메뉴 건너뛰기




Volumn 26, Issue 1, 2017, Pages 414-436

Weibull regression with Bayesian variable selection to identify prognostic tumour markers of breast cancer survival

Author keywords

Bayesian variable selection; breast cancer; gene expression; MCMC; penalised regression; reversible jump; stability selection; survival analysis

Indexed keywords

CD8 ANTIGEN; EPIDERMAL GROWTH FACTOR RECEPTOR 2; ESTROGEN RECEPTOR; TRANSCRIPTION FACTOR FOXP3; TUMOR MARKER;

EID: 85008687569     PISSN: 09622802     EISSN: 14770334     Source Type: Journal    
DOI: 10.1177/0962280214548748     Document Type: Article
Times cited : (28)

References (80)
  • 1
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • Tibshirani R,. Regression shrinkage and selection via the lasso. J R Stat Soc Ser B 1996; 58: 267-288.
    • (1996) J R Stat Soc ser B , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 2
    • 1542784498 scopus 로고    scopus 로고
    • Variable selection via nonconcave penalized likelihood and its oracle properties
    • Fan J, Li R,. Variable selection via nonconcave penalized likelihood and its oracle properties. J Am Stat Assoc 2001; 96: 1348-1360.
    • (2001) J Am Stat Assoc , vol.96 , pp. 1348-1360
    • Fan, J.1    Li, R.2
  • 3
    • 16244401458 scopus 로고    scopus 로고
    • Regularization and variable selection via the elastic net
    • Zou H, Hastie T,. Regularization and variable selection via the elastic net. J R Stat Soc Ser B 2005; 67: 301-320.
    • (2005) J R Stat Soc ser B , vol.67 , pp. 301-320
    • Zou, H.1    Hastie, T.2
  • 4
    • 33846114377 scopus 로고    scopus 로고
    • The adaptive lasso and its oracle properties
    • Zou H,. The adaptive lasso and its oracle properties. J Am Stat Assoc 2006; 101: 1418-1429.
    • (2006) J Am Stat Assoc , vol.101 , pp. 1418-1429
    • Zou, H.1
  • 6
    • 62549115747 scopus 로고    scopus 로고
    • Genome-wide association analysis by lasso penalized logistic regression
    • Wu TT, Chen YF, Hastie T, et al. Genome-wide association analysis by lasso penalized logistic regression. Bioinformatics 2009; 25: 714-721.
    • (2009) Bioinformatics , vol.25 , pp. 714-721
    • Wu, T.T.1    Chen, Y.F.2    Hastie, T.3
  • 7
    • 80053564955 scopus 로고    scopus 로고
    • Using penalised logistic regression to fine map HLA variants for rheumatoid arthritis
    • Vignal CM, Bansal AT, Balding DJ,. Using penalised logistic regression to fine map HLA variants for rheumatoid arthritis. Ann Hum Genet 2011; 75: 655-664.
    • (2011) Ann Hum Genet , vol.75 , pp. 655-664
    • Vignal, C.M.1    Bansal, A.T.2    Balding, D.J.3
  • 8
    • 84870267097 scopus 로고    scopus 로고
    • Regularized multivariate regression for identifying master predictors with application to integrative genomics study of breast cancer
    • Peng J, Zhu J, Bergamaschi A,. Regularized multivariate regression for identifying master predictors with application to integrative genomics study of breast cancer. Ann Appl Stat 2010; 4: 53-77.
    • (2010) Ann Appl Stat , vol.4 , pp. 53-77
    • Peng, J.1    Zhu, J.2    Bergamaschi, A.3
  • 9
  • 10
    • 78650337471 scopus 로고    scopus 로고
    • Inference with normal-gamma prior distributions in regression problems
    • Griffin JE, Brown PJ,. Inference with normal-gamma prior distributions in regression problems. Bayesian Anal 2010; 5: 171-188.
    • (2010) Bayesian Anal , vol.5 , pp. 171-188
    • Griffin, J.E.1    Brown, P.J.2
  • 11
    • 77958557562 scopus 로고    scopus 로고
    • Bayesian variable selection for survival regression in genetics
    • Tachmazidou I, Johnson MR, De Iorio M,. Bayesian variable selection for survival regression in genetics. Genet Epidemiol 2010; 34: 689-701.
    • (2010) Genet Epidemiol , vol.34 , pp. 689-701
    • Tachmazidou, I.1    Johnson, M.R.2    De Iorio, M.3
  • 12
    • 33645035051 scopus 로고    scopus 로고
    • Model selection and estimation in regression with grouped variables
    • Yuan M, Lin Y,. Model selection and estimation in regression with grouped variables. J R Stat Soc Ser B 2006; 68: 49-67.
    • (2006) J R Stat Soc ser B , vol.68 , pp. 49-67
    • Yuan, M.1    Lin, Y.2
  • 13
    • 84879398938 scopus 로고    scopus 로고
    • A lasso for hierarchical interactions
    • Bien J, Taylor J, Tibshirani R,. A lasso for hierarchical interactions. Ann Stat 2013; 41: 1111-1141.
    • (2013) Ann Stat , vol.41 , pp. 1111-1141
    • Bien, J.1    Taylor, J.2    Tibshirani, R.3
  • 15
    • 84871371181 scopus 로고    scopus 로고
    • Variable selection with error control: Another look at stability selection
    • Shah RD, Samworth RJ,. Variable selection with error control: another look at stability selection. J R Stat Soc Ser B 2013; 75: 55-80.
    • (2013) J R Stat Soc ser B , vol.75 , pp. 55-80
    • Shah, R.D.1    Samworth, R.J.2
  • 16
  • 18
    • 79960128131 scopus 로고    scopus 로고
    • Bootstrapping lasso estimators
    • Chatterjee A, Lahiri SN,. Bootstrapping lasso estimators. J Am Stat Assoc 2011; 106: 608-625.
    • (2011) J Am Stat Assoc , vol.106 , pp. 608-625
    • Chatterjee, A.1    Lahiri, S.N.2
  • 19
    • 84893179575 scopus 로고
    • Variable selection via gibbs sampling
    • George EI, McCulloch RE,. Variable selection via gibbs sampling. J Am Stat Assoc 1993; 88: 881-889.
    • (1993) J Am Stat Assoc , vol.88 , pp. 881-889
    • George, E.I.1    McCulloch, R.E.2
  • 20
    • 0000857113 scopus 로고    scopus 로고
    • Multivariate Bayesian variable selection and prediction
    • Brown PJ, Vannucci M, Fearn T,. Multivariate Bayesian variable selection and prediction. J R Stat Soc Ser B 1998; 60: 627-641.
    • (1998) J R Stat Soc ser B , vol.60 , pp. 627-641
    • Brown, P.J.1    Vannucci, M.2    Fearn, T.3
  • 21
    • 0011373760 scopus 로고    scopus 로고
    • Variable selection for regression models
    • Kuo L, Mallick B,. Variable selection for regression models. Sankhy Indian J Stat Ser B 1998; 60: 65-81.
    • (1998) Sankhy Indian J Stat ser B , vol.60 , pp. 65-81
    • Kuo, L.1    Mallick, B.2
  • 22
    • 33745626428 scopus 로고    scopus 로고
    • Bayesian mapping of genotype x expression interactions in quantitative and qualitative traits
    • Hoti F, Sillanpää MJ,. Bayesian mapping of genotype x expression interactions in quantitative and qualitative traits. Heredity (Edinb) 2006; 97: 4-18.
    • (2006) Heredity (Edinb) , vol.97 , pp. 4-18
    • Hoti, F.1    Sillanpää, M.J.2
  • 23
    • 77956889087 scopus 로고
    • Reversible jump Markov chain Monte Carlo computation and Bayesian model determination
    • Green PJ,. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 1995; 82: 711-711.
    • (1995) Biometrika , vol.82 , pp. 711
    • Green, P.J.1
  • 24
    • 33645466595 scopus 로고    scopus 로고
    • A Bayesian toolkit for genetic association studies
    • Lunn DJ, Whittaker JC, Best N,. A Bayesian toolkit for genetic association studies. Genet Epidemiol 2006; 30: 231-247.
    • (2006) Genet Epidemiol , vol.30 , pp. 231-247
    • Lunn, D.J.1    Whittaker, J.C.2    Best, N.3
  • 25
    • 41549109212 scopus 로고    scopus 로고
    • Bayesian meta-analysis of genetic association studies with different sets of markers
    • Verzilli C, Shah T, Casas J,. Bayesian meta-analysis of genetic association studies with different sets of markers. Am J Hum Genet 2008; 82: 859-872.
    • (2008) Am J Hum Genet , vol.82 , pp. 859-872
    • Verzilli, C.1    Shah, T.2    Casas, J.3
  • 26
    • 65149106113 scopus 로고    scopus 로고
    • Multilocus Bayesian meta-analysis of gene-disease associations
    • Newcombe PJ, Verzilli C, Casas JP, et al. Multilocus Bayesian meta-analysis of gene-disease associations. Am J Hum Genet 2009; 84: 567-580.
    • (2009) Am J Hum Genet , vol.84 , pp. 567-580
    • Newcombe, P.J.1    Verzilli, C.2    Casas, J.P.3
  • 27
    • 84859083855 scopus 로고    scopus 로고
    • Comparison of Bayesian and frequentist approaches to incorporating external information for the prediction of prostate cancer risk
    • Newcombe PJ, Reck BH, Sun J, et al. Comparison of Bayesian and frequentist approaches to incorporating external information for the prediction of prostate cancer risk. Genet Epidemiol 2012; 36: 71-83.
    • (2012) Genet Epidemiol , vol.36 , pp. 71-83
    • Newcombe, P.J.1    Reck, B.H.2    Sun, J.3
  • 28
    • 84865812438 scopus 로고    scopus 로고
    • Predictive models of choroidal neovascularization and geographic atrophy incidence applied to clinical trial design
    • e12
    • McCarthy LC, Newcombe PJ, Whittaker JC, et al. Predictive models of choroidal neovascularization and geographic atrophy incidence applied to clinical trial design. Am J Ophthalmol 2012; 154: 568-578. e12.
    • (2012) Am J Ophthalmol , vol.154 , pp. 568-578
    • McCarthy, L.C.1    Newcombe, P.J.2    Whittaker, J.C.3
  • 29
    • 0031526204 scopus 로고    scopus 로고
    • Approaches for Bayesian variable selection
    • George EI, McCulloch RE,. Approaches for Bayesian variable selection. Stat Sin 1997; 7: 339-373.
    • (1997) Stat Sin , vol.7 , pp. 339-373
    • George, E.I.1    McCulloch, R.E.2
  • 30
    • 34250747348 scopus 로고    scopus 로고
    • Shotgun stochastic search for large p regression
    • Hans C, Dobra A, West M,. Shotgun stochastic search for large p regression. J Am Stat Assoc 2007; 102: 507-516.
    • (2007) J Am Stat Assoc , vol.102 , pp. 507-516
    • Hans, C.1    Dobra, A.2    West, M.3
  • 31
    • 79951540621 scopus 로고    scopus 로고
    • Evolutionary stochastic search for Bayesian model exploration
    • Bottolo L, Richardson S,. Evolutionary stochastic search for Bayesian model exploration. Bayesian Anal 2010; 5: 583-618.
    • (2010) Bayesian Anal , vol.5 , pp. 583-618
    • Bottolo, L.1    Richardson, S.2
  • 32
    • 79951533215 scopus 로고    scopus 로고
    • ESS ++: A C ++ objected-oriented algorithm for Bayesian stochastic search model exploration
    • Bottolo L, Chadeau-hyam M, Hastie DI, et al. ESS ++: a C ++ objected-oriented algorithm for Bayesian stochastic search model exploration. Bioinformatics 2011; 27 (4): 587-588.
    • (2011) Bioinformatics , vol.27 , Issue.4 , pp. 587-588
    • Bottolo, L.1    Chadeau-Hyam, M.2    Hastie, D.I.3
  • 33
    • 84884626511 scopus 로고    scopus 로고
    • GUESS-ing polygenic associations with multiple phenotypes using a GPU-based evolutionary stochastic search algorithm
    • Bottolo L, Chadeau-Hyam M, Hastie DI, et al. GUESS-ing polygenic associations with multiple phenotypes using a GPU-based evolutionary stochastic search algorithm. PLoS Genet 2013; 9: e1003657-e1003657.
    • (2013) PLoS Genet , vol.9 , pp. e1003657-e1003657
    • Bottolo, L.1    Chadeau-Hyam, M.2    Hastie, D.I.3
  • 34
    • 77952588387 scopus 로고    scopus 로고
    • New insights into the genetic control of gene expression using a Bayesian multi-tissue approach
    • Petretto E, Bottolo L, Langley SR, et al. New insights into the genetic control of gene expression using a Bayesian multi-tissue approach. PLoS Comput Biol 2010; 6: e1000737-e1000737.
    • (2010) PLoS Comput Biol , vol.6 , pp. e1000737-e1000737
    • Petretto, E.1    Bottolo, L.2    Langley, S.R.3
  • 35
    • 69249230467 scopus 로고    scopus 로고
    • A review of Bayesian variable selection methods: What, how and which
    • O'Hara RB, Sillanpaa MJ,. A review of Bayesian variable selection methods: what, how and which. Bayesian Anal 2009; 4: 85-118.
    • (2009) Bayesian Anal , vol.4 , pp. 85-118
    • O'Hara, R.B.1    Sillanpaa, M.J.2
  • 36
    • 0031014355 scopus 로고    scopus 로고
    • The role of frailty models and accelerated failure time models in describing heterogeneity due to omitted covariates
    • Keiding N, Andersen PK, Klein JP,. The role of frailty models and accelerated failure time models in describing heterogeneity due to omitted covariates. Stat Med 1997; 16: 215-224.
    • (1997) Stat Med , vol.16 , pp. 215-224
    • Keiding, N.1    Andersen, P.K.2    Klein, J.P.3
  • 38
    • 0034690750 scopus 로고    scopus 로고
    • UK and USA breast cancer deaths down 25% in year 2000 at ages 2069 years
    • Peto R, Boreham J, Clarke M, et al. UK and USA breast cancer deaths down 25% in year 2000 at ages 2069 years. Lancet 2000; 355: 1822-1822.
    • (2000) Lancet , vol.355 , pp. 1822
    • Peto, R.1    Boreham, J.2    Clarke, M.3
  • 39
    • 67449091029 scopus 로고    scopus 로고
    • UK deaths from breast cancer fall to lowest figure for 40 years
    • Mayor S,. UK deaths from breast cancer fall to lowest figure for 40 years. BMJ 2009; 338: b1710-b1710.
    • (2009) BMJ , vol.338 , pp. b1710-b1710
    • Mayor, S.1
  • 40
    • 77953238815 scopus 로고    scopus 로고
    • PREDICT: A new UK prognostic model that predicts survival following surgery for invasive breast cancer
    • Wishart GC, Azzato EM, Greenberg DC, et al. PREDICT: a new UK prognostic model that predicts survival following surgery for invasive breast cancer. Breast Cancer Res 2010; 12: R1-R1.
    • (2010) Breast Cancer Res , vol.12 , pp. R1-R1
    • Wishart, G.C.1    Azzato, E.M.2    Greenberg, D.C.3
  • 41
    • 84865432875 scopus 로고    scopus 로고
    • PREDICT plus: Development and validation of a prognostic model for early breast cancer that includes HER2
    • Wishart GC, Bajdik CD, Dicks E, et al. PREDICT plus: development and validation of a prognostic model for early breast cancer that includes HER2. Br J Cancer 2012; 107: 800-807.
    • (2012) Br J Cancer , vol.107 , pp. 800-807
    • Wishart, G.C.1    Bajdik, C.D.2    Dicks, E.3
  • 42
    • 84861527388 scopus 로고    scopus 로고
    • The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups
    • Curtis C, Shah SP, Chin S-F, et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 2012; 486: 346-352.
    • (2012) Nature , vol.486 , pp. 346-352
    • Curtis, C.1    Shah, S.P.2    Chin, S.-F.3
  • 43
    • 84856636292 scopus 로고    scopus 로고
    • Comparisons between different polychemotherapy regimens for early breast cancer: Meta-analyses of long-term outcome among 100,000 women in 123 randomised trials
    • Peto R, Davies C, Godwin J, et al. Comparisons between different polychemotherapy regimens for early breast cancer: meta-analyses of long-term outcome among 100,000 women in 123 randomised trials. Lancet 2012; 379: 432-444.
    • (2012) Lancet , vol.379 , pp. 432-444
    • Peto, R.1    Davies, C.2    Godwin, J.3
  • 44
    • 18244409687 scopus 로고    scopus 로고
    • Gene expression profiling predicts clinical outcome of breast cancer
    • van 't Veer LJ, Dai H, van de Vijver MJ, et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 2002; 415: 530-536.
    • (2002) Nature , vol.415 , pp. 530-536
    • Van 'T Veer, L.J.1    Dai, H.2    Van De Vijver, M.J.3
  • 45
    • 79953042645 scopus 로고    scopus 로고
    • CD44: Can a cancer-initiating cell profit from an abundantly expressed molecule?
    • Zöller M,. CD44: can a cancer-initiating cell profit from an abundantly expressed molecule? Nat Rev Cancer 2011; 11: 254-267.
    • (2011) Nat Rev Cancer , vol.11 , pp. 254-267
    • Zöller, M.1
  • 46
    • 77953248475 scopus 로고    scopus 로고
    • Subtyping of breast cancer by immunohistochemistry to investigate a relationship between subtype and short and long term survival: A collaborative analysis of data for 10,159 cases from 12 studies
    • Blows FM, Driver KE, Schmidt MK, et al. Subtyping of breast cancer by immunohistochemistry to investigate a relationship between subtype and short and long term survival: a collaborative analysis of data for 10,159 cases from 12 studies. PLoS Med 2010; 7: e1000279-e1000279.
    • (2010) PLoS Med , vol.7 , pp. e1000279-e1000279
    • Blows, F.M.1    Driver, K.E.2    Schmidt, M.K.3
  • 47
    • 77955984645 scopus 로고    scopus 로고
    • BCL2 in breast cancer: A favourable prognostic marker across molecular subtypes and independent of adjuvant therapy received
    • Dawson S-J, Makretsov N, Blows FM, et al. BCL2 in breast cancer: a favourable prognostic marker across molecular subtypes and independent of adjuvant therapy received. Br J Cancer 2010; 103: 668-675.
    • (2010) Br J Cancer , vol.103 , pp. 668-675
    • Dawson, S.-J.1    Makretsov, N.2    Blows, F.M.3
  • 48
    • 84862018351 scopus 로고    scopus 로고
    • Biological and prognostic associations of miR-205 and let-7b in breast cancer revealed by in situ hybridization analysis of micro-RNA expression in arrays of archival tumour tissue
    • Quesne JL, Jones J, Warren J, et al. Biological and prognostic associations of miR-205 and let-7b in breast cancer revealed by in situ hybridization analysis of micro-RNA expression in arrays of archival tumour tissue. J Pathol 2012; 227: 306-314.
    • (2012) J Pathol , vol.227 , pp. 306-314
    • Quesne, J.L.1    Jones, J.2    Warren, J.3
  • 49
    • 0031822837 scopus 로고    scopus 로고
    • Tissue microarrays for high-throughput molecular profiling of tumor specimens
    • Kononen J, Bubendorf L, Kallioniemi A, et al. Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nat Med 1998; 4: 844-847.
    • (1998) Nat Med , vol.4 , pp. 844-847
    • Kononen, J.1    Bubendorf, L.2    Kallioniemi, A.3
  • 50
    • 0010081155 scopus 로고    scopus 로고
    • Nonparametric regression using linear combinations of basis functions
    • Kohn R, Smith M, Chan D,. Nonparametric regression using linear combinations of basis functions. Stat Comput 2001; 11: 313-322.
    • (2001) Stat Comput , vol.11 , pp. 313-322
    • Kohn, R.1    Smith, M.2    Chan, D.3
  • 51
    • 0030325738 scopus 로고    scopus 로고
    • A Bayesian approach to Weibull survival models - Application to a cancer clinical trial
    • Abrams K, Ashby D, Errington D,. A Bayesian approach to Weibull survival models-application to a cancer clinical trial. Lifetime Data Anal 1996; 2: 159-174.
    • (1996) Lifetime Data Anal , vol.2 , pp. 159-174
    • Abrams, K.1    Ashby, D.2    Errington, D.3
  • 52
    • 0032960273 scopus 로고    scopus 로고
    • Multiple imputation: A primer
    • Schafer JL,. Multiple imputation: a primer. Stat Methods Med Res 1999; 8: 3-15.
    • (1999) Stat Methods Med Res , vol.8 , pp. 3-15
    • Schafer, J.L.1
  • 53
    • 0033616909 scopus 로고    scopus 로고
    • Multiple imputation of missing blood pressure covariates in survival analysis
    • van Buuren S, Boshuizen HC, Knook DL,. Multiple imputation of missing blood pressure covariates in survival analysis. Stat Med 1999; 18: 681-694.
    • (1999) Stat Med , vol.18 , pp. 681-694
    • Van Buuren, S.1    Boshuizen, H.C.2    Knook, D.L.3
  • 54
    • 68249114452 scopus 로고    scopus 로고
    • Multiple imputation for missing data in epidemiological and clinical research: Potential and pitfalls
    • Sterne JAC, White IR, Carlin JB,. Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls. BMJ 2009; 339: 157-160.
    • (2009) BMJ , vol.339 , pp. 157-160
    • Sterne, J.A.C.1    White, I.R.2    Carlin, J.B.3
  • 55
    • 84856270792 scopus 로고    scopus 로고
    • Multiple imputation by chained equations (MICE): Implementation in stata
    • Royston P, White I,. Multiple imputation by chained equations (MICE): implementation in stata. J Stat Softw 2011; 45: 1-20.
    • (2011) J Stat Softw , vol.45 , pp. 1-20
    • Royston, P.1    White, I.2
  • 56
    • 0004012196 scopus 로고    scopus 로고
    • 2nd ed. Florida, US: Chapman & Hall/CRC
    • Gelman A,. Bayesian data analysis, 2nd ed. Florida, US: Chapman & Hall/CRC, 2004.
    • (2004) Bayesian Data Analysis
    • Gelman, A.1
  • 57
    • 0016312195 scopus 로고
    • A log gamma model and its maximum likelihood estimation
    • Prentice R,. A log gamma model and its maximum likelihood estimation. Biometrika 1974; 61: 539-544.
    • (1974) Biometrika , vol.61 , pp. 539-544
    • Prentice, R.1
  • 58
    • 34548775222 scopus 로고    scopus 로고
    • Parametric survival analysis and taxonomy of hazard functions for the generalized gamma distribution
    • Cox C, Chu H, Schneider MF, et al. Parametric survival analysis and taxonomy of hazard functions for the generalized gamma distribution. Stat Med 2007; 26: 4352-4374.
    • (2007) Stat Med , vol.26 , pp. 4352-4374
    • Cox, C.1    Chu, H.2    Schneider, M.F.3
  • 59
    • 78149241664 scopus 로고    scopus 로고
    • Survival models in health economic evaluations: Balancing fit and parsimony to improve prediction
    • Article 34
    • Jackson CH, Sharples LD, Thompson SG,. Survival models in health economic evaluations: balancing fit and parsimony to improve prediction. Int J Biostat 2010; 6. Article 34.
    • (2010) Int J Biostat , vol.6
    • Jackson, C.H.1    Sharples, L.D.2    Thompson, S.G.3
  • 60
    • 79952934063 scopus 로고    scopus 로고
    • Regularization paths for Coxs proportional hazards model via coordinate descent
    • Simon N, Friedman J,. Regularization paths for Coxs proportional hazards model via coordinate descent. J Stat Softw 2011; 39: 1-13.
    • (2011) J Stat Softw , vol.39 , pp. 1-13
    • Simon, N.1    Friedman, J.2
  • 62
    • 84887187386 scopus 로고    scopus 로고
    • Integrative variable selection via Bayesian model uncertainty
    • Quintana MA, Conti DV,. Integrative variable selection via Bayesian model uncertainty. Stat Med 2013; 32: 4938-4953.
    • (2013) Stat Med , vol.32 , pp. 4938-4953
    • Quintana, M.A.1    Conti, D.V.2
  • 63
    • 4143150688 scopus 로고    scopus 로고
    • Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma
    • Nielsen TO, Hsu FD, Jensen K, et al. Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma. Clin Cancer Res 2004; 10: 5367-5374.
    • (2004) Clin Cancer Res , vol.10 , pp. 5367-5374
    • Nielsen, T.O.1    Hsu, F.D.2    Jensen, K.3
  • 64
    • 33744960226 scopus 로고    scopus 로고
    • Race, breast cancer subtypes, and survival in the Carolina breast cancer study
    • Carey LA, Perou CM, Livasy CA, et al. Race, breast cancer subtypes, and survival in the Carolina breast cancer study. J Am Med Assoc 2006; 295: 2492-2502.
    • (2006) J Am Med Assoc , vol.295 , pp. 2492-2502
    • Carey, L.A.1    Perou, C.M.2    Livasy, C.A.3
  • 65
    • 84872550777 scopus 로고    scopus 로고
    • Prognostic significance of progesterone receptor-positive tumor cells within immunohistochemically defined luminal A breast cancer
    • Prat A, Cheang MCU, Martín M, et al. Prognostic significance of progesterone receptor-positive tumor cells within immunohistochemically defined luminal A breast cancer. J Clin Oncol 2013; 31: 203-209.
    • (2013) J Clin Oncol , vol.31 , pp. 203-209
    • Prat, A.1    Cheang, M.C.U.2    Martín, M.3
  • 66
    • 58149330982 scopus 로고    scopus 로고
    • Meta-analysis of gene expression profiles in breast cancer: Toward a unified understanding of breast cancer subtyping and prognosis signatures
    • Wirapati P, Sotiriou C, Kunkel S, et al. Meta-analysis of gene expression profiles in breast cancer: toward a unified understanding of breast cancer subtyping and prognosis signatures. Breast Cancer Res 2008; 10: R65-R65.
    • (2008) Breast Cancer Res , vol.10 , pp. R65-R65
    • Wirapati, P.1    Sotiriou, C.2    Kunkel, S.3
  • 67
    • 51349088017 scopus 로고    scopus 로고
    • Biological processes associated with breast cancer clinical outcome depend on the molecular subtypes
    • Desmedt C, Haibe-Kains B, Wirapati P, et al. Biological processes associated with breast cancer clinical outcome depend on the molecular subtypes. Clin Cancer Res 2008; 14: 5158-5165.
    • (2008) Clin Cancer Res , vol.14 , pp. 5158-5165
    • Desmedt, C.1    Haibe-Kains, B.2    Wirapati, P.3
  • 68
    • 84861457376 scopus 로고    scopus 로고
    • Aurora kinase A outperforms Ki67 as a prognostic marker in ER-positive breast cancer
    • Ali HR, Dawson S-J, Blows FM, et al. Aurora kinase A outperforms Ki67 as a prognostic marker in ER-positive breast cancer. Br J Cancer 2012; 106: 1798-1806.
    • (2012) Br J Cancer , vol.106 , pp. 1798-1806
    • Ali, H.R.1    Dawson, S.-J.2    Blows, F.M.3
  • 69
    • 84857540547 scopus 로고    scopus 로고
    • A three-gene model to robustly identify breast cancer molecular subtypes
    • Haibe-Kains B, Desmedt C, Loi S, et al. A three-gene model to robustly identify breast cancer molecular subtypes. JNCI 2012; 104: 311-325.
    • (2012) JNCI , vol.104 , pp. 311-325
    • Haibe-Kains, B.1    Desmedt, C.2    Loi, S.3
  • 70
    • 0042524204 scopus 로고    scopus 로고
    • Loss of PDCD4 expression in human lung cancer correlates with tumour progression and prognosis
    • Chen Y, Knösel T, Kristiansen G, et al. Loss of PDCD4 expression in human lung cancer correlates with tumour progression and prognosis. J Pathol 2003; 200: 640-646.
    • (2003) J Pathol , vol.200 , pp. 640-646
    • Chen, Y.1    Knösel, T.2    Kristiansen, G.3
  • 71
    • 84873376513 scopus 로고    scopus 로고
    • Prognostic significance of PDCD4 expression in human salivary adenoid cystic carcinoma
    • Qi C, Shao Y, Li N, et al. Prognostic significance of PDCD4 expression in human salivary adenoid cystic carcinoma. Med Oncol 2013; 30: 491-491.
    • (2013) Med Oncol , vol.30 , pp. 491
    • Qi, C.1    Shao, Y.2    Li, N.3
  • 72
    • 67449104909 scopus 로고    scopus 로고
    • The tumour suppressor Pdcd4: Recent advances in the elucidation of function and regulation
    • Lankat-Buttgereit B, Göke R,. The tumour suppressor Pdcd4: recent advances in the elucidation of function and regulation. Biol Cell 2009; 101: 309-317.
    • (2009) Biol Cell , vol.101 , pp. 309-317
    • Lankat-Buttgereit, B.1    Göke, R.2
  • 73
    • 77952558002 scopus 로고    scopus 로고
    • A note on Bayesian inference after multiple imputation
    • Zhou X, Reiter JP,. A note on Bayesian inference after multiple imputation. Am Stat 2010; 64: 159-163.
    • (2010) Am Stat , vol.64 , pp. 159-163
    • Zhou, X.1    Reiter, J.P.2
  • 74
    • 77951801920 scopus 로고
    • How to standardize regression coefficients
    • Bring J,. How to standardize regression coefficients. Am Stat 1994; 48: 209-213.
    • (1994) Am Stat , vol.48 , pp. 209-213
    • Bring, J.1
  • 75
    • 0002817906 scopus 로고
    • On assessing prior distributions and Bayesian regression analysis with g-prior distributions
    • (eds). North Holland, Amsterdam: Elsevier Science
    • Zellner A, On assessing prior distributions and Bayesian regression analysis with g-prior distributions. In: Geol PK, Zellner A, (eds). Bayesian inference and decision technology: Essays in Honour of Bruno de Finetti, North Holland, Amsterdam: Elsevier Science, 1986, pp. 233-243.
    • (1986) Bayesian Inference and Decision Technology: Essays in Honour of Bruno de Finetti , pp. 233-243
    • Zellner, A.1    Geol, P.K.2    Zellner, A.3
  • 76
    • 45849132989 scopus 로고    scopus 로고
    • The separation of timescales in Bayesian survival modeling of the time-varying effect of a time-dependent exposure
    • Haneuse SJ-PA, Rudser KD, Gillen DL,. The separation of timescales in Bayesian survival modeling of the time-varying effect of a time-dependent exposure. Biostatistics 2008; 9: 400-410.
    • (2008) Biostatistics , vol.9 , pp. 400-410
    • Haneuse, S.-P.1    Rudser, K.D.2    Gillen, D.L.3
  • 77
    • 37249080278 scopus 로고    scopus 로고
    • Penalized logistic regression for detecting gene interactions
    • Park MY, Hastie T,. Penalized logistic regression for detecting gene interactions. Biostatistics 2008; 9: 30-50.
    • (2008) Biostatistics , vol.9 , pp. 30-50
    • Park, M.Y.1    Hastie, T.2
  • 79
    • 84892833777 scopus 로고    scopus 로고
    • Discovery and saturation analysis of cancer genes across 21 tumour types
    • Lawrence MS, Stojanov P, Mermel CH, et al. Discovery and saturation analysis of cancer genes across 21 tumour types. Nature 2014; 505: 495-501.
    • (2014) Nature , vol.505 , pp. 495-501
    • Lawrence, M.S.1    Stojanov, P.2    Mermel, C.H.3
  • 80
    • 81555216077 scopus 로고    scopus 로고
    • Gene expression profiling in breast cancer: Classification, prognostication, and prediction
    • Reis-Filho JS, Pusztai L,. Gene expression profiling in breast cancer: classification, prognostication, and prediction. Lancet 2011; 378: 1812-1823.
    • (2011) Lancet , vol.378 , pp. 1812-1823
    • Reis-Filho, J.S.1    Pusztai, L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.