메뉴 건너뛰기




Volumn 24, Issue 2, 2015, Pages 394-415

Objective Bayesian Model Selection in Generalized Additive Models With Penalized Splines

Author keywords

Function selection; g prior; Shrinkage; Stochastic search; Variable selection

Indexed keywords


EID: 84931068928     PISSN: 10618600     EISSN: 15372715     Source Type: Journal    
DOI: 10.1080/10618600.2014.912136     Document Type: Article
Times cited : (18)

References (72)
  • 1
    • 0030327571 scopus 로고    scopus 로고
    • Time-Dependent Hazard Ratio: Modeling and Hypothesis Testing With Application in Lupus Nephritis
    • M.Abrahamowicz,, T.MacKenzie,, and J.M.Esdaile, (1996), “Time-Dependent Hazard Ratio: Modeling and Hypothesis Testing With Application in Lupus Nephritis,” Journal of the American Statistical Association, 91, 1432–1439.
    • (1996) Journal of the American Statistical Association , vol.91 , pp. 1432-1439
    • Abrahamowicz, M.1    MacKenzie, T.2    Esdaile, J.M.3
  • 4
    • 80053300454 scopus 로고
    • Sur les Fonctions Hypergeometriques de Plusieurs Variables, les Polynomes d’Hermite et Autres Fonctions Spheriques dans l’Hyperespace
    • M.P.Appell, (1925), “Sur les Fonctions Hypergeometriques de Plusieurs Variables, les Polynomes d’Hermite et Autres Fonctions Spheriques dans l’Hyperespace,” Memorial des Sciences Mathematiques, 3, 1–75.
    • (1925) Memorial des Sciences Mathematiques , vol.3 , pp. 1-75
    • Appell, M.P.1
  • 6
    • 84868213569 scopus 로고    scopus 로고
    • Criteria for Bayesian Model Choice With Application to Variable Selection
    • M.J.Bayarri,, J.O.Berger,, A.Forte,, and G.García-Donato, (2012), “Criteria for Bayesian Model Choice With Application to Variable Selection,” The Annals of Statistics, 40, 1550–1577.
    • (2012) The Annals of Statistics , vol.40 , pp. 1550-1577
    • Bayarri, M.J.1    Berger, J.O.2    Forte, A.3    García-Donato, G.4
  • 7
    • 49749090429 scopus 로고    scopus 로고
    • Simultaneous Selection of Variables and Smoothing Parameters in Structured Additive Regression Models
    • C.Belitz,, and S.Lang, (2008), “Simultaneous Selection of Variables and Smoothing Parameters in Structured Additive Regression Models,” Computational Statistics and Data Analysis, 53, 61–81.
    • (2008) Computational Statistics and Data Analysis , vol.53 , pp. 61-81
    • Belitz, C.1    Lang, S.2
  • 8
    • 0042107603 scopus 로고    scopus 로고
    • Objective Bayesian Methods for Model Selection: Introduction and Comparison
    • Lahiri P., (ed), Beachwood, OH: Institute of Mathematical Statistics, vol. 38 of IMS Lecture Notes
    • J.O.Berger,, and L.R.Pericchi, (2001), “Objective Bayesian Methods for Model Selection: Introduction and Comparison,” in Model Selection, ed. P.Lahiri, Beachwood, OH: Institute of Mathematical Statistics, vol. 38 of IMS Lecture Notes, pp. 135–207.
    • (2001) Model Selection , pp. 135-207
    • Berger, J.O.1    Pericchi, L.R.2
  • 10
    • 0141477361 scopus 로고
    • Bayesian Computation and Stochastic Systems” (with discussion)
    • J.Besag,, P.Green,, D.Higdon,, and K.Mengersen, (1995), “Bayesian Computation and Stochastic Systems” (with discussion), Statistical Science, 10, 3–66.
    • (1995) Statistical Science , vol.10 , pp. 3-66
    • Besag, J.1    Green, P.2    Higdon, D.3    Mengersen, K.4
  • 11
    • 0002168778 scopus 로고
    • Solving Linear Least Squares Problems by Gram–Schmidt Orthogonalization
    • Å.Björck, (1967), “Solving Linear Least Squares Problems by Gram–Schmidt Orthogonalization,” BIT Numerical Mathematics, 7, 1–21.
    • (1967) BIT Numerical Mathematics , vol.7 , pp. 1-21
    • Björck, Å.1
  • 13
    • 41849109395 scopus 로고    scopus 로고
    • Simultaneous Probability Statements for Bayesian P-Splines
    • A.Brezger,, and S.Lang, (2008), “Simultaneous Probability Statements for Bayesian P-Splines,” Statistical Modelling, 8, 141–168.
    • (2008) Statistical Modelling , vol.8 , pp. 141-168
    • Brezger, A.1    Lang, S.2
  • 14
    • 1042263216 scopus 로고    scopus 로고
    • Degrees-of-Freedom Tests for Smoothing Splines
    • E.Cantoni,, and T.Hastie, (2002), “Degrees-of-Freedom Tests for Smoothing Splines,” Biometrika, 89, 251–263.
    • (2002) Biometrika , vol.89 , pp. 251-263
    • Cantoni, E.1    Hastie, T.2
  • 15
    • 84865715409 scopus 로고    scopus 로고
    • Regularization in Regression: Comparing Bayesian and Frequentist Methods in a Poorly Informative Situation
    • G.Celeux,, M.E.Anbari,, J.-M.Marin,, and C.P.Robert, (2012), “Regularization in Regression: Comparing Bayesian and Frequentist Methods in a Poorly Informative Situation,” Bayesian Analysis, 7, 477–502.
    • (2012) Bayesian Analysis , vol.7 , pp. 477-502
    • Celeux, G.1    Anbari, M.E.2    Marin, J.-M.3    Robert, C.P.4
  • 17
    • 1642484486 scopus 로고    scopus 로고
    • f1: A Code to Compute Appell’s F1 Hypergeometric Function
    • F.Colavecchia,, and G.Gasaneo, (2004), “f1: A Code to Compute Appell’s F1 Hypergeometric Function,” Computer Physics Communications, 157, 32–38.
    • (2004) Computer Physics Communications , vol.157 , pp. 32-38
    • Colavecchia, F.1    Gasaneo, G.2
  • 18
    • 49549109589 scopus 로고    scopus 로고
    • Variable Selection and Model Averaging in Semiparametric Overdispersed Generalized Linear Models
    • R.Cottet,, R.J.Kohn,, and D.J.Nott, (2008), “Variable Selection and Model Averaging in Semiparametric Overdispersed Generalized Linear Models,” Journal of the American Statistical Association, 103, 661–671.
    • (2008) Journal of the American Statistical Association , vol.103 , pp. 661-671
    • Cottet, R.1    Kohn, R.J.2    Nott, D.J.3
  • 23
    • 77953326052 scopus 로고    scopus 로고
    • Bayesian Regularisation in Structured Additive Regression: A Unifying Perspective on Shrinkage, Smoothing and Predictor Selection
    • L.Fahrmeir,, T.Kneib,, and S.Konrath, (2010), “Bayesian Regularisation in Structured Additive Regression: A Unifying Perspective on Shrinkage, Smoothing and Predictor Selection,” Statistics and Computing, 20, 203–219.
    • (2010) Statistics and Computing , vol.20 , pp. 203-219
    • Fahrmeir, L.1    Kneib, T.2    Konrath, S.3
  • 24
    • 8644257675 scopus 로고    scopus 로고
    • Penalized Structured Additive Regression for Space-Time Data: A Bayesian Perspective
    • L.Fahrmeir,, T.Kneib,, and S.Lang, (2004), “Penalized Structured Additive Regression for Space-Time Data: A Bayesian Perspective,” Statistica Sinica, 14, 715–745.
    • (2004) Statistica Sinica , vol.14 , pp. 715-745
    • Fahrmeir, L.1    Kneib, T.2    Lang, S.3
  • 25
    • 77956640383 scopus 로고    scopus 로고
    • Bayesian Inference for Generalized Linear Mixed Models
    • Y.Fong,, H.Rue,, and J.Wakefield, (2010), “Bayesian Inference for Generalized Linear Mixed Models,” Biostatistics, 11, 397–412.
    • (2010) Biostatistics , vol.11 , pp. 397-412
    • Fong, Y.1    Rue, H.2    Wakefield, J.3
  • 26
    • 81955163109 scopus 로고    scopus 로고
    • Reversible Jump Methods for Generalized Linear Models and Generalized Linear Mixed Models
    • J.Forster,, R.Gill,, and A.Overstall, (2012), “Reversible Jump Methods for Generalized Linear Models and Generalized Linear Mixed Models,” Statistics and Computing, 22, 107–120.
    • (2012) Statistics and Computing , vol.22 , pp. 107-120
    • Forster, J.1    Gill, R.2    Overstall, A.3
  • 29
    • 0035470889 scopus 로고    scopus 로고
    • Greedy Function Approximation: A Gradient Boosting Machine
    • J.H.Friedman, (2001), “Greedy Function Approximation: A Gradient Boosting Machine,” The Annals of Statistics, 29, 1189–1232.
    • (2001) The Annals of Statistics , vol.29 , pp. 1189-1232
    • Friedman, J.H.1
  • 30
    • 0042042167 scopus 로고    scopus 로고
    • Sampling from the Posterior Distribution in Generalized Linear Mixed Models
    • D.Gamerman, (1997), “Sampling from the Posterior Distribution in Generalized Linear Mixed Models,” Statistics and Computing, 7, 57–68.
    • (1997) Statistics and Computing , vol.7 , pp. 57-68
    • Gamerman, D.1
  • 33
    • 1842591334 scopus 로고    scopus 로고
    • Simultaneous Posterior Probability Statements from Monte Carlo Output
    • L.Held, (2004), “Simultaneous Posterior Probability Statements from Monte Carlo Output,” Journal of Computational and Graphical Statistics, 13, 20–35.
    • (2004) Journal of Computational and Graphical Statistics , vol.13 , pp. 20-35
    • Held, L.1
  • 34
    • 0001890697 scopus 로고
    • On Deriving the Inverse of a Sum of Matrices
    • H.V.Henderson,, and S.R.Searle, (1981), “On Deriving the Inverse of a Sum of Matrices,” SIAM Review, 23, 53–60.
    • (1981) SIAM Review , vol.23 , pp. 53-60
    • Henderson, H.V.1    Searle, S.R.2
  • 36
    • 84867151416 scopus 로고    scopus 로고
    • Bayesian Auxiliary Variable Models for Binary and Multinomial Regression
    • C.C.Holmes,, and L.Held, (2006), “Bayesian Auxiliary Variable Models for Binary and Multinomial Regression,” Bayesian Analysis, 1, 145–168.
    • (2006) Bayesian Analysis , vol.1 , pp. 145-168
    • Holmes, C.C.1    Held, L.2
  • 38
    • 0035648087 scopus 로고    scopus 로고
    • Testing Generalized Linear and Semiparametric Models Against Smooth Alternatives
    • G.Kauermann,, and G.Tutz, (2001), “Testing Generalized Linear and Semiparametric Models Against Smooth Alternatives,” Journal of the Royal Statistical Society, Series B, 63, 147–166.
    • (2001) Journal of the Royal Statistical Society, Series B , vol.63 , pp. 147-166
    • Kauermann, G.1    Tutz, G.2
  • 39
    • 66949120727 scopus 로고    scopus 로고
    • Variable Selection and Model Choice in Geoadditive Regression Models
    • T.Kneib,, T.Hothorn,, and G.Tutz, (2009), “Variable Selection and Model Choice in Geoadditive Regression Models,” Biometrics, 65, 626–634.
    • (2009) Biometrics , vol.65 , pp. 626-634
    • Kneib, T.1    Hothorn, T.2    Tutz, G.3
  • 40
    • 67651246919 scopus 로고    scopus 로고
    • On the Effect of Prior Assumptions in Bayesian Model Averaging With Applications to Growth Regression
    • E.Ley,, and M.F.Steel, (2009), “On the Effect of Prior Assumptions in Bayesian Model Averaging With Applications to Growth Regression,” Journal of Applied Econometrics, 24, 651–674.
    • (2009) Journal of Applied Econometrics , vol.24 , pp. 651-674
    • Ley, E.1    Steel, M.F.2
  • 41
    • 84868201999 scopus 로고    scopus 로고
    • Mixtures of g-Priors for Bayesian Model Averaging With Economic Applications
    • E.Ley,, and M.F.Steel, (2012), “Mixtures of g-Priors for Bayesian Model Averaging With Economic Applications,” Journal of Econometrics, 171, 251–266.
    • (2012) Journal of Econometrics , vol.171 , pp. 251-266
    • Ley, E.1    Steel, M.F.2
  • 43
    • 21844520724 scopus 로고
    • Bayesian Graphical Models for Discrete Data
    • D.Madigan,, and J.York, (1995), “Bayesian Graphical Models for Discrete Data,” International Statistical Review, 63, 215–232.
    • (1995) International Statistical Review , vol.63 , pp. 215-232
    • Madigan, D.1    York, J.2
  • 44
    • 79953654016 scopus 로고    scopus 로고
    • Practical Variable Selection for Generalized Additive Models
    • G.Marra,, and S.N.Wood, (2011), “Practical Variable Selection for Generalized Additive Models,” Computational Statistics and Data Analysis, 55, 2372–2387.
    • (2011) Computational Statistics and Data Analysis , vol.55 , pp. 2372-2387
    • Marra, G.1    Wood, S.N.2
  • 47
    • 77955397404 scopus 로고    scopus 로고
    • Default Bayesian Model Determination Methods for Generalized Linear Mixed Models
    • A.M.Overstall,, and J.J.Forster, (2010), “Default Bayesian Model Determination Methods for Generalized Linear Mixed Models,” Computational Statistics and Data Analysis, 54, 3269–3288.
    • (2010) Computational Statistics and Data Analysis , vol.54 , pp. 3269-3288
    • Overstall, A.M.1    Forster, J.J.2
  • 48
    • 0002648792 scopus 로고    scopus 로고
    • The Schwarz Criterion and Related Methods for Normal Linear Models
    • D.K.Pauler, (1998), “The Schwarz Criterion and Related Methods for Normal Linear Models,” Biometrika, 85, 13–27.
    • (1998) Biometrika , vol.85 , pp. 13-27
    • Pauler, D.K.1
  • 49
    • 0030474271 scopus 로고    scopus 로고
    • A Simulation Study of the Number of Events per Variable in Logistic Regression Analysis
    • P.Peduzzi,, J.Concato,, E.Kemper,, T.Holford,, and A.Feinstein, (1996), “A Simulation Study of the Number of Events per Variable in Logistic Regression Analysis,” Journal of Clinical Epidemiology, 49, 1373–1379.
    • (1996) Journal of Clinical Epidemiology , vol.49 , pp. 1373-1379
    • Peduzzi, P.1    Concato, J.2    Kemper, E.3    Holford, T.4    Feinstein, A.5
  • 52
    • 0000940729 scopus 로고
    • Facilitating the Gibbs Sampler: The Gibbs Stopper and the Griddy–Gibbs Sampler
    • C.Ritter,, and M.A.Tanner, (1992), “Facilitating the Gibbs Sampler: The Gibbs Stopper and the Griddy–Gibbs Sampler,” Journal of the American Statistical Association, 87, 861–868.
    • (1992) Journal of the American Statistical Association , vol.87 , pp. 861-868
    • Ritter, C.1    Tanner, M.A.2
  • 53
    • 62849120031 scopus 로고    scopus 로고
    • Approximate Bayesian Inference for Latent Gaussian Models by Using Integrated Nested Laplace Approximations
    • H.Rue,, S.Martino,, and N.Chopin, (2009), “Approximate Bayesian Inference for Latent Gaussian Models by Using Integrated Nested Laplace Approximations,” Journal of the Royal Statistical Society, Series B, 71, 319–392.
    • (2009) Journal of the Royal Statistical Society, Series B , vol.71 , pp. 319-392
    • Rue, H.1    Martino, S.2    Chopin, N.3
  • 56
    • 79958233615 scopus 로고    scopus 로고
    • Bayesian Fractional Polynomials
    • L.Held, (2011a), “Bayesian Fractional Polynomials,” Statistics and Computing, 21, 309–324.
    • (2011) Statistics and Computing , vol.21 , pp. 309-324
    • Held, L.1
  • 57
    • 82455175692 scopus 로고    scopus 로고
    • Hyper-g Priors for Generalized Linear Models
    • L.Held, (2011b), “Hyper-g Priors for Generalized Linear Models,” Bayesian Analysis, 6, 387–410.
    • (2011) Bayesian Analysis , vol.6 , pp. 387-410
    • Held, L.1
  • 58
    • 84871993172 scopus 로고    scopus 로고
    • Spike-and-Slab Priors for Function Selection in Structured Additive Regression Models
    • F.Scheipl,, L.Fahrmeir,, and T.Kneib, (2012), “Spike-and-Slab Priors for Function Selection in Structured Additive Regression Models,” Journal of the American Statistical Association, 107, 1518–1532.
    • (2012) Journal of the American Statistical Association , vol.107 , pp. 1518-1532
    • Scheipl, F.1    Fahrmeir, L.2    Kneib, T.3
  • 59
    • 84884207090 scopus 로고    scopus 로고
    • Penalized Likelihood and Bayesian Function Selection in Regression Models
    • F.Scheipl,, T.Kneib,, and L.Fahrmeir, (2013), “Penalized Likelihood and Bayesian Function Selection in Regression Models,” Advances in Statistical Analysis, 97, 349–385.
    • (2013) Advances in Statistical Analysis , vol.97 , pp. 349-385
    • Scheipl, F.1    Kneib, T.2    Fahrmeir, L.3
  • 60
    • 77953071298 scopus 로고    scopus 로고
    • Bayes and Empirical-Bayes Multiplicity Adjustment in the Variable-Selection Problem
    • J.G.Scott,, and J.O.Berger, (2010), “Bayes and Empirical-Bayes Multiplicity Adjustment in the Variable-Selection Problem,” The Annals of Statistics, 38, 2587–2619.
    • (2010) The Annals of Statistics , vol.38 , pp. 2587-2619
    • Scott, J.G.1    Berger, J.O.2
  • 61
    • 0000824232 scopus 로고    scopus 로고
    • Nonparametric Regression Using Bayesian Variable Selection
    • M.Smith,, and R.Kohn, (1996), “Nonparametric Regression Using Bayesian Variable Selection,” Journal of Econometrics, 75, 317–343.
    • (1996) Journal of Econometrics , vol.75 , pp. 317-343
    • Smith, M.1    Kohn, R.2
  • 62
    • 33845509035 scopus 로고    scopus 로고
    • Generalized Additive Modeling With Implicit Variable Selection by Likelihood-Based Boosting
    • G.Tutz,, and H.Binder, (2006), “Generalized Additive Modeling With Implicit Variable Selection by Likelihood-Based Boosting,” Biometrics, 62, 961–971.
    • (2006) Biometrics , vol.62 , pp. 961-971
    • Tutz, G.1    Binder, H.2
  • 63
    • 0038170349 scopus 로고    scopus 로고
    • Smoothing and Mixed Models
    • M.P.Wand, (2003), “Smoothing and Mixed Models,” Computational Statistics, 18, 223–249.
    • (2003) Computational Statistics , vol.18 , pp. 223-249
    • Wand, M.P.1
  • 65
    • 0001423726 scopus 로고
    • Generalized Linear Models: Scale Parameters, Outlier Accommodation and Prior Distributions
    • Bernardo J.M., DeGroot M.H., Lindley D.V., Smith A.F.M., (eds), Amsterdam: North-Holland
    • M.West, (1985), “Generalized Linear Models: Scale Parameters, Outlier Accommodation and Prior Distributions,” in Bayesian Statistics (Vol. 2), eds. J.M.Bernardo, M.H.DeGroot, D.V.Lindley, and A.F.M.Smith, Amsterdam: North-Holland, pp. 531–558.
    • (1985) Bayesian Statistics (Vol. 2) , pp. 531-558
    • West, M.1
  • 67
    • 78650862532 scopus 로고    scopus 로고
    • Fast Stable Restricted Maximum Likelihood and Marginal Likelihood Estimation of Semiparametric Generalized Linear Models
    • S.N.Wood, (2011), “Fast Stable Restricted Maximum Likelihood and Marginal Likelihood Estimation of Semiparametric Generalized Linear Models,” Journal of the Royal Statistical Society, Series B, 73, 3–36.
    • (2011) Journal of the Royal Statistical Society, Series B , vol.73 , pp. 3-36
    • Wood, S.N.1
  • 68
    • 0037352633 scopus 로고    scopus 로고
    • Bayesian Variable Selection and Model Averaging in High-Dimensional Multinomial Nonparametric Regression
    • P.Yau,, R.J.Kohn,, and S.Wood, (2003), “Bayesian Variable Selection and Model Averaging in High-Dimensional Multinomial Nonparametric Regression,” Journal of Computational and Graphical Statistics, 12, 23–54.
    • (2003) Journal of Computational and Graphical Statistics , vol.12 , pp. 23-54
    • Yau, P.1    Kohn, R.J.2    Wood, S.3
  • 69
    • 0002817906 scopus 로고
    • On Assessing Prior Distributions and Bayesian Regression Analysis With g-Prior Distributions
    • Goel P.K., Zellner A., (eds), Amsterdam: North-Holland, Vol. 6 of Studies in Bayesian Econometrics and Statistics, chap. 5
    • A.Zellner, (1986), “On Assessing Prior Distributions and Bayesian Regression Analysis With g-Prior Distributions,” in Bayesian Inference and Decision Techniques: Essays in Honor of Bruno de Finetti, eds. P.K.Goel, and A.Zellner, Amsterdam: North-Holland, Vol. 6 of Studies in Bayesian Econometrics and Statistics, chap. 5, pp. 233–243.
    • (1986) Bayesian Inference and Decision Techniques: Essays in Honor of Bruno de Finetti , pp. 233-243
    • Zellner, A.1
  • 70
    • 0039026915 scopus 로고
    • Posterior Odds Ratios for Selected Regression Hypotheses
    • Bernardo J.M., DeGroot M.H., Lindley D.V., Smith A.F.M., (eds), Valencia: University of Valencia Press
    • A.Zellner,, and A.Siow, (1980), “Posterior Odds Ratios for Selected Regression Hypotheses,” in Bayesian Statistics: Proceedings of the First International Meeting Held in Valencia, eds. J.M.Bernardo, M.H.DeGroot, D.V.Lindley, and A.F.M.Smith, Valencia: University of Valencia Press, pp. 585–603.
    • (1980) Bayesian Statistics: Proceedings of the First International Meeting Held in Valencia , pp. 585-603
    • Zellner, A.1    Siow, A.2
  • 71
    • 33750973351 scopus 로고    scopus 로고
    • Component Selection and Smoothing for Nonparametric Regression in Exponential Families
    • H.H.Zhang,, and Y.Lin, (2006), “Component Selection and Smoothing for Nonparametric Regression in Exponential Families,” Statistica Sinica, 16, 1021–1041.
    • (2006) Statistica Sinica , vol.16 , pp. 1021-1041
    • Zhang, H.H.1    Lin, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.