메뉴 건너뛰기




Volumn 6, Issue 3, 2011, Pages 387-410

Hyper-g priors for generalized linear models

Author keywords

Fractional polynomials; G prior; Generalized linear model; Integrated Laplace approximation; Variable selection

Indexed keywords


EID: 82455175692     PISSN: 19360975     EISSN: 19316690     Source Type: Journal    
DOI: 10.1214/11-BA615     Document Type: Article
Times cited : (91)

References (63)
  • 1
    • 4043135554 scopus 로고    scopus 로고
    • Optimal predictive model selection
    • Barbieri, M. M. and Berger, J. O. (2004). "Optimal predictive model selection." Annals of Statistics, 32(3): 870-897.
    • (2004) Annals of Statistics , vol.32 , Issue.3 , pp. 870-897
    • Barbieri, M.M.1    Berger, J.O.2
  • 2
    • 0042107603 scopus 로고    scopus 로고
    • Objective Bayesian methods for model selection: introduction and comparison
    • Berger, J. O. and Pericchi, L. R. (2001). "Objective Bayesian methods for model selection: introduction and comparison." Lecture Notes-Monograph Series, 38(1): 135-207.
    • (2001) Lecture Notes-Monograph Series , vol.38 , Issue.1 , pp. 135-207
    • Berger, J.O.1    Pericchi, L.R.2
  • 3
    • 84981748011 scopus 로고    scopus 로고
    • Wiley Series in Probability and Statistics. Chichester: John Wiley & Sons
    • Bernardo, J. M. and Smith, A. F. M. (2000). Bayesian Theory. Wiley Series in Probability and Statistics. Chichester: John Wiley & Sons.
    • (2000) Bayesian Theory
    • Bernardo, J.M.1    Smith, A.F.M.2
  • 4
    • 84946640223 scopus 로고
    • Transformation of the independent variables
    • Box, G. E. P. and Tidwell, P. W. (1962). "Transformation of the independent variables." Technometrics, 4(4): 531-550.
    • (1962) Technometrics , vol.4 , Issue.4 , pp. 531-550
    • Box, G.E.P.1    Tidwell, P.W.2
  • 5
    • 84950771789 scopus 로고
    • Estimating optimal transformations for multiple regression and correlation
    • Breiman, L. and Friedman, J. H. (1985). "Estimating optimal transformations for multiple regression and correlation." Journal of the American Statistical Association, 80(391): 580-598.
    • (1985) Journal of the American Statistical Association , vol.80 , Issue.391 , pp. 580-598
    • Breiman, L.1    Friedman, J.H.2
  • 6
    • 0003465464 scopus 로고
    • Prentice-Hall series in automatic computation. Englewood Cliffs, NJ: Prentice-Hall
    • Brent, R. P. (1973). Algorithms for Minimization Without Derivatives. Prentice-Hall series in automatic computation. Englewood Cliffs, NJ: Prentice-Hall.
    • (1973) Algorithms for Minimization Without Derivatives
    • Brent, R.P.1
  • 8
    • 0030613470 scopus 로고    scopus 로고
    • Model selection: an integral part of inference
    • Buckland, S. T., Burnham, K. P., and Augustin, N. H. (1997). "Model selection: an integral part of inference." Biometrics, 53(2): 603-618.
    • (1997) Biometrics , vol.53 , Issue.2 , pp. 603-618
    • Buckland, S.T.1    Burnham, K.P.2    Augustin, N.H.3
  • 9
    • 0037706311 scopus 로고    scopus 로고
    • Conjugate priors for generalized linear models
    • Chen, M. and Ibrahim, J. (2003). "Conjugate priors for generalized linear models." Statistica Sinica, 13: 461-476.
    • (2003) Statistica Sinica , vol.13 , pp. 461-476
    • Chen, M.1    Ibrahim, J.2
  • 10
    • 55949101597 scopus 로고    scopus 로고
    • Bayesian variable selection and computation for generalized linear models with conjugate priors
    • Chen, M.-H., Huang, L., Ibrahim, J. G., and Kim, S. (2008). "Bayesian variable selection and computation for generalized linear models with conjugate priors." Bayesian Analysis, 3(3): 585-614.
    • (2008) Bayesian Analysis , vol.3 , Issue.3 , pp. 585-614
    • Chen, M.-H.1    Huang, L.2    Ibrahim, J.G.3    Kim, S.4
  • 13
    • 49549109589 scopus 로고    scopus 로고
    • Variable selection and model averaging in semiparametric overdispersed generalized linear models
    • Cottet, R., Kohn, R. J., and Nott, D. J. (2008). "Variable selection and model averaging in semiparametric overdispersed generalized linear models." Journal of the American Statistical Association, 103(482): 661-671. 402
    • (2008) Journal of the American Statistical Association , vol.103 , Issue.482 , pp. 661-671
    • Cottet, R.1    Kohn, R.J.2    Nott, D.J.3
  • 14
  • 15
    • 74349101652 scopus 로고    scopus 로고
    • Variable selection and dependency networks for genomewide data
    • Dobra, A. (2009). "Variable selection and dependency networks for genomewide data." Biostatistics, 10(4): 621-639. 404
    • (2009) Biostatistics , vol.10 , Issue.4 , pp. 621-639
    • Dobra, A.1
  • 16
    • 18044404766 scopus 로고    scopus 로고
    • Benchmark priors for Bayesian model averaging
    • Fernández, C., Ley, E., and Steel, M. F. J. (2001). "Benchmark priors for Bayesian model averaging." Journal of Econometrics, 100(2): 381-427.
    • (2001) Journal of Econometrics , vol.100 , Issue.2 , pp. 381-427
    • Fernández, C.1    Ley, E.2    Steel, M.F.J.3
  • 18
    • 0042042167 scopus 로고    scopus 로고
    • Sampling from the posterior distribution in generalized linear mixed models
    • Gamerman, D. (1997). "Sampling from the posterior distribution in generalized linear mixed models." Statistics and Computing, 7(1): 57-68.
    • (1997) Statistics and Computing , vol.7 , Issue.1 , pp. 57-68
    • Gamerman, D.1
  • 19
    • 0001729472 scopus 로고    scopus 로고
    • Calibration and empirical Bayes variable selection
    • George, E. I. and Foster, D. P. (2000). "Calibration and empirical Bayes variable selection." Biometrika, 87(4): 731-747.
    • (2000) Biometrika , vol.87 , Issue.4 , pp. 731-747
    • George, E.I.1    Foster, D.P.2
  • 21
    • 0000223746 scopus 로고
    • Calculation of Gauss quadrature rules
    • Golub, G. and Welsch, J. (1969). "Calculation of Gauss quadrature rules." Mathematics of Computation, 23(106): 221-230.
    • (1969) Mathematics of Computation , vol.23 , Issue.106 , pp. 221-230
    • Golub, G.1    Welsch, J.2
  • 22
    • 73249114674 scopus 로고    scopus 로고
    • An information matrix prior for Bayesian analysis in generalized linear models with high dimensional data
    • Gupta, M. and Ibrahim, J. (2009). "An information matrix prior for Bayesian analysis in generalized linear models with high dimensional data." Statistica Sinica, 19(4): 1641-1663.
    • (2009) Statistica Sinica , vol.19 , Issue.4 , pp. 1641-1663
    • Gupta, M.1    Ibrahim, J.2
  • 23
    • 0442312140 scopus 로고    scopus 로고
    • Markov chain Monte Carlo methods for computing Bayes factors: A comparative review
    • Han, C. and Carlin, B. (2001). "Markov chain Monte Carlo methods for computing Bayes factors: A comparative review." Journal of the American Statistical Associa-tion, 96(455): 1122-1132.
    • (2001) Journal of the American Statistical Associa-tion , vol.96 , Issue.455 , pp. 1122-1132
    • Han, C.1    Carlin, B.2
  • 25
    • 0141879236 scopus 로고    scopus 로고
    • Model selection and the principle of minimum description length
    • Hansen, M. H. and Yu, B. (2001). "Model selection and the principle of minimum description length." Journal of the American Statistical Association, 96(454): 746-774.
    • (2001) Journal of the American Statistical Association , vol.96 , Issue.454 , pp. 746-774
    • Hansen, M.H.1    Yu, B.2
  • 26
    • 79960091789 scopus 로고    scopus 로고
    • Minimum description length model selection criteria for generalized linear models
    • Statistics and Science: A Festschrift for Terry Speed
    • Hansen, M. H. (2003). "Minimum description length model selection criteria for generalized linear models." Lecture Notes-Monograph Series, 40(1): 145-163. Statistics and Science: A Festschrift for Terry Speed.
    • (2003) Lecture Notes-Monograph Series , vol.40 , Issue.1 , pp. 145-163
    • Hansen, M.H.1
  • 27
    • 84867151416 scopus 로고    scopus 로고
    • Bayesian auxiliary variable models for binary and multinomial regression
    • Holmes, C. C. and Held, L. (2006). "Bayesian auxiliary variable models for binary and multinomial regression." Bayesian Analysis, 1(1): 145-168.
    • (2006) Bayesian Analysis , vol.1 , Issue.1 , pp. 145-168
    • Holmes, C.C.1    Held, L.2
  • 28
    • 0003414592 scopus 로고
    • Oxford: Oxford University Press, third edition
    • Jeffreys, H. (1961). Theory of Probability. Oxford: Oxford University Press, third edition. 401
    • (1961) Theory of Probability
    • Jeffreys, H.1
  • 30
    • 27944462549 scopus 로고
    • A reference Bayesian test for nested hypotheses and its relationship to the Schwarz criterion
    • Kass, R. E. and Wasserman, L. (1995). "A reference Bayesian test for nested hypotheses and its relationship to the Schwarz criterion." Journal of the American Statistical Association, 90(431): 928-934.
    • (1995) Journal of the American Statistical Association , vol.90 , Issue.431 , pp. 928-934
    • Kass, R.E.1    Wasserman, L.2
  • 32
    • 0000810338 scopus 로고
    • A statistical paradox
    • Lindley, D. V. (1957). "A statistical paradox." Biometrika, 44(1-2): 187-192.
    • (1957) Biometrika , vol.44 , Issue.1-2 , pp. 187-192
    • Lindley, D.V.1
  • 33
    • 51849176383 scopus 로고
    • Approximate Bayesian methods
    • Bernardo, J. M., DeGroot, M. H., Lindley, D. V., and Smith, A. F. M. (eds.), Valencia: University of Valencia Press
    • Lindley, D. V. (1980). "Approximate Bayesian methods." In Bernardo, J. M., DeGroot, M. H., Lindley, D. V., and Smith, A. F. M. (eds.), Bayesian Statistics: Proceedings of the First International Meeting Held in Valencia, 223-245. Valencia: University of Valencia Press.
    • (1980) Bayesian Statistics: Proceedings of the First International Meeting Held in Valencia , pp. 223-245
    • Lindley, D.V.1
  • 34
    • 21844520724 scopus 로고
    • Bayesian graphical models for discrete data
    • Madigan, D. and York, J. (1995). "Bayesian graphical models for discrete data." Inter-national Statistical Review, 63(2): 215-232. 401
    • (1995) Inter-national Statistical Review , vol.63 , Issue.2 , pp. 215-232
    • Madigan, D.1    York, J.2
  • 36
    • 82455171322 scopus 로고    scopus 로고
    • Technical report, Center for Spatial Information Science, University of Tokyo. URL
    • Maruyama, Y. and George, E. I. (2010). "gBF: A Fully Bayes Factor with a Generalized g-prior." Technical report, Center for Spatial Information Science, University of Tokyo. URL http://arxiv.org/abs/0801.4410404
    • (2010) gBF: A Fully Bayes Factor with a Generalized g-prior
    • Maruyama, Y.1    George, E.I.2
  • 39
    • 80053343964 scopus 로고    scopus 로고
    • Technical report, Department of Statistics and Applied Probability, National University of Singapore. URL
    • Nott, D. J., Kohn, R. J., and Fielding, M. (2008). "Approximating the marginal likelihood using copula." Technical report, Department of Statistics and Applied Probability, National University of Singapore. URL http://arxiv.org/abs/0810.5474
    • (2008) Approximating the marginal likelihood using copula.
    • Nott, D.J.1    Kohn, R.J.2    Fielding, M.3
  • 41
    • 77955397404 scopus 로고    scopus 로고
    • Default Bayesian model determination methods for generalised linear mixed models
    • Overstall, A. M. and Forster, J. J. (2010). "Default Bayesian model determination methods for generalised linear mixed models." Computational Statistics and Data Analysis, 54(12): 3269-3288.
    • (2010) Computational Statistics and Data Analysis , vol.54 , Issue.12 , pp. 3269-3288
    • Overstall, A.M.1    Forster, J.J.2
  • 42
    • 21344494266 scopus 로고
    • The role of sampling weights when modeling survey data
    • Pfeffermann, D. (1993). "The role of sampling weights when modeling survey data." International Statistical Review, 61(2): 317-337.
    • (1993) International Statistical Review , vol.61 , Issue.2 , pp. 317-337
    • Pfeffermann, D.1
  • 44
    • 79951480123 scopus 로고    scopus 로고
    • R Development Core Team R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0
    • R Development Core Team (2010). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0.
    • (2010) R: A Language and Environment for Statistical Computing
  • 45
    • 77950035264 scopus 로고    scopus 로고
    • Maximum likelihood for generalized linear models with nested random e ects via high-order, multivariate Laplace approximation
    • Raudenbush, S. W., Yang, M.-L., and Yosef, M. (2000). "Maximum likelihood for generalized linear models with nested random e ects via high-order, multivariate Laplace approximation." Journal of Computational and Graphical Statistics, 9(1): 141-157.
    • (2000) Journal of Computational and Graphical Statistics , vol.9 , Issue.1 , pp. 141-157
    • Raudenbush, S.W.1    Yang, M.-L.2    Yosef, M.3
  • 47
    • 0004085467 scopus 로고    scopus 로고
    • The Bayesian Choice
    • New York: Springer, second edition
    • Robert, C. P. (2001). The Bayesian Choice. Springer Texts in Statistics. New York: Springer, second edition.
    • (2001) Springer Texts in Statistics
    • Robert, C.P.1
  • 48
    • 77955125911 scopus 로고    scopus 로고
    • Harold Je reys's Theory of Probability revisited
    • Robert, C. P., Chopin, N., and Rousseau, J. (2009). "Harold Je reys's Theory of Probability revisited." Statistical Science, 24(2): 141-172.
    • (2009) Statistical Science , vol.24 , Issue.2 , pp. 141-172
    • Robert, C.P.1    Chopin, N.2    Rousseau, J.3
  • 49
    • 82455165565 scopus 로고
    • Point estimation and confidence set estimation in a parallelism model: an empirical Bayes approach
    • Robert, C. P. and Saleh, A. K. M. E. (1991). "Point estimation and confidence set estimation in a parallelism model: an empirical Bayes approach." Annales d' É Economie et de Statistique, 23: 65-89.
    • (1991) Annales d' É Economie et de Statistique , vol.23 , pp. 65-89
    • Robert, C.P.1    Saleh, A.K.M.E.2
  • 50
    • 0033847784 scopus 로고    scopus 로고
    • Marginal structural models and causal inference in epidemiology
    • Robins, J. M., Hernán, M. A., and Brumback, B. (2000). "Marginal structural models and causal inference in epidemiology." Epidemiology, 11(5): 550-560.
    • (2000) Epidemiology , vol.11 , Issue.5 , pp. 550-560
    • Robins, J.M.1    Hernán, M.A.2    Brumback, B.3
  • 51
    • 0004509186 scopus 로고
    • Regression using fractional polynomials of continuous covariates: Parsimonious parametric modelling
    • Royston, P. and Altman, D. G. (1994). "Regression using fractional polynomials of continuous covariates: Parsimonious parametric modelling." Journal of the Royal Statistical Society. Series C (Applied Statistics), 43(3): 429-467.
    • (1994) Journal of the Royal Statistical Society. Series C (Applied Statistics) , vol.43 , Issue.3 , pp. 429-467
    • Royston, P.1    Altman, D.G.2
  • 52
    • 62849120031 scopus 로고    scopus 로고
    • Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations
    • Rue, H., Martino, S., and Chopin, N. (2009). "Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations." Journal of the Royal Statistical Society. Series B (Methodological), 71(2): 319-392.
    • (2009) Journal of the Royal Statistical Society. Series B (Methodological) , vol.71 , Issue.2 , pp. 319-392
    • Rue, H.1    Martino, S.2    Chopin, N.3
  • 53
    • 79958233615 scopus 로고    scopus 로고
    • Bayesian fractional polynomials
    • Epub ahead of print, DOI:10.1007/s11222-010-9170-7
    • Sabanés Bové, D. and Held, L. (2010). "Bayesian fractional polynomials." Statistics and Computing. Epub ahead of print, DOI: 10.1007/s11222-010-9170-7.
    • (2010) Statistics and Computing
    • Sabanés Bové, D.1    Held, L.2
  • 54
    • 77953071298 scopus 로고    scopus 로고
    • Bayes and empirical-Bayes multiplicity adjustment in the variable-selection problem
    • Scott, J. G. and Berger, J. O. (2010). "Bayes and empirical-Bayes multiplicity adjustment in the variable-selection problem." Annals of Statistics, 38(5): 2587-2619.
    • (2010) Annals of Statistics , vol.38 , Issue.5 , pp. 2587-2619
    • Scott, J.G.1    Berger, J.O.2
  • 56
    • 84950871099 scopus 로고
    • Accurate approximations for posterior moments and marginal densities
    • Tierney, L. and Kadane, J. B. (1986). "Accurate approximations for posterior moments and marginal densities." Journal of the American Statistical Association, 81(393): 82-86.
    • (1986) Journal of the American Statistical Association , vol.81 , Issue.393 , pp. 82-86
    • Tierney, L.1    Kadane, J.B.2
  • 57
    • 34547509358 scopus 로고    scopus 로고
    • Adaptive Bayesian criteria in variable selection for generalized linear models
    • Wang, X. and George, E. I. (2007). "Adaptive Bayesian criteria in variable selection for generalized linear models." Statistica Sinica, 17(2): 667-690.
    • (2007) Statistica Sinica , vol.17 , Issue.2 , pp. 667-690
    • Wang, X.1    George, E.I.2
  • 58
    • 85041988327 scopus 로고
    • On the existence and uniqueness of the maximum likelihood estimates for certain generalized linear models
    • Wedderburn, R. W. M. (1976). "On the existence and uniqueness of the maximum likelihood estimates for certain generalized linear models." Biometrika, 63(1): 27-32.
    • (1976) Biometrika , vol.63 , Issue.1 , pp. 27-32
    • Wedderburn, R.W.M.1
  • 59
    • 0001423726 scopus 로고
    • Generalized linear models: scale parameters, outlier accommodation and prior distributions
    • Bernardo, J. M., DeGroot, M. H., Lindley, D. V., and Smith, A. F. M. (eds.), Amsterdam: North-Holland
    • West, M. (1985). "Generalized linear models: scale parameters, outlier accommodation and prior distributions." In Bernardo, J. M., DeGroot, M. H., Lindley, D. V., and Smith, A. F. M. (eds.), Bayesian Statistics 2: Proceedings of the Second Valencia International Meeting, 531-558. Amsterdam: North-Holland.
    • (1985) Bayesian Statistics 2: Proceedings of the Second Valencia International Meeting , pp. 531-558
    • West, M.1
  • 60
    • 0242295767 scopus 로고    scopus 로고
    • Bayesian factor regression models in the large p, small n paradigm
    • Bernardo, J., Bayarri, M., Berger, J., Dawid, A., Heckerman, D., Smith, A., andWest, M. (eds.), Oxford University Press
    • West, M. (2003). "Bayesian factor regression models in the "large p, small n" paradigm." In Bernardo, J., Bayarri, M., Berger, J., Dawid, A., Heckerman, D., Smith, A., andWest, M. (eds.), Bayesian Statistics 7: Proceedings of the Seventh Valencia International Meeting, 733-742. Oxford University Press. 404
    • (2003) Bayesian Statistics 7: Proceedings of the Seventh Valencia International Meeting , pp. 733-742
    • West, M.1
  • 62
    • 0039026915 scopus 로고
    • Posterior odds ratios for selected regression hypotheses
    • Bernardo, J. M., DeGroot, M. H., Lindley, D. V., and Smith, A. F. M. (eds.), Valencia: University of Valencia Press
    • Zellner, A. and Siow, A. (1980). "Posterior odds ratios for selected regression hypotheses." In Bernardo, J. M., DeGroot, M. H., Lindley, D. V., and Smith, A. F. M. (eds.), Bayesian Statistics: Proceedings of the First International Meeting Held in Valencia, 585-603. Valencia: University of Valencia Press.
    • (1980) Bayesian Statistics: Proceedings of the First International Meeting Held in Valencia , pp. 585-603
    • Zellner, A.1    Siow, A.2
  • 63
    • 84863391627 scopus 로고    scopus 로고
    • Posterior consistency of the Silverman g-prior in Bayesian model choice
    • Koller, D., Bengio, Y., Schuurmans, D., and Bottou, L. (eds.)
    • Zhang, Z., Jordan, M. I., and Yeung, D. Y. (2009). "Posterior consistency of the Silverman g-prior in Bayesian model choice." In Koller, D., Bengio, Y., Schuurmans, D., and Bottou, L. (eds.), Advances in Neural Information Processing Systems (NIPS), volume 21.
    • (2009) Advances in Neural Information Processing Systems (NIPS) , vol.21
    • Zhang, Z.1    Jordan, M.I.2    Yeung, D.Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.