-
1
-
-
79952698245
-
Welcome to fibrogenesis and tissue repair
-
PID: 19014647
-
Pinzani M. Welcome to fibrogenesis and tissue repair. Fibrogenesis Tissue Repair. 2008;1:1. doi:10.1186/1755-1536-1-1.
-
(2008)
Fibrogenesis Tissue Repair
, vol.1
, pp. 1
-
-
Pinzani, M.1
-
2
-
-
38549159026
-
Cellular and molecular mechanisms of fibrosis
-
COI: 1:CAS:528:DC%2BD1cXhvFCkt7w%3D, PID: 18161745
-
Wynn TA. Cellular and molecular mechanisms of fibrosis. J Pathol. 2008;214:199–210. doi:10.1002/path.2277.
-
(2008)
J Pathol
, vol.214
, pp. 199-210
-
-
Wynn, T.A.1
-
3
-
-
78149298226
-
Mechanisms of tubulointerstitial fibrosis
-
COI: 1:CAS:528:DC%2BC3cXhsFCnsrnF, PID: 20864689
-
Zeisberg M, Neilson EG. Mechanisms of tubulointerstitial fibrosis. J Am Soc Nephrol. 2010;21:1819–34. doi:10.1681/ASN.2010080793.
-
(2010)
J Am Soc Nephrol
, vol.21
, pp. 1819-1834
-
-
Zeisberg, M.1
Neilson, E.G.2
-
4
-
-
78049369136
-
Renal fibrosis: novel insights into mechanisms and therapeutic targets
-
PID: 20838416
-
Boor P, Ostendorf T, Floege J. Renal fibrosis: novel insights into mechanisms and therapeutic targets. Nat Rev Nephrol. 2010;6:643–56. doi:10.1038/nrneph.2010.120.
-
(2010)
Nat Rev Nephrol
, vol.6
, pp. 643-656
-
-
Boor, P.1
Ostendorf, T.2
Floege, J.3
-
5
-
-
0033638127
-
Molecular basis of renal fibrosis
-
COI: 1:STN:280:DC%2BD3M7lt1Olug%3D%3D, PID: 11149129
-
Eddy AA. Molecular basis of renal fibrosis. Pediatr Nephrol. 2000;15:290–301.
-
(2000)
Pediatr Nephrol
, vol.15
, pp. 290-301
-
-
Eddy, A.A.1
-
6
-
-
36448936383
-
TGFbeta-SMAD signal transduction: molecular specificity and functional flexibility
-
COI: 1:CAS:528:DC%2BD2sXhtlCrsb3K, PID: 18000526
-
Schmierer B, Hill CS. TGFbeta-SMAD signal transduction: molecular specificity and functional flexibility. Nat Rev Mol Cell Biol. 2007;8:970–82. doi:10.1038/nrm2297.
-
(2007)
Nat Rev Mol Cell Biol
, vol.8
, pp. 970-982
-
-
Schmierer, B.1
Hill, C.S.2
-
7
-
-
78650018824
-
Conversion of vascular endothelial cells into multipotent stem-like cells
-
COI: 1:CAS:528:DC%2BC3cXhsVGhsr%2FE, PID: 21102460
-
Medici D, et al. Conversion of vascular endothelial cells into multipotent stem-like cells. Nat Med. 2010;16:1400–6. doi:10.1038/nm.2252.
-
(2010)
Nat Med
, vol.16
, pp. 1400-1406
-
-
Medici, D.1
-
8
-
-
79960217559
-
Transforming growth factor-beta2 promotes Snail-mediated endothelial–mesenchymal transition through convergence of Smad-dependent and Smad-independent signalling
-
COI: 1:CAS:528:DC%2BC3MXovVektLc%3D, PID: 21585337
-
Medici D, Potenta S, Kalluri R. Transforming growth factor-beta2 promotes Snail-mediated endothelial–mesenchymal transition through convergence of Smad-dependent and Smad-independent signalling. Biochem J. 2011;437:515–20. doi:10.1042/BJ20101500.
-
(2011)
Biochem J
, vol.437
, pp. 515-520
-
-
Medici, D.1
Potenta, S.2
Kalluri, R.3
-
9
-
-
12344273467
-
TGF-beta receptor function in the endothelium
-
COI: 1:CAS:528:DC%2BD2MXmsVKlsg%3D%3D, PID: 15664386
-
Lebrin F, Deckers M, Bertolino P, Ten Dijke P. TGF-beta receptor function in the endothelium. Cardiovasc Res. 2005;65:599–608. doi:10.1016/j.cardiores.2004.10.036.
-
(2005)
Cardiovasc Res
, vol.65
, pp. 599-608
-
-
Lebrin, F.1
Deckers, M.2
Bertolino, P.3
Ten Dijke, P.4
-
10
-
-
0028170226
-
Mechanism of activation of the TGF-beta receptor
-
COI: 1:CAS:528:DyaK2cXlt1Kju78%3D, PID: 8047140
-
Wrana JL, Attisano L, Wieser R, Ventura F, Massague J. Mechanism of activation of the TGF-beta receptor. Nature. 1994;370:341–7. doi:10.1038/370341a0.
-
(1994)
Nature
, vol.370
, pp. 341-347
-
-
Wrana, J.L.1
Attisano, L.2
Wieser, R.3
Ventura, F.4
Massague, J.5
-
11
-
-
0038560496
-
CD26, let it cut or cut it down
-
PID: 10431157
-
De Meester I, Korom S, Van Damme J, Scharpe S. CD26, let it cut or cut it down. Immunol Today. 1999;20:367–75.
-
(1999)
Immunol Today
, vol.20
, pp. 367-375
-
-
De Meester, I.1
Korom, S.2
Van Damme, J.3
Scharpe, S.4
-
12
-
-
84920095184
-
Pharmacology, physiology, and mechanisms of action of dipeptidyl peptidase-4 inhibitors
-
COI: 1:CAS:528:DC%2BC2MXnslaitA%3D%3D, PID: 25216328
-
Mulvihill EE, Drucker DJ. Pharmacology, physiology, and mechanisms of action of dipeptidyl peptidase-4 inhibitors. Endocr Rev. 2014;35:992–1019. doi:10.1210/er.2014-1035.
-
(2014)
Endocr Rev
, vol.35
, pp. 992-1019
-
-
Mulvihill, E.E.1
Drucker, D.J.2
-
13
-
-
10644296948
-
One site mutation disrupts dimer formation in human DPP-IV proteins
-
COI: 1:CAS:528:DC%2BD2cXhtVCkur%2FN, PID: 15448155
-
Chien CH, et al. One site mutation disrupts dimer formation in human DPP-IV proteins. J Biol Chem. 2004;279:52338–45. doi:10.1074/jbc.M406185200.
-
(2004)
J Biol Chem
, vol.279
, pp. 52338-52345
-
-
Chien, C.H.1
-
14
-
-
0037787851
-
Dipeptidyl-peptidase IV from bench to bedside: an update on structural properties, functions, and clinical aspects of the enzyme DPP IV
-
COI: 1:CAS:528:DC%2BD3sXmtVWhs70%3D, PID: 12892317
-
Lambeir AM, Durinx C, Scharpe S, De Meester I. Dipeptidyl-peptidase IV from bench to bedside: an update on structural properties, functions, and clinical aspects of the enzyme DPP IV. Crit Rev Clin Lab Sci. 2003;40:209–94. doi:10.1080/713609354.
-
(2003)
Crit Rev Clin Lab Sci
, vol.40
, pp. 209-294
-
-
Lambeir, A.M.1
Durinx, C.2
Scharpe, S.3
De Meester, I.4
-
15
-
-
0027201145
-
Direct association of adenosine deaminase with a T cell activation antigen, CD26
-
COI: 1:CAS:528:DyaK3sXltFGhtrs%3D, PID: 8101391
-
Kameoka J, Tanaka T, Nojima Y, Schlossman SF, Morimoto C. Direct association of adenosine deaminase with a T cell activation antigen, CD26. Science. 1993;261:466–9.
-
(1993)
Science
, vol.261
, pp. 466-469
-
-
Kameoka, J.1
Tanaka, T.2
Nojima, Y.3
Schlossman, S.F.4
Morimoto, C.5
-
16
-
-
34648815810
-
Emerging roles of proteases in tumour suppression
-
COI: 1:CAS:528:DC%2BD2sXhtVOnsr3I, PID: 17851543
-
Lopez-Otin C, Matrisian LM. Emerging roles of proteases in tumour suppression. Nat Rev Cancer. 2007;7:800–8. doi:10.1038/nrc2228.
-
(2007)
Nat Rev Cancer
, vol.7
, pp. 800-808
-
-
Lopez-Otin, C.1
Matrisian, L.M.2
-
17
-
-
84881479703
-
Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26
-
COI: 1:CAS:528:DC%2BC3sXhtVKhtbfK, PID: 23831647
-
Lu G, et al. Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26. Nature. 2013;500:227–31. doi:10.1038/nature12328.
-
(2013)
Nature
, vol.500
, pp. 227-231
-
-
Lu, G.1
-
18
-
-
0033159183
-
Dipeptidyl peptidase IV: a cell surface peptidase involved in regulating T cell growth (review)
-
COI: 1:CAS:528:DyaK1MXktFCrtrc%3D, PID: 10373631
-
Kahne T, et al. Dipeptidyl peptidase IV: a cell surface peptidase involved in regulating T cell growth (review). Int J Mol Med. 1999;4:3–15.
-
(1999)
Int J Mol Med
, vol.4
, pp. 3-15
-
-
Kahne, T.1
-
19
-
-
33846794760
-
Des-serine-proline brain natriuretic peptide 3-32 in cardiorenal regulation
-
COI: 1:CAS:528:DC%2BD2sXjt1Gmsr0%3D, PID: 17068158
-
Boerrigter G, Costello-Boerrigter LC, Harty GJ, Lapp H, Burnett JC Jr. Des-serine-proline brain natriuretic peptide 3-32 in cardiorenal regulation. Am J Physiol Regul Integr Comp Physiol. 2007;292:R897–901. doi:10.1152/ajpregu.00569.2006.
-
(2007)
Am J Physiol Regul Integr Comp Physiol
, vol.292
, pp. R897-R901
-
-
Boerrigter, G.1
Costello-Boerrigter, L.C.2
Harty, G.J.3
Lapp, H.4
Burnett, J.C.5
-
20
-
-
29744462729
-
Dipeptidyl-peptidase IV converts intact B-type natriuretic peptide into its des-SerPro form
-
COI: 1:CAS:528:DC%2BD28Xitlygtw%3D%3D, PID: 16254193
-
Brandt I, et al. Dipeptidyl-peptidase IV converts intact B-type natriuretic peptide into its des-SerPro form. Clin Chem. 2006;52:82–7. doi:10.1373/clinchem.2005.057638.
-
(2006)
Clin Chem
, vol.52
, pp. 82-87
-
-
Brandt, I.1
-
21
-
-
0033619675
-
(CD26)—role in the inactivation of regulatory peptides
-
Mentlein R. Dipeptidyl-peptidase IV (CD26)—role in the inactivation of regulatory peptides. Regul Pept. 1999;85:9–24.
-
(1999)
Regul Pept
, vol.85
, pp. 9-24
-
-
Mentlein, R.1
Dipeptidyl-peptidase, I.V.2
-
22
-
-
84856713524
-
High mobility group box 1 is a novel substrate of dipeptidyl peptidase-IV
-
COI: 1:CAS:528:DC%2BC3MXhsFOqurfJ, PID: 21656024
-
Marchetti C, et al. High mobility group box 1 is a novel substrate of dipeptidyl peptidase-IV. Diabetologia. 2012;55:236–44. doi:10.1007/s00125-011-2213-6.
-
(2012)
Diabetologia
, vol.55
, pp. 236-244
-
-
Marchetti, C.1
-
23
-
-
70549096922
-
Inhibitor selectivity in the clinical application of dipeptidyl peptidase-4 inhibition
-
COI: 1:CAS:528:DC%2BD1MXht1WntbrL
-
Kirby M, Yu DM, O’Connor S, Gorrell MD. Inhibitor selectivity in the clinical application of dipeptidyl peptidase-4 inhibition. Clin Sci (Lond). 2010;118:31–41. doi:10.1042/CS20090047.
-
(2010)
Clin Sci (Lond)
, vol.118
, pp. 31-41
-
-
Kirby, M.1
Yu, D.M.2
O’Connor, S.3
Gorrell, M.D.4
-
24
-
-
0035723325
-
CD26: a multifunctional integral membrane and secreted protein of activated lymphocytes
-
COI: 1:CAS:528:DC%2BD3MXnt1Sru7c%3D, PID: 11555388
-
Gorrell MD, Gysbers V, McCaughan GW. CD26: a multifunctional integral membrane and secreted protein of activated lymphocytes. Scand J Immunol. 2001;54:249–64.
-
(2001)
Scand J Immunol
, vol.54
, pp. 249-264
-
-
Gorrell, M.D.1
Gysbers, V.2
McCaughan, G.W.3
-
25
-
-
84870923584
-
Dipeptidylpeptidase 4 negatively regulates colony-stimulating factor activity and stress hematopoiesis
-
COI: 1:CAS:528:DC%2BC38Xhs1ymt7zP, PID: 23160239
-
Broxmeyer HE, et al. Dipeptidylpeptidase 4 negatively regulates colony-stimulating factor activity and stress hematopoiesis. Nat Med. 2012;18:1786–96. doi:10.1038/nm.2991.
-
(2012)
Nat Med
, vol.18
, pp. 1786-1796
-
-
Broxmeyer, H.E.1
-
26
-
-
77955406467
-
Effects of sitagliptin treatment on dysmetabolism, inflammation, and oxidative stress in an animal model of type 2 diabetes (ZDF rat)
-
Ferreira L, et al. Effects of sitagliptin treatment on dysmetabolism, inflammation, and oxidative stress in an animal model of type 2 diabetes (ZDF rat). Mediat Inflamm. 2010;2010:592760. doi:10.1155/2010/592760.
-
(2010)
Mediat Inflamm
, vol.2010
, pp. 592760
-
-
Ferreira, L.1
-
27
-
-
84929494285
-
Dipeptidyl peptidase-4 inhibitor decreases abdominal aortic aneurysm formation through GLP-1-dependent monocytic activity in mice
-
PID: 25876091
-
Lu HY, et al. Dipeptidyl peptidase-4 inhibitor decreases abdominal aortic aneurysm formation through GLP-1-dependent monocytic activity in mice. PLoS One. 2015;10:e0121077. doi:10.1371/journal.pone.0121077.
-
(2015)
PLoS One
, vol.10
-
-
Lu, H.Y.1
-
28
-
-
12144260853
-
Glucagon-like peptide 1 can directly protect the heart against ischemia/reperfusion injury
-
COI: 1:CAS:528:DC%2BD2MXhtVWju7k%3D, PID: 15616022
-
Bose AK, Mocanu MM, Carr RD, Brand CL, Yellon DM. Glucagon-like peptide 1 can directly protect the heart against ischemia/reperfusion injury. Diabetes. 2005;54:146–51.
-
(2005)
Diabetes
, vol.54
, pp. 146-151
-
-
Bose, A.K.1
Mocanu, M.M.2
Carr, R.D.3
Brand, C.L.4
Yellon, D.M.5
-
29
-
-
81855222104
-
Long-term dipeptidyl-peptidase 4 inhibition reduces atherosclerosis and inflammation via effects on monocyte recruitment and chemotaxis
-
COI: 1:CAS:528:DC%2BC3MXhsFantrjJ, PID: 22007077
-
Shah Z, et al. Long-term dipeptidyl-peptidase 4 inhibition reduces atherosclerosis and inflammation via effects on monocyte recruitment and chemotaxis. Circulation. 2011;124:2338–49. doi:10.1161/CIRCULATIONAHA.111.041418.
-
(2011)
Circulation
, vol.124
, pp. 2338-2349
-
-
Shah, Z.1
-
30
-
-
84868642036
-
Dipeptidyl peptidase-4 inhibitor improves neovascularization by increasing circulating endothelial progenitor cells
-
COI: 1:CAS:528:DC%2BC38XhslCmu7nF, PID: 22788747
-
Huang CY, et al. Dipeptidyl peptidase-4 inhibitor improves neovascularization by increasing circulating endothelial progenitor cells. Br J Pharmacol. 2012;167:1506–19. doi:10.1111/j.1476-5381.2012.02102.x.
-
(2012)
Br J Pharmacol
, vol.167
, pp. 1506-1519
-
-
Huang, C.Y.1
-
31
-
-
79959774265
-
Therapy in the early stage: incretins
-
COI: 1:CAS:528:DC%2BC3MXntlKksLs%3D, PID: 21525466
-
Cernea S, Raz I. Therapy in the early stage: incretins. Diabetes Care. 2011;34(Suppl 2):S264–71. doi:10.2337/dc11-s223.
-
(2011)
Diabetes Care
, vol.34
, pp. S264-S271
-
-
Cernea, S.1
Raz, I.2
-
32
-
-
84904391726
-
Dipeptidyl peptidase inhibition prevents diastolic dysfunction and reduces myocardial fibrosis in a mouse model of Western diet induced obesity
-
COI: 1:CAS:528:DC%2BC2cXpslKmt7Y%3D, PID: 24933400
-
Bostick B, et al. Dipeptidyl peptidase inhibition prevents diastolic dysfunction and reduces myocardial fibrosis in a mouse model of Western diet induced obesity. Metabolism. 2014;63:1000–11. doi:10.1016/j.metabol.2014.04.002.
-
(2014)
Metabolism
, vol.63
, pp. 1000-1011
-
-
Bostick, B.1
-
33
-
-
84929483826
-
A DPP-4 inhibitor suppresses fibrosis and inflammation on experimental autoimmune myocarditis in mice
-
PID: 25768281
-
Hirakawa H, et al. A DPP-4 inhibitor suppresses fibrosis and inflammation on experimental autoimmune myocarditis in mice. PLoS One. 2015;10:e0119360. doi:10.1371/journal.pone.0119360.
-
(2015)
PLoS One
, vol.10
-
-
Hirakawa, H.1
-
34
-
-
84897109133
-
Dipeptidyl peptidase-4 inhibitor attenuates hepatic fibrosis via suppression of activated hepatic stellate cell in rats
-
Kaji K, et al. Dipeptidyl peptidase-4 inhibitor attenuates hepatic fibrosis via suppression of activated hepatic stellate cell in rats. J Gastroenterol. 2013;. doi:10.1007/s00535-013-0783-4.
-
(2013)
J Gastroenterol
-
-
Kaji, K.1
-
35
-
-
84903649917
-
The role of ubiquitination and sumoylation in diabetic nephropathy
-
PID: 24991536
-
Gao C, Huang W, Kanasaki K, Xu Y. The role of ubiquitination and sumoylation in diabetic nephropathy. Biomed Res Int. 2014;2014:160692. doi:10.1155/2014/160692.
-
(2014)
Biomed Res Int
, vol.2014
, pp. 160692
-
-
Gao, C.1
Huang, W.2
Kanasaki, K.3
Xu, Y.4
-
36
-
-
84866718544
-
Dipeptidyl peptidase-IV is a potential molecular biomarker in diabetic kidney disease
-
Sun AL, et al. Dipeptidyl peptidase-IV is a potential molecular biomarker in diabetic kidney disease. Diabetes Vasc Dis Res. 2012;9:301–8. doi:10.1177/1479164111434318.
-
(2012)
Diabetes Vasc Dis Res
, vol.9
, pp. 301-308
-
-
Sun, A.L.1
-
37
-
-
0027497013
-
Interferon-gamma induces dipeptidylpeptidase IV expression in human glomerular epithelial cells
-
COI: 1:CAS:528:DyaK2cXivFSqtw%3D%3D, PID: 7904591
-
Stefanovic V, et al. Interferon-gamma induces dipeptidylpeptidase IV expression in human glomerular epithelial cells. Immunology. 1993;80:465–70.
-
(1993)
Immunology
, vol.80
, pp. 465-470
-
-
Stefanovic, V.1
-
38
-
-
34447103388
-
Increase in DPP-IV in the intestine, liver and kidney of the rat treated with high fat diet and streptozotocin
-
COI: 1:CAS:528:DC%2BD2sXnslWrsb0%3D, PID: 17583752
-
Yang J, et al. Increase in DPP-IV in the intestine, liver and kidney of the rat treated with high fat diet and streptozotocin. Life Sci. 2007;81:272–9. doi:10.1016/j.lfs.2007.04.040.
-
(2007)
Life Sci
, vol.81
, pp. 272-279
-
-
Yang, J.1
-
39
-
-
84871706890
-
Role of GLP-1 and DPP-4 in diabetic nephropathy and cardiovascular disease
-
COI: 1:CAS:528:DC%2BC38Xhs1Wqt7bF
-
Panchapakesan U, Mather A, Pollock C. Role of GLP-1 and DPP-4 in diabetic nephropathy and cardiovascular disease. Clin Sci (Lond). 2013;124:17–26. doi:10.1042/CS20120167.
-
(2013)
Clin Sci (Lond)
, vol.124
, pp. 17-26
-
-
Panchapakesan, U.1
Mather, A.2
Pollock, C.3
-
40
-
-
54249132506
-
Diagnostic value of the aminopeptidase N,N-acetyl-beta-d-glucosaminidase and dipeptidylpeptidase IV in evaluating tubular dysfunction in patients with glomerulopathies
-
COI: 1:CAS:528:DC%2BD1cXht1KntbrF, PID: 18925530
-
Mitic B, Lazarevic G, Vlahovic P, Rajic M, Stefanovic V. Diagnostic value of the aminopeptidase N,N-acetyl-beta-d-glucosaminidase and dipeptidylpeptidase IV in evaluating tubular dysfunction in patients with glomerulopathies. Ren Fail. 2008;30:896–903. doi:10.1080/08860220802359048.
-
(2008)
Ren Fail
, vol.30
, pp. 896-903
-
-
Mitic, B.1
Lazarevic, G.2
Vlahovic, P.3
Rajic, M.4
Stefanovic, V.5
-
41
-
-
84855611505
-
Diabetic nephropathy amelioration by a low-dose sitagliptin in an animal model of type 2 diabetes (Zucker diabetic fatty rat)
-
PID: 22203828
-
Mega C, et al. Diabetic nephropathy amelioration by a low-dose sitagliptin in an animal model of type 2 diabetes (Zucker diabetic fatty rat). Exp Diabetes Res. 2011;2011:162092. doi:10.1155/2011/162092.
-
(2011)
Exp Diabetes Res
, vol.2011
, pp. 162092
-
-
Mega, C.1
-
42
-
-
84862944057
-
Dipeptidyl peptidase IV inhibitor attenuates kidney injury in streptozotocin-induced diabetic rats
-
COI: 1:CAS:528:DC%2BC38XjtVSltL0%3D, PID: 22025647
-
Liu WJ, et al. Dipeptidyl peptidase IV inhibitor attenuates kidney injury in streptozotocin-induced diabetic rats. J Pharmacol Exp Ther. 2012;340:248–55. doi:10.1124/jpet.111.186866.
-
(2012)
J Pharmacol Exp Ther
, vol.340
, pp. 248-255
-
-
Liu, W.J.1
-
43
-
-
84964226640
-
Saxagliptin reduces renal tubulointerstitial inflammation, hypertrophy and fibrosis in diabetes
-
COI: 1:CAS:528:DC%2BC28XmsVCrtLw%3D
-
GangadharanKomala M, Gross S, Zaky A, Pollock C, Panchapakesan U. Saxagliptin reduces renal tubulointerstitial inflammation, hypertrophy and fibrosis in diabetes. Nephrology (Carlton). 2016;21:423–31. doi:10.1111/nep.12618.
-
(2016)
Nephrology (Carlton)
, vol.21
, pp. 423-431
-
-
GangadharanKomala, M.1
Gross, S.2
Zaky, A.3
Pollock, C.4
Panchapakesan, U.5
-
44
-
-
84869238002
-
DPP-4 inhibition on top of angiotensin receptor blockade offers a new therapeutic approach for diabetic nephropathy
-
COI: 1:CAS:528:DC%2BC3sXktF2kur0%3D, PID: 23171828
-
Alter ML, et al. DPP-4 inhibition on top of angiotensin receptor blockade offers a new therapeutic approach for diabetic nephropathy. Kidney Blood Press Res. 2012;36:119–30. doi:10.1159/000341487.
-
(2012)
Kidney Blood Press Res
, vol.36
, pp. 119-130
-
-
Alter, M.L.1
-
45
-
-
84890476805
-
Linagliptin lowers albuminuria on top of recommended standard treatment in patients with type 2 diabetes and renal dysfunction
-
COI: 1:CAS:528:DC%2BC3sXhsl2ht7vN, PID: 24026560
-
Groop PH, et al. Linagliptin lowers albuminuria on top of recommended standard treatment in patients with type 2 diabetes and renal dysfunction. Diabetes Care. 2013;36:3460–8. doi:10.2337/dc13-0323.
-
(2013)
Diabetes Care
, vol.36
, pp. 3460-3468
-
-
Groop, P.H.1
-
46
-
-
84904172623
-
Dipeptidyl peptidase IV inhibitor protects against renal interstitial fibrosis in a mouse model of ureteral obstruction
-
COI: 1:CAS:528:DC%2BC2cXls1Gksr0%3D, PID: 24687121
-
Min HS, et al. Dipeptidyl peptidase IV inhibitor protects against renal interstitial fibrosis in a mouse model of ureteral obstruction. Lab Invest. 2014;94:598–607. doi:10.1038/labinvest.2014.50.
-
(2014)
Lab Invest
, vol.94
, pp. 598-607
-
-
Min, H.S.1
-
47
-
-
0029061401
-
Molecular regulation of atrioventricular valvuloseptal morphogenesis
-
COI: 1:CAS:528:DyaK2MXmsFers7g%3D, PID: 7788867
-
Eisenberg LM, Markwald RR. Molecular regulation of atrioventricular valvuloseptal morphogenesis. Circ Res. 1995;77:1–6.
-
(1995)
Circ Res
, vol.77
, pp. 1-6
-
-
Eisenberg, L.M.1
Markwald, R.R.2
-
48
-
-
80052851503
-
Role of endothelial–mesenchymal transition (EndoMT) in the pathogenesis of fibrotic disorders
-
COI: 1:CAS:528:DC%2BC3MXhtF2jsLvN, PID: 21763673
-
Piera-Velazquez S, Li Z, Jimenez SA. Role of endothelial–mesenchymal transition (EndoMT) in the pathogenesis of fibrotic disorders. Am J Pathol. 2011;179:1074–80. doi:10.1016/j.ajpath.2011.06.001.
-
(2011)
Am J Pathol
, vol.179
, pp. 1074-1080
-
-
Piera-Velazquez, S.1
Li, Z.2
Jimenez, S.A.3
-
49
-
-
55249103431
-
Fibroblasts in kidney fibrosis emerge via endothelial-to-mesenchymal transition
-
PID: 18987304
-
Zeisberg EM, Potenta SE, Sugimoto H, Zeisberg M, Kalluri R. Fibroblasts in kidney fibrosis emerge via endothelial-to-mesenchymal transition. J Am Soc Nephrol. 2008;19:2282–7.
-
(2008)
J Am Soc Nephrol
, vol.19
, pp. 2282-2287
-
-
Zeisberg, E.M.1
Potenta, S.E.2
Sugimoto, H.3
Zeisberg, M.4
Kalluri, R.5
-
50
-
-
84926432474
-
Curtailing endothelial TGF-beta signaling is sufficient to reduce endothelial–mesenchymal transition and fibrosis in CKD
-
COI: 1:CAS:528:DC%2BC2MXmsFGms7c%3D, PID: 25535303
-
Xavier S, et al. Curtailing endothelial TGF-beta signaling is sufficient to reduce endothelial–mesenchymal transition and fibrosis in CKD. J Am Soc Nephrol. 2015;26:817–29. doi:10.1681/ASN.2013101137.
-
(2015)
J Am Soc Nephrol
, vol.26
, pp. 817-829
-
-
Xavier, S.1
-
51
-
-
35948945337
-
Discovery of endothelial to mesenchymal transition as a source for carcinoma-associated fibroblasts
-
COI: 1:CAS:528:DC%2BD2sXht1erur7N, PID: 17974953
-
Zeisberg EM, Potenta S, Xie L, Zeisberg M, Kalluri R. Discovery of endothelial to mesenchymal transition as a source for carcinoma-associated fibroblasts. Cancer Res. 2007;67:10123–8.
-
(2007)
Cancer Res
, vol.67
, pp. 10123-10128
-
-
Zeisberg, E.M.1
Potenta, S.2
Xie, L.3
Zeisberg, M.4
Kalluri, R.5
-
52
-
-
34547676391
-
Endothelial-to-mesenchymal transition contributes to cardiac fibrosis
-
COI: 1:CAS:528:DC%2BD2sXos1Cjsbw%3D, PID: 17660828
-
Zeisberg EM, et al. Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nat Med. 2007;13:952–61.
-
(2007)
Nat Med
, vol.13
, pp. 952-961
-
-
Zeisberg, E.M.1
-
53
-
-
55249126800
-
The role of endothelial-to-mesenchymal transition in cancer progression
-
COI: 1:CAS:528:DC%2BD1cXhtlSktb%2FP, PID: 18797460
-
Potenta S, Zeisberg E, Kalluri R. The role of endothelial-to-mesenchymal transition in cancer progression. Br J Cancer. 2008;99:1375–9.
-
(2008)
Br J Cancer
, vol.99
, pp. 1375-1379
-
-
Potenta, S.1
Zeisberg, E.2
Kalluri, R.3
-
54
-
-
84924608904
-
Endocardial fibroelastosis is caused by aberrant endothelial to mesenchymal transition
-
COI: 1:CAS:528:DC%2BC2MXjtlChsrs%3D, PID: 25587097
-
Xu X, et al. Endocardial fibroelastosis is caused by aberrant endothelial to mesenchymal transition. Circ Res. 2015;116:857–66. doi:10.1161/CIRCRESAHA.116.305629.
-
(2015)
Circ Res
, vol.116
, pp. 857-866
-
-
Xu, X.1
-
55
-
-
84942088525
-
Epigenetic balance of aberrant Rasal1 promoter methylation and hydroxymethylation regulates cardiac fibrosis
-
PID: 25616414
-
Xu X, et al. Epigenetic balance of aberrant Rasal1 promoter methylation and hydroxymethylation regulates cardiac fibrosis. Cardiovasc Res. 2015;105:279–91. doi:10.1093/cvr/cvv015.
-
(2015)
Cardiovasc Res
, vol.105
, pp. 279-291
-
-
Xu, X.1
-
56
-
-
84936802418
-
Snail is a direct target of hypoxia-inducible factor 1alpha (HIF1alpha) in hypoxia-induced endothelial to mesenchymal transition of human coronary endothelial cells
-
COI: 1:CAS:528:DC%2BC2MXhtFSktLvP, PID: 25971970
-
Xu X, et al. Snail is a direct target of hypoxia-inducible factor 1alpha (HIF1alpha) in hypoxia-induced endothelial to mesenchymal transition of human coronary endothelial cells. J Biol Chem. 2015;290:16653–64. doi:10.1074/jbc.M115.636944.
-
(2015)
J Biol Chem
, vol.290
, pp. 16653-16664
-
-
Xu, X.1
-
57
-
-
84906322326
-
Increased concentration of circulating angiogenesis and nitric oxide inhibitors induces endothelial to mesenchymal transition and myocardial fibrosis in patients with chronic kidney disease
-
PID: 25049013
-
Charytan DM, et al. Increased concentration of circulating angiogenesis and nitric oxide inhibitors induces endothelial to mesenchymal transition and myocardial fibrosis in patients with chronic kidney disease. Int J Cardiol. 2014;176:99–109. doi:10.1016/j.ijcard.2014.06.062.
-
(2014)
Int J Cardiol
, vol.176
, pp. 99-109
-
-
Charytan, D.M.1
-
58
-
-
84940767662
-
Evidence for antifibrotic incretin-independent effects of the DPP-4 inhibitor linagliptin
-
COI: 1:CAS:528:DC%2BC2MXhsVGjt7rK, PID: 26323066
-
Zeisberg M, Zeisberg EM. Evidence for antifibrotic incretin-independent effects of the DPP-4 inhibitor linagliptin. Kidney Int. 2015;88:429–31. doi:10.1038/ki.2015.175.
-
(2015)
Kidney Int
, vol.88
, pp. 429-431
-
-
Zeisberg, M.1
Zeisberg, E.M.2
-
59
-
-
84940791235
-
Interactions of DPP-4 and integrin beta1 influences endothelial-to-mesenchymal transition
-
COI: 1:CAS:528:DC%2BC2MXls1ejsrg%3D, PID: 25830763
-
Shi S, et al. Interactions of DPP-4 and integrin beta1 influences endothelial-to-mesenchymal transition. Kidney Int. 2015;88:479–89. doi:10.1038/ki.2015.103.
-
(2015)
Kidney Int
, vol.88
, pp. 479-489
-
-
Shi, S.1
-
60
-
-
80053335949
-
Extracellular matrix receptors in branched organs
-
COI: 1:CAS:528:DC%2BC3MXht1Kmt7rF, PID: 21561755
-
Pozzi A, Zent R. Extracellular matrix receptors in branched organs. Curr Opin Cell Biol. 2011;23:547–53. doi:10.1016/j.ceb.2011.04.003.
-
(2011)
Curr Opin Cell Biol
, vol.23
, pp. 547-553
-
-
Pozzi, A.1
Zent, R.2
-
61
-
-
0348198389
-
Integrins: sensors of extracellular matrix and modulators of cell function
-
Pozzi A, Zent R. Integrins: sensors of extracellular matrix and modulators of cell function. Nephron Exp Nephrol. 2003;94:e77–84. doi:10.1159/000072025.
-
(2003)
Nephron Exp Nephrol
, vol.94
, pp. e77-e84
-
-
Pozzi, A.1
Zent, R.2
-
62
-
-
0037145037
-
Integrins: bidirectional, allosteric signaling machines
-
COI: 1:CAS:528:DC%2BD38XnsFKis70%3D, PID: 12297042
-
Hynes RO. Integrins: bidirectional, allosteric signaling machines. Cell. 2002;110:673–87.
-
(2002)
Cell
, vol.110
, pp. 673-687
-
-
Hynes, R.O.1
-
63
-
-
0034698147
-
Ligand binding to integrins
-
COI: 1:CAS:528:DC%2BD3cXltFGjtrs%3D, PID: 10801897
-
Plow EF, Haas TA, Zhang L, Loftus J, Smith JW. Ligand binding to integrins. J Biol Chem. 2000;275:21785–8. doi:10.1074/jbc.R000003200.
-
(2000)
J Biol Chem
, vol.275
, pp. 21785-21788
-
-
Plow, E.F.1
Haas, T.A.2
Zhang, L.3
Loftus, J.4
Smith, J.W.5
-
64
-
-
84935418112
-
Structural basis of blocking integrin activation and deactivation for anti-inflammation
-
PID: 26152212
-
Park EJ, Yuki Y, Kiyono H, Shimaoka M. Structural basis of blocking integrin activation and deactivation for anti-inflammation. J Biomed Sci. 2015;22:51. doi:10.1186/s12929-015-0159-6.
-
(2015)
J Biomed Sci
, vol.22
, pp. 51
-
-
Park, E.J.1
Yuki, Y.2
Kiyono, H.3
Shimaoka, M.4
-
65
-
-
34247891506
-
Structural basis of integrin regulation and signaling
-
COI: 1:CAS:528:DC%2BD2sXltlansrc%3D, PID: 17201681
-
Luo BH, Carman CV, Springer TA. Structural basis of integrin regulation and signaling. Annu Rev Immunol. 2007;25:619–47. doi:10.1146/annurev.immunol.25.022106.141618.
-
(2007)
Annu Rev Immunol
, vol.25
, pp. 619-647
-
-
Luo, B.H.1
Carman, C.V.2
Springer, T.A.3
-
66
-
-
35648978998
-
Structure and mechanics of integrin-based cell adhesion
-
COI: 1:CAS:528:DC%2BD2sXht1KktbnM, PID: 17928215
-
Arnaout MA, Goodman SL, Xiong JP. Structure and mechanics of integrin-based cell adhesion. Curr Opin Cell Biol. 2007;19:495–507. doi:10.1016/j.ceb.2007.08.002.
-
(2007)
Curr Opin Cell Biol
, vol.19
, pp. 495-507
-
-
Arnaout, M.A.1
Goodman, S.L.2
Xiong, J.P.3
-
67
-
-
33746531062
-
Glomerular injury is exacerbated in diabetic integrin alpha1-null mice
-
COI: 1:CAS:528:DC%2BD28XnsVChtrk%3D, PID: 16775606
-
Zent R, et al. Glomerular injury is exacerbated in diabetic integrin alpha1-null mice. Kidney Int. 2006;70:460–70. doi:10.1038/sj.ki.5000359.
-
(2006)
Kidney Int
, vol.70
, pp. 460-470
-
-
Zent, R.1
-
68
-
-
34247626764
-
Integrin alpha1beta1 controls reactive oxygen species synthesis by negatively regulating epidermal growth factor receptor-mediated Rac activation
-
COI: 1:CAS:528:DC%2BD2sXltFCksL4%3D, PID: 17339338
-
Chen X, et al. Integrin alpha1beta1 controls reactive oxygen species synthesis by negatively regulating epidermal growth factor receptor-mediated Rac activation. Mol Cell Biol. 2007;27:3313–26. doi:10.1128/MCB.01476-06.
-
(2007)
Mol Cell Biol
, vol.27
, pp. 3313-3326
-
-
Chen, X.1
-
69
-
-
77957334362
-
Transforming growth factor-{beta}1 induces Smad3-dependent {beta}1 integrin gene expression in epithelial-to-mesenchymal transition during chronic tubulointerstitial fibrosis
-
COI: 1:CAS:528:DC%2BC3cXhsVSqu7nN, PID: 20709799
-
Yeh YC, et al. Transforming growth factor-{beta}1 induces Smad3-dependent {beta}1 integrin gene expression in epithelial-to-mesenchymal transition during chronic tubulointerstitial fibrosis. Am J Pathol. 2010;177:1743–54. doi:10.2353/ajpath.2010.091183.
-
(2010)
Am J Pathol
, vol.177
, pp. 1743-1754
-
-
Yeh, Y.C.1
-
70
-
-
84924026310
-
Cyclic stretch-induced TGF-beta1 and fibronectin expression is mediated by beta1-integrin through c-Src- and STAT3-dependent pathways in renal epithelial cells
-
COI: 1:CAS:528:DC%2BC2MXlsFCht70%3D, PID: 25477471
-
Hamzeh MT, Sridhara R, Alexander LD. Cyclic stretch-induced TGF-beta1 and fibronectin expression is mediated by beta1-integrin through c-Src- and STAT3-dependent pathways in renal epithelial cells. Am J Physiol Renal Physiol. 2015;308:F425–36. doi:10.1152/ajprenal.00589.2014.
-
(2015)
Am J Physiol Renal Physiol
, vol.308
, pp. F425-F436
-
-
Hamzeh, M.T.1
Sridhara, R.2
Alexander, L.D.3
-
71
-
-
33947730444
-
Effect of rosiglitazone on integrin beta1 expression and apoptosis of proximal tubular cell exposed to high glucose
-
COI: 1:CAS:528:DC%2BD1cXhslWrsrs%3D, PID: 17441352
-
Tang XH, Huang SM, Tan SQ, Ma YL. Effect of rosiglitazone on integrin beta1 expression and apoptosis of proximal tubular cell exposed to high glucose. Sichuan Da Xue Xue Bao Yi Xue Ban. 2007;38:291–4.
-
(2007)
Sichuan Da Xue Xue Bao Yi Xue Ban
, vol.38
, pp. 291-294
-
-
Tang, X.H.1
Huang, S.M.2
Tan, S.Q.3
Ma, Y.L.4
-
72
-
-
0034758802
-
Coexpressed nitric oxide synthase and apical beta(1) integrins influence tubule cell adhesion after cytokine-induced injury
-
COI: 1:CAS:528:DC%2BD3MXotl2lsrs%3D, PID: 11675413
-
Glynne PA, Picot J, Evans TJ. Coexpressed nitric oxide synthase and apical beta(1) integrins influence tubule cell adhesion after cytokine-induced injury. J Am Soc Nephrol. 2001;12:2370–83.
-
(2001)
J Am Soc Nephrol
, vol.12
, pp. 2370-2383
-
-
Glynne, P.A.1
Picot, J.2
Evans, T.J.3
-
73
-
-
84896931147
-
The integrin beta1 subunit regulates paracellular permeability of kidney proximal tubule cells
-
COI: 1:CAS:528:DC%2BC2cXks1Omtbk%3D, PID: 24509849
-
Elias BC, et al. The integrin beta1 subunit regulates paracellular permeability of kidney proximal tubule cells. J Biol Chem. 2014;289:8532–44. doi:10.1074/jbc.M113.526509.
-
(2014)
J Biol Chem
, vol.289
, pp. 8532-8544
-
-
Elias, B.C.1
-
74
-
-
63849307598
-
Integrins and proximal signaling mechanisms in cardiovascular disease
-
COI: 1:CAS:528:DC%2BD1MXltFeit78%3D
-
Lal H, et al. Integrins and proximal signaling mechanisms in cardiovascular disease. Front Biosci (Landmark Ed). 2009;14:2307–34.
-
(2009)
Front Biosci (Landmark Ed)
, vol.14
, pp. 2307-2334
-
-
Lal, H.1
-
75
-
-
37849026460
-
Integrin beta1-mediated matrix assembly and signaling are critical for the normal development and function of the kidney glomerulus
-
COI: 1:CAS:528:DC%2BD1cXlsFGluw%3D%3D, PID: 18082680
-
Kanasaki K, et al. Integrin beta1-mediated matrix assembly and signaling are critical for the normal development and function of the kidney glomerulus. Dev Biol. 2008;313:584–93. doi:10.1016/j.ydbio.2007.10.047.
-
(2008)
Dev Biol
, vol.313
, pp. 584-593
-
-
Kanasaki, K.1
-
76
-
-
69449108113
-
Loss of beta1 integrin in mouse fibroblasts results in resistance to skin scleroderma in a mouse model
-
COI: 1:CAS:528:DC%2BD1MXht1WhtLfJ, PID: 19714619
-
Liu S, Kapoor M, Denton CP, Abraham DJ, Leask A. Loss of beta1 integrin in mouse fibroblasts results in resistance to skin scleroderma in a mouse model. Arthritis Rheum. 2009;60:2817–21. doi:10.1002/art.24801.
-
(2009)
Arthritis Rheum
, vol.60
, pp. 2817-2821
-
-
Liu, S.1
Kapoor, M.2
Denton, C.P.3
Abraham, D.J.4
Leask, A.5
-
77
-
-
23044510616
-
CD26 regulates p38 mitogen-activated protein kinase-dependent phosphorylation of integrin beta1, adhesion to extracellular matrix, and tumorigenicity of T-anaplastic large cell lymphoma Karpas 299
-
COI: 1:CAS:528:DC%2BD2MXmvFSlurY%3D, PID: 16061680
-
Sato T, et al. CD26 regulates p38 mitogen-activated protein kinase-dependent phosphorylation of integrin beta1, adhesion to extracellular matrix, and tumorigenicity of T-anaplastic large cell lymphoma Karpas 299. Cancer Res. 2005;65:6950–6. doi:10.1158/0008-5472.CAN-05-0647.
-
(2005)
Cancer Res
, vol.65
, pp. 6950-6956
-
-
Sato, T.1
-
78
-
-
84884853106
-
MicroRNAs in kidney fibrosis and diabetic nephropathy: roles on EMT and EndMT
-
PID: 24089659
-
Srivastava SP, Koya D, Kanasaki K. MicroRNAs in kidney fibrosis and diabetic nephropathy: roles on EMT and EndMT. Biomed Res Int. 2013;2013:125469. doi:10.1155/2013/125469.
-
(2013)
Biomed Res Int
, vol.2013
, pp. 125469
-
-
Srivastava, S.P.1
Koya, D.2
Kanasaki, K.3
-
79
-
-
84964896883
-
Oral administration of N-acetyl-seryl-aspartyl-lysyl-proline ameliorates kidney disease in both type 1 and type 2 diabetic mice via a therapeutic regimen
-
9172157
-
Nitta K, et al. Oral administration of N-acetyl-seryl-aspartyl-lysyl-proline ameliorates kidney disease in both type 1 and type 2 diabetic mice via a therapeutic regimen. Biomed Res Int. 2016;2016:9172157. doi:10.1155/2016/9172157.
-
(2016)
Biomed Res Int
, vol.2016
-
-
Nitta, K.1
-
80
-
-
80051784270
-
Suppression of hepatic stellate cell activation by microRNA-29b
-
COI: 1:CAS:528:DC%2BC3MXhtVKlu77E, PID: 21798245
-
Sekiya Y, Ogawa T, Yoshizato K, Ikeda K, Kawada N. Suppression of hepatic stellate cell activation by microRNA-29b. Biochem Biophys Res Commun. 2011;412:74–9. doi:10.1016/j.bbrc.2011.07.041.
-
(2011)
Biochem Biophys Res Commun
, vol.412
, pp. 74-79
-
-
Sekiya, Y.1
Ogawa, T.2
Yoshizato, K.3
Ikeda, K.4
Kawada, N.5
-
81
-
-
84881176475
-
miRNA-29c suppresses lung cancer cell adhesion to extracellular matrix and metastasis by targeting integrin beta1 and matrix metalloproteinase2 (MMP2)
-
COI: 1:CAS:528:DC%2BC3sXhtlajs7vJ, PID: 23936390
-
Wang H, et al. miRNA-29c suppresses lung cancer cell adhesion to extracellular matrix and metastasis by targeting integrin beta1 and matrix metalloproteinase2 (MMP2). PLoS One. 2013;8:e70192. doi:10.1371/journal.pone.0070192.
-
(2013)
PLoS One
, vol.8
-
-
Wang, H.1
-
82
-
-
84978898095
-
Effect of antifibrotic microRNAs crosstalk on the action of N-acetyl-seryl-aspartyl-lysyl-proline in diabetes-related kidney fibrosis
-
Srivastava SP, et al. Effect of antifibrotic microRNAs crosstalk on the action of N-acetyl-seryl-aspartyl-lysyl-proline in diabetes-related kidney fibrosis. Sci Rep. 2016;6:29884. doi:10.1038/srep29884.
-
(2016)
Sci Rep
, vol.6
, pp. 29884
-
-
Srivastava, S.P.1
-
83
-
-
84871676561
-
FGF regulates TGF-beta signaling and endothelial-to-mesenchymal transition via control of let-7 miRNA expression
-
Chen PY, et al. FGF regulates TGF-beta signaling and endothelial-to-mesenchymal transition via control of let-7 miRNA expression. Cell Reports. 2012;2:1684–96. doi:10.1016/j.celrep.2012.10.021.
-
(2012)
Cell Reports
, vol.2
, pp. 1684-1696
-
-
Chen, P.Y.1
-
84
-
-
84958890242
-
Linagliptin but not sitagliptin inhibited transforming growth factor-beta2-induced endothelial DPP-4 activity and the endothelial–mesenchymal transition
-
Shi S, Kanasaki K, Koya D. Linagliptin but not sitagliptin inhibited transforming growth factor-beta2-induced endothelial DPP-4 activity and the endothelial–mesenchymal transition. Biochem Biophys Res Commun. 2016;471:184–90. doi:10.1016/j.bbrc.2016.01.154.
-
(2016)
Biochem Biophys Res Commun
, vol.471
, pp. 184-190
-
-
Shi, S.1
Kanasaki, K.2
Koya, D.3
-
85
-
-
61349143225
-
Medicinal chemistry approaches to the inhibition of dipeptidyl peptidase-4 for the treatment of type 2 diabetes
-
COI: 1:CAS:528:DC%2BD1MXis1Cjsb4%3D, PID: 19217790
-
Havale SH, Pal M. Medicinal chemistry approaches to the inhibition of dipeptidyl peptidase-4 for the treatment of type 2 diabetes. Bioorg Med Chem. 2009;17:1783–802. doi:10.1016/j.bmc.2009.01.061.
-
(2009)
Bioorg Med Chem
, vol.17
, pp. 1783-1802
-
-
Havale, S.H.1
Pal, M.2
-
86
-
-
84865785890
-
Recent advances in non-peptidomimetic dipeptidyl peptidase 4 inhibitors: medicinal chemistry and preclinical aspects
-
COI: 1:CAS:528:DC%2BC38Xht12nu7rI, PID: 22709010
-
Liu Y, Hu Y, Liu T. Recent advances in non-peptidomimetic dipeptidyl peptidase 4 inhibitors: medicinal chemistry and preclinical aspects. Curr Med Chem. 2012;19:3982–99.
-
(2012)
Curr Med Chem
, vol.19
, pp. 3982-3999
-
-
Liu, Y.1
Hu, Y.2
Liu, T.3
-
87
-
-
84930009667
-
Efficacy of dipeptidyl peptidase-4 inhibitor linagliptin in patients with type 2 diabetes undergoing hemodialysis
-
PID: 25995772
-
Terawaki Y, et al. Efficacy of dipeptidyl peptidase-4 inhibitor linagliptin in patients with type 2 diabetes undergoing hemodialysis. Diabetol Metab Syndr. 2015;7:44. doi:10.1186/s13098-015-0043-2.
-
(2015)
Diabetol Metab Syndr
, vol.7
, pp. 44
-
-
Terawaki, Y.1
-
88
-
-
33845220829
-
The development of a stable, coated pellet formulation of a water-sensitive drug, a case study: development of a stable core formulation
-
COI: 1:CAS:528:DC%2BD28Xht1OnsL3I, PID: 17101523
-
Fitzpatrick S, Taylor S, Booth SW, Newton MJ. The development of a stable, coated pellet formulation of a water-sensitive drug, a case study: development of a stable core formulation. Pharm Dev Technol. 2006;11:521–8. doi:10.1080/10837450600941079.
-
(2006)
Pharm Dev Technol
, vol.11
, pp. 521-528
-
-
Fitzpatrick, S.1
Taylor, S.2
Booth, S.W.3
Newton, M.J.4
-
89
-
-
84877061867
-
A comparative study of the binding modes of recently launched dipeptidyl peptidase IV inhibitors in the active site
-
COI: 1:CAS:528:DC%2BC3sXmt1ClsrY%3D, PID: 23501107
-
Nabeno M, et al. A comparative study of the binding modes of recently launched dipeptidyl peptidase IV inhibitors in the active site. Biochem Biophys Res Commun. 2013;434:191–6. doi:10.1016/j.bbrc.2013.03.010.
-
(2013)
Biochem Biophys Res Commun
, vol.434
, pp. 191-196
-
-
Nabeno, M.1
-
90
-
-
80255122763
-
Role of a propeller loop in the quaternary structure and enzymatic activity of prolyl dipeptidases DPP-IV and DPP9
-
COI: 1:CAS:528:DC%2BC3MXhtl2ru7nK, PID: 22001206
-
Tang HK, et al. Role of a propeller loop in the quaternary structure and enzymatic activity of prolyl dipeptidases DPP-IV and DPP9. FEBS Lett. 2011;585:3409–14. doi:10.1016/j.febslet.2011.10.009.
-
(2011)
FEBS Lett
, vol.585
, pp. 3409-3414
-
-
Tang, H.K.1
-
91
-
-
0000038304
-
Binding to human dipeptidyl peptidase IV by adenosine deaminase and antibodies that inhibit ligand binding involves overlapping, discontinuous sites on a predicted beta propeller domain
-
COI: 1:CAS:528:DC%2BD3cXltV2l, PID: 10583373
-
Abbott CA, McCaughan GW, Levy MT, Church WB, Gorrell MD. Binding to human dipeptidyl peptidase IV by adenosine deaminase and antibodies that inhibit ligand binding involves overlapping, discontinuous sites on a predicted beta propeller domain. Eur J Biochem. 1999;266:798–810.
-
(1999)
Eur J Biochem
, vol.266
, pp. 798-810
-
-
Abbott, C.A.1
McCaughan, G.W.2
Levy, M.T.3
Church, W.B.4
Gorrell, M.D.5
-
92
-
-
4544237622
-
Tyrosine 547 constitutes an essential part of the catalytic mechanism of dipeptidyl peptidase IV
-
COI: 1:CAS:528:DC%2BD2cXmvFemsrc%3D, PID: 15175333
-
Bjelke JR, et al. Tyrosine 547 constitutes an essential part of the catalytic mechanism of dipeptidyl peptidase IV. J Biol Chem. 2004;279:34691–7. doi:10.1074/jbc.M405400200.
-
(2004)
J Biol Chem
, vol.279
, pp. 34691-34697
-
-
Bjelke, J.R.1
-
93
-
-
84980041509
-
NRF2 activation by antioxidant antidiabetic agents accelerates tumor metastasis
-
Wang H, et al. NRF2 activation by antioxidant antidiabetic agents accelerates tumor metastasis. Sci Transl Med. 2016;8:334ra351. doi:10.1126/scitranslmed.aad6095.
-
(2016)
Sci Transl Med
, vol.8
, pp. 334ra351
-
-
Wang, H.1
-
94
-
-
84888430746
-
Three ileus cases associated with the use of dipeptidyl peptidase-4 inhibitors in diabetic patients
-
COI: 1:CAS:528:DC%2BC3sXhvVOitLrK, PID: 24843724
-
Kanasaki K, et al. Three ileus cases associated with the use of dipeptidyl peptidase-4 inhibitors in diabetic patients. J Diabetes Investig. 2013;4:673–5. doi:10.1111/jdi.12095.
-
(2013)
J Diabetes Investig
, vol.4
, pp. 673-675
-
-
Kanasaki, K.1
-
95
-
-
84898801271
-
Bullous pemphigoid associated with dipeptidyl peptidase IV inhibitors. A case report and review of literature
-
PID: 24748908
-
Attaway A, Mersfelder TL, Vaishnav S, Baker JK. Bullous pemphigoid associated with dipeptidyl peptidase IV inhibitors. A case report and review of literature. J Dermatol Case Rep. 2014;8:24–8. doi:10.3315/jdcr.2014.1166.
-
(2014)
J Dermatol Case Rep
, vol.8
, pp. 24-28
-
-
Attaway, A.1
Mersfelder, T.L.2
Vaishnav, S.3
Baker, J.K.4
|