pages 5376-5390

Objective Bayesian model selection for Cox regression

Author keywords

Bayes factor; clinical prediction; Cox model; g prior; model selection

Indexed keywords

ARTICLE; BAYES THEOREM; CALIBRATION; CARDIOVASCULAR DISEASE; COHORT ANALYSIS; INTERMETHOD COMPARISON; METHODOLOGY; PREDICTION; PRIMARY BILIARY CIRRHOSIS; PROCESS OPTIMIZATION; STATISTICAL MODEL; SURVIVAL; HUMAN; PROPORTIONAL HAZARDS MODEL;

EID: 84984706616     PISSN: 02776715     EISSN: 10970258     Source Type: Journal    
DOI: 10.1002/sim.7089     Document Type: Article
Times cited : (17)

References (65)
  • 3
    • 0042107603 scopus 로고    scopus 로고
    • Objective Bayesian methods for model selection: introduction and comparison
    • In, Lahiri P, (ed.).,, Institute of Mathematical Statistics, Beachwood, OH
    • Berger JO, Pericchi LR. Objective Bayesian methods for model selection: introduction and comparison. In Model selection, IMS Lecture Notes, Lahiri P  (ed.)., vol. 38. Institute of Mathematical Statistics: Beachwood, OH 2001; 135–207.
    • (2001) Model selection, IMS Lecture Notes , vol.38 , pp. 135-207
    • Berger, J.O.1    Pericchi, L.R.2
  • 4
    • 4043135554 scopus 로고    scopus 로고
    • Optimal predictive model selection
    • Barbieri MM, Berger JO. Optimal predictive model selection. Annals of Statistics 2004; 32(3):870–897.
    • (2004) Annals of Statistics , vol.32 , Issue.3 , pp. 870-897
    • Barbieri, M.M.1    Berger, J.O.2
  • 5
    • 0001259111 scopus 로고    scopus 로고
    • Bayesian model averaging: a tutorial
    • With comments by M. Clyde, David Draper and E. I. Georgea rejoinder by the authors
    • Hoeting JA, Madigan D, Raftery AE, Volinsky CT. Bayesian model averaging: a tutorial. Statistical Science 1999; 14(4):382–417. With comments by M. Clyde, David Draper and E. I. George, and a rejoinder by the authors.
    • (1999) Statistical Science , vol.14 , Issue.4 , pp. 382-417
    • Hoeting, J.A.1    Madigan, D.2    Raftery, A.E.3    Volinsky, C.T.4
  • 7
    • 77953071298 scopus 로고    scopus 로고
    • Bayes and empirical-Bayes multiplicity adjustment in the variable-selection problem
    • Scott JG, Berger JO. Bayes and empirical-Bayes multiplicity adjustment in the variable-selection problem. Annals of Statistics 2010; 38(5):2587–2619.
    • (2010) Annals of Statistics , vol.38 , Issue.5 , pp. 2587-2619
    • Scott, J.G.1    Berger, J.O.2
  • 10
    • 4043150795 scopus 로고    scopus 로고
    • The interplay of Bayesian and frequentist analysis
    • Bayarri MJ, Berger JO. The interplay of Bayesian and frequentist analysis. Statistical Science 2004; 19(1):58–80.
    • (2004) Statistical Science , vol.19 , Issue.1 , pp. 58-80
    • Bayarri, M.J.1    Berger, J.O.2
  • 13
    • 0031160755 scopus 로고    scopus 로고
    • Using regression models for prediction: shrinkage and regression to the mean
    • Copas JB. Using regression models for prediction: shrinkage and regression to the mean. Statistical Methods in Medical Research 1997; 6(2):167–183.
    • (1997) Statistical Methods in Medical Research , vol.6 , Issue.2 , pp. 167-183
    • Copas, J.B.1
  • 15
    • 84868213569 scopus 로고    scopus 로고
    • Criteria for Bayesian model choice with application to variable selection
    • Bayarri MJ, Berger JO, Forte A, García-Donato G. Criteria for Bayesian model choice with application to variable selection. Annals of Statistics 2012; 40(3):1550–1577.
    • (2012) Annals of Statistics , vol.40 , Issue.3 , pp. 1550-1577
    • Bayarri, M.J.1    Berger, J.O.2    Forte, A.3    García-Donato, G.4
  • 16
    • 0001729472 scopus 로고    scopus 로고
    • Calibration and empirical Bayes variable selection
    • George EI, Foster DP. Calibration and empirical Bayes variable selection. Biometrika 2000; 87(4):731–747.
    • (2000) Biometrika , vol.87 , Issue.4 , pp. 731-747
    • George, E.I.1    Foster, D.P.2
  • 18
    • 0039026915 scopus 로고
    • Posterior odds ratios for selected regression hypotheses
    • In, Bernardo JM, DeGroot MH, Lindley DV, Smith AFM, (eds)., University of Valencia Press, Valencia
    • Zellner A, Siow A. Posterior odds ratios for selected regression hypotheses. In Bayesian Statistics: Proceedings of the First International Meeting Held in Valencia, Bernardo JM, DeGroot MH, Lindley DV, Smith AFM  (eds). University of Valencia Press: Valencia 1980; 585–603.
    • (1980) Bayesian Statistics: Proceedings of the First International Meeting Held in Valencia , pp. 585-603
    • Zellner, A.1    Siow, A.2
  • 19
    • 82455175692 scopus 로고    scopus 로고
    • Hyper-g priors for generalized linear models
    • Sabanés Bové D, Held L. Hyper-g priors for generalized linear models. Bayesian Analysis 2011; 6(3):387–410.
    • (2011) Bayesian Analysis , vol.6 , Issue.3 , pp. 387-410
    • Sabanés Bové, D.1    Held, L.2
  • 21
    • 84930895045 scopus 로고    scopus 로고
    • Approximate Bayesian model selection with the deviance statistic
    • Held L, Sabanés Bové D, Gravestock I. Approximate Bayesian model selection with the deviance statistic. Statistical Science 2015; 30:242–257.
    • (2015) Statistical Science , vol.30 , pp. 242-257
    • Held, L.1    Sabanés Bové, D.2    Gravestock, I.3
  • 22
    • 43749095435 scopus 로고    scopus 로고
    • Properties of Bayes factors based on test statistics
    • Johnson VE. Properties of Bayes factors based on test statistics. Scandinavian Journal of Statistics 2008; 35(2):354–368.
    • (2008) Scandinavian Journal of Statistics , vol.35 , Issue.2 , pp. 354-368
    • Johnson, V.E.1
  • 25
    • 27944462549 scopus 로고
    • A reference Bayesian test for nested hypotheses and its relationship to the Schwarz criterion
    • Kass RE, Wasserman L. A reference Bayesian test for nested hypotheses and its relationship to the Schwarz criterion. Journal of the American Statistical Association 1995; 90(431):928–934.
    • (1995) Journal of the American Statistical Association , vol.90 , Issue.431 , pp. 928-934
    • Kass, R.E.1    Wasserman, L.2
  • 27
    • 0030613470 scopus 로고    scopus 로고
    • Model selection: an integral part of inference
    • Buckland ST, Burnham KP, Augustin NH. Model selection: an integral part of inference. Biometrics 1997; 53(2):603–618.
    • (1997) Biometrics , vol.53 , Issue.2 , pp. 603-618
    • Buckland, S.T.1    Burnham, K.P.2    Augustin, N.H.3
  • 30
    • 0034059779 scopus 로고    scopus 로고
    • Bayesian information criterion for censored survival models
    • Volinsky CT, Raftery AE. Bayesian information criterion for censored survival models. Biometrics 2000; 56(1):256–262.
    • (2000) Biometrics , vol.56 , Issue.1 , pp. 256-262
    • Volinsky, C.T.1    Raftery, A.E.2
  • 31
    • 0000320906 scopus 로고
    • The fitting of exponential, weibull and extreme value distributions to complex censored survival data using GLIM
    • Aitkin M, Clayton D. The fitting of exponential, weibull and extreme value distributions to complex censored survival data using GLIM. Journal of the Royal Statistical Society. Series C (Applied Statistics) 1980; 29(2):156–163.
    • (1980) Journal of the Royal Statistical Society. Series C (Applied Statistics) , vol.29 , Issue.2 , pp. 156-163
    • Aitkin, M.1    Clayton, D.2
  • 32
    • 0019026316 scopus 로고
    • The analysis of rates and of survivorship using log-linear models
    • Holford TR. The analysis of rates and of survivorship using log-linear models. Biometrics 1980; 36(2):299–305.
    • (1980) Biometrics , vol.36 , Issue.2 , pp. 299-305
    • Holford, T.R.1
  • 33
    • 84901054684 scopus 로고    scopus 로고
    • Comment on Cai and Betensky (2003), on the Poisson approximation for hazard regression
    • Sabanés Bové D, Held L. Comment on Cai and Betensky (2003), on the Poisson approximation for hazard regression. Biometrics 2013; 69:795.
    • (2013) Biometrics , vol.69 , pp. 795
    • Sabanés Bové, D.1    Held, L.2
  • 35
    • 0016794660 scopus 로고
    • Partial likelihood
    • Cox DR. Partial likelihood. Biometrika 1975; 62(2):269–276.
    • (1975) Biometrika , vol.62 , Issue.2 , pp. 269-276
    • Cox, D.R.1
  • 39
    • 0010827738 scopus 로고
    • The limiting distribution of the likelihood ratio statistic under a class of local alternatives
    • Davidson RR, Lever WE. The limiting distribution of the likelihood ratio statistic under a class of local alternatives. Sankhya: The Indian Journal of Statistics, Series A 1970; 32(2):209–224.
    • (1970) Sankhya: The Indian Journal of Statistics, Series A , vol.32 , Issue.2 , pp. 209-224
    • Davidson, R.R.1    Lever, W.E.2
  • 40
    • 27144452937 scopus 로고    scopus 로고
    • Likelihood ratio tests under local alternatives in regular semiparametric models
    • Banerjee M. Likelihood ratio tests under local alternatives in regular semiparametric models. Statistica Sinica 2005; 15(3):635–644.
    • (2005) Statistica Sinica , vol.15 , Issue.3 , pp. 635-644
    • Banerjee, M.1
  • 41
    • 0000434492 scopus 로고
    • Information and asymptotic efficiency in parametric-nonparametric models
    • Begun JM, Hall WJ, Huang WM, Wellner JA. Information and asymptotic efficiency in parametric-nonparametric models. The Annals of Statistics 1983; 11(2):432–452.
    • (1983) The Annals of Statistics , vol.11 , Issue.2 , pp. 432-452
    • Begun, J.M.1    Hall, W.J.2    Huang, W.M.3    Wellner, J.A.4
  • 42
    • 0034736564 scopus 로고    scopus 로고
    • Validation, calibration, revision and combination of prognostic survival models
    • van Houwelingen JC. Validation, calibration, revision and combination of prognostic survival models. Statistics in Medicine 2000; 19(24):3401–3415.
    • (2000) Statistics in Medicine , vol.19 , Issue.24 , pp. 3401-3415
    • van Houwelingen, J.C.1
  • 44
    • 34547733991 scopus 로고    scopus 로고
    • Model selection in nonparametric hazard regression
    • Leng C, Zhang HH. Model selection in nonparametric hazard regression. Journal of Nonparametric Statistics 2006 2007; 18(7-8):417–429.
    • (2007) Journal of Nonparametric Statistics 2006 , vol.18 , Issue.7-8 , pp. 417-429
    • Leng, C.1    Zhang, H.H.2
  • 45
    • 33847350805 scopus 로고    scopus 로고
    • Component selection and smoothing in multivariate nonparametric regression
    • Lin Y, Zhang HH. Component selection and smoothing in multivariate nonparametric regression. The Annals of Statistics 2006; 34(5):2272–2297.
    • (2006) The Annals of Statistics , vol.34 , Issue.5 , pp. 2272-2297
    • Lin, Y.1    Zhang, H.H.2
  • 46
    • 84885435472 scopus 로고    scopus 로고
    • On model specification and selection of the Cox proportional hazards model
    • Lin CY, Halabi S. On model specification and selection of the Cox proportional hazards model. Statistics in Medicine 2013; 32(26):4609–4623.
    • (2013) Statistics in Medicine , vol.32 , Issue.26 , pp. 4609-4623
    • Lin, C.Y.1    Halabi, S.2
  • 47
    • 84954899977 scopus 로고
    • On prior distributions for binary trials
    • Geisser S. On prior distributions for binary trials. The American Statistician 1984; 38(4):244–247.
    • (1984) The American Statistician , vol.38 , Issue.4 , pp. 244-247
    • Geisser, S.1
  • 49
    • 84946640223 scopus 로고
    • Transformation of the independent variables
    • Box G. EP, Tidwell PW. Transformation of the independent variables. Technometrics 1962; 4(4):531–550.
    • (1962) Technometrics , vol.4 , Issue.4 , pp. 531-550
    • Box, G.E.P.1    Tidwell, P.W.2
  • 51
    • 54349088695 scopus 로고    scopus 로고
    • The performance of risk prediction models
    • Gerds TA, Cai T, Schumacher M. The performance of risk prediction models. Biometrical Journal 2008; 50(4):457–479.
    • (2008) Biometrical Journal , vol.50 , Issue.4 , pp. 457-479
    • Gerds, T.A.1    Cai, T.2    Schumacher, M.3
  • 52
    • 0033619170 scopus 로고    scopus 로고
    • Assessment and comparison of prognostic classification schemes for survival data
    • Graf E, Schmoor C, Sauerbrei W, Schumacher M. Assessment and comparison of prognostic classification schemes for survival data. Statistics in Medicine 1999; 18:2529–2545.
    • (1999) Statistics in Medicine , vol.18 , pp. 2529-2545
    • Graf, E.1    Schmoor, C.2    Sauerbrei, W.3    Schumacher, M.4
  • 53
    • 33846223169 scopus 로고    scopus 로고
    • Consistent estimation of the expected Brier score in general survival models with right-censored event times
    • Gerds TA, Schumacher M. Consistent estimation of the expected Brier score in general survival models with right-censored event times. Biometrical Journal 2006; 48(6):1029–1040.
    • (2006) Biometrical Journal , vol.48 , Issue.6 , pp. 1029-1040
    • Gerds, T.A.1    Schumacher, M.2
  • 54
    • 0031015557 scopus 로고    scopus 로고
    • The Lasso method for variable selection in the Cox model
    • Tibshirani R. The Lasso method for variable selection in the Cox model. Statistics in Medicine 1997; 16(4):385–395.
    • (1997) Statistics in Medicine , vol.16 , Issue.4 , pp. 385-395
    • Tibshirani, R.1
  • 56
    • 33847345021 scopus 로고    scopus 로고
    • Dynamic prediction by landmarking in event history analysis
    • van Houwelingen JC. Dynamic prediction by landmarking in event history analysis. Scandinavian Journal of Statistics 2007; 34:70–85.
    • (2007) Scandinavian Journal of Statistics , vol.34 , pp. 70-85
    • van Houwelingen, J.C.1
  • 58
    • 0000464585 scopus 로고
    • Dummy variables in stepwise regression
    • Cohen A. Dummy variables in stepwise regression. The American Statistician 1991; 45(5):226–228.
    • (1991) The American Statistician , vol.45 , Issue.5 , pp. 226-228
    • Cohen, A.1
  • 62
    • 77952568988 scopus 로고    scopus 로고
    • 1 penalized estimation in the Cox proportional hazards model
    • 1 penalized estimation in the Cox proportional hazards model. Biometrical Journal 2010; 52(1):70–84.
    • (2010) Biometrical Journal , vol.52 , Issue.1 , pp. 70-84
    • Goeman, J.J.1
  • 63
    • 34548151636 scopus 로고    scopus 로고
    • Adaptive Lasso for Cox's proportional hazards model
    • Zhang HH, Lu W. Adaptive Lasso for Cox's proportional hazards model. Biometrika 2007; 94(3):691–703.
    • (2007) Biometrika , vol.94 , Issue.3 , pp. 691-703
    • Zhang, H.H.1    Lu, W.2
  • 65
    • 0035099124 scopus 로고    scopus 로고
    • A solution to the problem of monotone likelihood in Cox regression
    • Heinze G, Schemper M. A solution to the problem of monotone likelihood in Cox regression. Biometrics 2001; 57(1):114–119.
    • (2001) Biometrics , vol.57 , Issue.1 , pp. 114-119
    • Heinze, G.1    Schemper, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.