-
1
-
-
0036849262
-
Epigenetic consequences of nucleosome dynamics
-
Ahmad, K., and S. Henikoff. 2002. Epigenetic consequences of nucleosome dynamics. Cell. 111:281-284. http ://dx.doi.org/10.1016/S0092-8674(02)01081-4
-
(2002)
Cell
, vol.111
, pp. 281-284
-
-
Ahmad, K.1
Henikoff, S.2
-
2
-
-
73249144668
-
CEN PA overexpression promotes genome instability in pRb-depleted human cells
-
Amato, A., T. Schillaci, L. Lentini, and A. Di Leonardo. 2009. CEN PA overexpression promotes genome instability in pRb-depleted human cells. Mol. Cancer. 8:119. http ://dx.doi.org/10.1186/1476-4598-8-119
-
(2009)
Mol. Cancer
, vol.8
, pp. 119
-
-
Amato, A.1
Schillaci, T.2
Lentini, L.3
Di Leonardo, A.4
-
3
-
-
0025837183
-
The nucleosomal core histone octamer at 3.1 A resolution: A tripartite protein assembly and a left-handed superhelix
-
Arents, G., R.W. Burlingame, B.C. Wang, W.E. Love, and E.N. Moudrianakis. 1991. The nucleosomal core histone octamer at 3.1 A resolution: A tripartite protein assembly and a left-handed superhelix. Proc. Natl. Acad. Sci. USA. 88:10148-10152. http ://dx.doi.org/10.1073/pnas.88.22.10148
-
(1991)
Proc. Natl. Acad. Sci. USA
, vol.88
, pp. 10148-10152
-
-
Arents, G.1
Burlingame, R.W.2
Wang, B.C.3
Love, W.E.4
Moudrianakis, E.N.5
-
4
-
-
84964301744
-
Centromeric DNA replication reconstitution reveals DNA loops and ATR checkpoint suppression
-
Aze, A., V. Sannino, P. Soffientini, A. Bachi, and V. Costanzo. 2016. Centromeric DNA replication reconstitution reveals DNA loops and ATR checkpoint suppression. Nat. Cell Biol. 18:684-691. http ://dx.doi.org/10.1038/ncb3344
-
(2016)
Nat. Cell Biol
, vol.18
, pp. 684-691
-
-
Aze, A.1
Sannino, V.2
Soffientini, P.3
Bachi, A.4
Costanzo, V.5
-
5
-
-
79961113679
-
HJU RP is a CENP-A chromatin assembly factor sufficient to form a functional de novo kinetochore
-
Barnhart, M.C., P.H. Kuich, M.E. Stellfox, J.A. Ward, E.A. Bassett, B.E. Black, and D.R. Foltz. 2011. HJU RP is a CENP-A chromatin assembly factor sufficient to form a functional de novo kinetochore. J. Cell Biol. 194:229-243. http ://dx.doi.org/10.1083/jcb.201012017
-
(2011)
J. Cell Biol
, vol.194
, pp. 229-243
-
-
Barnhart, M.C.1
Kuich, P.H.2
Stellfox, M.E.3
Ward, J.A.4
Bassett, E.A.5
Black, B.E.6
Foltz, D.R.7
-
6
-
-
1942471690
-
Facts about FACT and transcript elongation through chromatin
-
Belotserkovskaya, R., and D. Reinberg. 2004. Facts about FACT and transcript elongation through chromatin. Curr. Opin. Genet. Dev. 14:139-146. http ://dx.doi.org/10.1016/j.gde.2004.02.004
-
(2004)
Curr. Opin. Genet. Dev
, vol.14
, pp. 139-146
-
-
Belotserkovskaya, R.1
Reinberg, D.2
-
7
-
-
78751636707
-
Epigenetic engineering shows H3K4me2 is required for HJU RP targeting and CENP-A assembly on a synthetic human kinetochore
-
Bergmann, J.H., M.G. Rodríguez, N.M. Martins, H. Kimura, D.A. Kelly, H. Masumoto, V. Larionov, L.E. Jansen, and W.C. Earnshaw. 2011. Epigenetic engineering shows H3K4me2 is required for HJU RP targeting and CENP-A assembly on a synthetic human kinetochore. EMBO J. 30:328-340. http ://dx.doi.org/10.1038/emboj.2010.329
-
(2011)
EMBO J
, vol.30
, pp. 328-340
-
-
Bergmann, J.H.1
Rodríguez, M.G.2
Martins, N.M.3
Kimura, H.4
Kelly, D.A.5
Masumoto, H.6
Larionov, V.7
Jansen, L.E.8
Earnshaw, W.C.9
-
8
-
-
79951905050
-
Xenopus HJU RP and condensin II are required for CENP-A assembly
-
Bernad, R., P. Sánchez, T. Rivera, M. Rodríguez-Corsino, E. Boyarchuk, I. Vassias, D. Ray-Gallet, A. Arnaoutov, M. Dasso, G. Almouzni, and A. Losada. 2011. Xenopus HJU RP and condensin II are required for CENP-A assembly. J. Cell Biol. 192:569-582. http ://dx.doi.org/10.1083/jcb.201005136
-
(2011)
J. Cell Biol
, vol.192
, pp. 569-582
-
-
Bernad, R.1
Sánchez, P.2
Rivera, T.3
Rodríguez-Corsino, M.4
Boyarchuk, E.5
Vassias, I.6
Ray-Gallet, D.7
Arnaoutov, A.8
Dasso, M.9
Almouzni, G.10
Losada, A.11
-
9
-
-
79951709224
-
Epigenetic centromere propagation and the nature of CENP-a nucleosomes
-
Black, B.E., and D.W. Cleveland. 2011. Epigenetic centromere propagation and the nature of CENP-a nucleosomes. Cell. 144:471-479. http ://dx.doi.org/10.1016/j.cell.2011.02.002
-
(2011)
Cell
, vol.144
, pp. 471-479
-
-
Black, B.E.1
Cleveland, D.W.2
-
10
-
-
3242884785
-
Structural determinants for generating centromeric chromatin
-
Black, B.E., D.R. Foltz, S. Chakravarthy, K. Luger, V.L. Woods Jr., and D.W. Cleveland. 2004. Structural determinants for generating centromeric chromatin. Nature. 430:578-582. http ://dx.doi.org/10.1038/nature02766
-
(2004)
Nature
, vol.430
, pp. 578-582
-
-
Black, B.E.1
Foltz, D.R.2
Chakravarthy, S.3
Luger, K.4
Woods, V.L.5
Cleveland, D.W.6
-
11
-
-
33947279176
-
An epigenetic mark generated by the incorporation of CENP-A into centromeric nucleosomes
-
Black, B.E., M.A. Brock, S. Bédard, V.L. Woods Jr., and D.W. Cleveland. 2007a. An epigenetic mark generated by the incorporation of CENP-A into centromeric nucleosomes. Proc. Natl. Acad. Sci. USA. 104:5008-5013. http ://dx.doi.org/10.1073/pnas.0700390104
-
(2007)
Proc. Natl. Acad. Sci. USA
, vol.104
, pp. 5008-5013
-
-
Black, B.E.1
Brock, M.A.2
Bédard, S.3
Woods, V.L.4
Cleveland, D.W.5
-
12
-
-
33846199534
-
Centromere identity maintained by nucleosomes assembled with histone H3 containing the CENP-A targeting domain
-
Black, B.E., L.E. Jansen, P.S. Maddox, D.R. Foltz, A.B. Desai, J.V. Shah, and D.W. Cleveland. 2007b. Centromere identity maintained by nucleosomes assembled with histone H3 containing the CENP-A targeting domain. Mol. Cell. 25:309-322. http ://dx.doi.org/10.1016/j.molcel.2006.12.018
-
(2007)
Mol. Cell
, vol.25
, pp. 309-322
-
-
Black, B.E.1
Jansen, L.E.2
Maddox, P.S.3
Foltz, D.R.4
Desai, A.B.5
Shah, J.V.6
Cleveland, D.W.7
-
13
-
-
84966650002
-
Centromeric transcription regulates aurora-B localization and activation
-
Blower, M.D. 2016. Centromeric transcription regulates aurora-B localization and activation. Cell Reports. 15:1624-1633. http ://dx.doi.org/10.1016/j.celrep.2016.04.054
-
(2016)
Cell Reports
, vol.15
, pp. 1624-1633
-
-
Blower, M.D.1
-
14
-
-
0036200147
-
Conserved organization of centromeric chromatin in flies and humans
-
Blower, M.D., B.A. Sullivan, and G.H. Karpen. 2002. Conserved organization of centromeric chromatin in flies and humans. Dev. Cell. 2:319-330. http ://dx.doi.org/10.1016/S1534-5807(02)00135-1
-
(2002)
Dev. Cell
, vol.2
, pp. 319-330
-
-
Blower, M.D.1
Sullivan, B.A.2
Karpen, G.H.3
-
15
-
-
84875445835
-
Assembly in G1 phase and long-term stability are unique intrinsic features of CENP-A nucleosomes
-
Bodor, D.L., L.P. Valente, J.F. Mata, B.E. Black, and L.E. Jansen. 2013. Assembly in G1 phase and long-term stability are unique intrinsic features of CENP-A nucleosomes. Mol. Biol. Cell. 24:923-932. http ://dx.doi.org/10.1091/mbc.E13-01-0034
-
(2013)
Mol. Biol. Cell
, vol.24
, pp. 923-932
-
-
Bodor, D.L.1
Valente, L.P.2
Mata, J.F.3
Black, B.E.4
Jansen, L.E.5
-
16
-
-
84904431218
-
The quantitative architecture of centromeric chromatin
-
Bodor, D.L., J.F. Mata, M. Sergeev, A.F. David, K.J. Salimian, T. Panchenko, D.W. Cleveland, B.E. Black, J.V. Shah, and L.E. Jansen. 2014. The quantitative architecture of centromeric chromatin. eLife. 3:e02137. http ://dx.doi.org/10.7554/eLife.02137
-
(2014)
eLife
, vol.3
-
-
Bodor, D.L.1
Mata, J.F.2
Sergeev, M.3
David, A.F.4
Salimian, K.J.5
Panchenko, T.6
Cleveland, D.W.7
Black, B.E.8
Shah, J.V.9
Jansen, L.E.10
-
17
-
-
84864193502
-
Cell-cycle-dependent structural transitions in the human CENP-A nucleosome in vivo
-
Bui, M., E.K. Dimitriadis, C. Hoischen, E. An, D. Quénet, S. Giebe, A. Nita-Lazar, S. Diekmann, and Y. Dalal. 2012. Cell-cycle-dependent structural transitions in the human CENP-A nucleosome in vivo. Cell. 150:317-326. http ://dx.doi.org/10.1016/j.cell.2012.05.035
-
(2012)
Cell
, vol.150
, pp. 317-326
-
-
Bui, M.1
Dimitriadis, E.K.2
Hoischen, C.3
An, E.4
Quénet, D.5
Giebe, S.6
Nita-Lazar, A.7
Diekmann, S.8
Dalal, Y.9
-
18
-
-
84873534317
-
The CENP-A nucleosome: A battle between Dr Jekyll and Mr Hyde
-
Bui, M., M.P. Walkiewicz, E.K. Dimitriadis, and Y. Dalal. 2013. The CENP-A nucleosome: A battle between Dr Jekyll and Mr Hyde. Nucleus. 4:37-42. http ://dx.doi.org/10.4161/nucl.23588
-
(2013)
Nucleus
, vol.4
, pp. 37-42
-
-
Bui, M.1
Walkiewicz, M.P.2
Dimitriadis, E.K.3
Dalal, Y.4
-
19
-
-
84876323319
-
SCFSlimb ubiquitin ligase suppresses condensin II-mediated nuclear reorganization by degrading Cap-H2
-
Buster, D.W., S.G. Daniel, H.Q. Nguyen, S.L. Windler, L.C. Skwarek, M. Peterson, M. Roberts, J.H. Meserve, T. Hartl, J.E. Klebba, et al. 2013. SCFSlimb ubiquitin ligase suppresses condensin II-mediated nuclear reorganization by degrading Cap-H2. J. Cell Biol. 201:49-63. http ://dx.doi.org/10.1083/jcb.201207183
-
(2013)
J. Cell Biol
, vol.201
, pp. 49-63
-
-
Buster, D.W.1
Daniel, S.G.2
Nguyen, H.Q.3
Windler, S.L.4
Skwarek, L.C.5
Peterson, M.6
Roberts, M.7
Meserve, J.H.8
Hartl, T.9
Klebba, J.E.10
-
20
-
-
34250316190
-
Scm3 is essential to recruit the histone h3 variant cse4 to centromeres and to maintain a functional kinetochore
-
Camahort, R., B. Li, L. Florens, S.K. Swanson, M.P. Washburn, and J.L. Gerton. 2007. Scm3 is essential to recruit the histone h3 variant cse4 to centromeres and to maintain a functional kinetochore. Mol. Cell. 26:853-865. http ://dx.doi.org/10.1016/j.molcel.2007.05.013
-
(2007)
Mol. Cell
, vol.26
, pp. 853-865
-
-
Camahort, R.1
Li, B.2
Florens, L.3
Swanson, S.K.4
Washburn, M.P.5
Gerton, J.L.6
-
21
-
-
84875228589
-
Hypermorphic expression of centromeric retroelementencoded small RNAs impairs CENP-A loading
-
Carone, D.M., C. Zhang, L.E. Hall, C. Obergfell, B.R. Carone, M.J. O'Neill, and R.J. O'Neill. 2013. Hypermorphic expression of centromeric retroelementencoded small RNAs impairs CENP-A loading. Chromosome Res. 21:49-62. http ://dx.doi.org/10.1007/s10577-013-9337-0
-
(2013)
Chromosome Res
, vol.21
, pp. 49-62
-
-
Carone, D.M.1
Zhang, C.2
Hall, L.E.3
Obergfell, C.4
Carone, B.R.5
O'Neill, M.J.6
O'Neill, R.J.7
-
22
-
-
84926161769
-
Sequence features and transcriptional stalling within centromere DNA promote establishment of CENP-A chromatin
-
Catania, S., A.L. Pidoux, and R.C. Allshire. 2015. Sequence features and transcriptional stalling within centromere DNA promote establishment of CENP-A chromatin. PLoS Genet. 11:e1004986. http ://dx.doi.org/10.1371/journal.pgen.1004986
-
(2015)
PLoS Genet
, vol.11
-
-
Catania, S.1
Pidoux, A.L.2
Allshire, R.C.3
-
23
-
-
84871202517
-
Transcription in the maintenance of centromere chromatin identity
-
Chan, F.L., and L.H. Wong. 2012. Transcription in the maintenance of centromere chromatin identity. Nucleic Acids Res. 40:11178-11188. http ://dx.doi.org/10.1093/nar/gks921
-
(2012)
Nucleic Acids Res
, vol.40
, pp. 11178-11188
-
-
Chan, F.L.1
Wong, L.H.2
-
24
-
-
84863174471
-
Active transcription and essential role of RNA polymerase II at the centromere during mitosis
-
Chan, F.L., O.J. Marshall, R. Saffery, B.W. Kim, E. Earle, K.H. Choo, and L.H. Wong. 2012. Active transcription and essential role of RNA polymerase II at the centromere during mitosis. Proc. Natl. Acad. Sci. USA. 109:1979-1984. http ://dx.doi.org/10.1073/pnas.1108705109
-
(2012)
Proc. Natl. Acad. Sci. USA
, vol.109
, pp. 1979-1984
-
-
Chan, F.L.1
Marshall, O.J.2
Saffery, R.3
Kim, B.W.4
Earle, E.5
Choo, K.H.6
Wong, L.H.7
-
25
-
-
84893456706
-
CAL1 is the Drosophila CENP-A assembly factor
-
Chen, C.C., M.L. Dechassa, E. Bettini, M.B. Ledoux, C. Belisario, P. Heun, K. Luger, and B.G. Mellone. 2014. CAL1 is the Drosophila CENP-A assembly factor. J. Cell Biol. 204:313-329. http ://dx.doi.org/10.1083/jcb.201305036
-
(2014)
J. Cell Biol
, vol.204
, pp. 313-329
-
-
Chen, C.C.1
Dechassa, M.L.2
Bettini, E.3
Ledoux, M.B.4
Belisario, C.5
Heun, P.6
Luger, K.7
Mellone, B.G.8
-
26
-
-
84941010222
-
Establishment of centromeric chromatin by the CENP-A assembly factor CAL1 requires FACT-mediated transcription
-
Chen, C.C., S. Bowers, Z. Lipinszki, J. Palladino, S. Trusiak, E. Bettini, L. Rosin, M.R. Przewloka, D.M. Glover, R.J. O'Neill, and B.G. Mellone. 2015. Establishment of centromeric chromatin by the CENP-A assembly factor CAL1 requires FACT-mediated transcription. Dev. Cell. 34:73-84. http ://dx.doi.org/10.1016/j.devcel.2015.05.012
-
(2015)
Dev. Cell
, vol.34
, pp. 73-84
-
-
Chen, C.C.1
Bowers, S.2
Lipinszki, Z.3
Palladino, J.4
Trusiak, S.5
Bettini, E.6
Rosin, L.7
Przewloka, M.R.8
Glover, D.M.9
O'Neill, R.J.10
Mellone, B.G.11
-
27
-
-
79959331606
-
Recognition of the centromere-specific histone Cse4 by the chaperone Scm3
-
Cho, U.S., and S.C. Harrison. 2011. Recognition of the centromere-specific histone Cse4 by the chaperone Scm3. Proc. Natl. Acad. Sci. USA. 108:9367-9371. http ://dx.doi.org/10.1073/pnas.1106389108
-
(2011)
Proc. Natl. Acad. Sci. USA
, vol.108
, pp. 9367-9371
-
-
Cho, U.S.1
Harrison, S.C.2
-
28
-
-
79959553631
-
Identification of noncoding transcripts from within CENP-A chromatin at fission yeast centromeres
-
Choi, E.S., A. Strålfors, A.G. Castillo, M. Durand-Dubief, K. Ekwall, and R.C. Allshire. 2011. Identification of noncoding transcripts from within CENP-A chromatin at fission yeast centromeres. J. Biol. Chem. 286:23600-23607. http ://dx.doi.org/10.1074/jbc.M111.228510
-
(2011)
J. Biol. Chem
, vol.286
, pp. 23600-23607
-
-
Choi, E.S.1
Strålfors, A.2
Castillo, A.G.3
Durand-Dubief, M.4
Ekwall, K.5
Allshire, R.C.6
-
29
-
-
84866914587
-
Factors that promote H3 chromatin integrity during transcription prevent promiscuous deposition of CENPA( Cnp1) in fission yeast
-
Choi, E.S., A. Strålfors, S. Catania, A.G. Castillo, J.P. Svensson, A.L. Pidoux, K. Ekwall, and R.C. Allshire. 2012. Factors that promote H3 chromatin integrity during transcription prevent promiscuous deposition of CENPA( Cnp1) in fission yeast. PLoS Genet. 8:e1002985. http ://dx.doi.org/10.1371/journal.pgen.1002985
-
(2012)
PLoS Genet
, vol.8
-
-
Choi, E.S.1
Strålfors, A.2
Catania, S.3
Castillo, A.G.4
Svensson, J.P.5
Pidoux, A.L.6
Ekwall, K.7
Allshire, R.C.8
-
30
-
-
59249100073
-
LINE retrotransposon RNA is an essential structural and functional epigenetic component of a core neocentromeric chromatin
-
Chueh, A.C., E.L. Northrop, K.H. Brettingham-Moore, K.H. Choo, and L.H. Wong. 2009. LINE retrotransposon RNA is an essential structural and functional epigenetic component of a core neocentromeric chromatin. PLoS Genet. 5:e1000354. http ://dx.doi.org/10.1371/journal.pgen.1000354
-
(2009)
PLoS Genet
, vol.5
-
-
Chueh, A.C.1
Northrop, E.L.2
Brettingham-Moore, K.H.3
Choo, K.H.4
Wong, L.H.5
-
31
-
-
34548267126
-
Tetrameric structure of centromeric nucleosomes in interphase Drosophila cells
-
Dalal, Y., H. Wang, S. Lindsay, and S. Henikoff. 2007. Tetrameric structure of centromeric nucleosomes in interphase Drosophila cells. PLoS Biol. 5:e218. http ://dx.doi.org/10.1371/journal.pbio.0050218
-
(2007)
PLoS Biol
, vol.5
-
-
Dalal, Y.1
Wang, H.2
Lindsay, S.3
Henikoff, S.4
-
32
-
-
84860201576
-
CENP-C facilitates the recruitment of M18BP1 to centromeric chromatin
-
Dambacher, S., W. Deng, M. Hahn, D. Sadic, J. Fröhlich, A. Nuber, C. Hoischen, S. Diekmann, H. Leonhardt, and G. Schotta. 2012. CENP-C facilitates the recruitment of M18BP1 to centromeric chromatin. Nucleus. 3:101-110. http ://dx.doi.org/10.4161/nucl.18955
-
(2012)
Nucleus
, vol.3
, pp. 101-110
-
-
Dambacher, S.1
Deng, W.2
Hahn, M.3
Sadic, D.4
Fröhlich, J.5
Nuber, A.6
Hoischen, C.7
Diekmann, S.8
Leonhardt, H.9
Schotta, G.10
-
33
-
-
84946080262
-
Ubinuclein-1 confers histone H3.3-specific-binding by the HIRA histone chaperone complex
-
Daniel Ricketts, M., B. Frederick, H. Hoff, Y. Tang, D.C. Schultz, T. Singh Rai, M. Grazia Vizioli, P.D. Adams, and R. Marmorstein. 2015. Ubinuclein-1 confers histone H3.3-specific-binding by the HIRA histone chaperone complex. Nat. Commun. 6:7711. http ://dx.doi.org/10.1038/ncomms8711
-
(2015)
Nat. Commun
, vol.6
, pp. 7711
-
-
Daniel Ricketts, M.1
Frederick, B.2
Hoff, H.3
Tang, Y.4
Schultz, D.C.5
Singh Rai, T.6
Grazia Vizioli, M.7
Adams, P.D.8
Marmorstein, R.9
-
34
-
-
35848964068
-
Histone chaperones: An escort network regulating histone traffic
-
De Koning, L., A. Corpet, J.E. Haber, and G. Almouzni. 2007. Histone chaperones: An escort network regulating histone traffic. Nat. Struct. Mol. Biol. 14:997-1007. http ://dx.doi.org/10.1038/nsmb1318
-
(2007)
Nat. Struct. Mol. Biol
, vol.14
, pp. 997-1007
-
-
De Koning, L.1
Corpet, A.2
Haber, J.E.3
Almouzni, G.4
-
35
-
-
84872072332
-
CENP-A: The key player behind centromere identity, propagation, and kinetochore assembly
-
De Rop, V., A. Padeganeh, and P.S. Maddox. 2012. CENP-A: The key player behind centromere identity, propagation, and kinetochore assembly. Chromosoma. 121:527-538. http ://dx.doi.org/10.1007/s00412-012-0386-5
-
(2012)
Chromosoma
, vol.121
, pp. 527-538
-
-
De Rop, V.1
Padeganeh, A.2
Maddox, P.S.3
-
36
-
-
84906093103
-
The FACT complex interacts with the E3 ubiquitin ligase Psh1 to prevent ectopic localization of CENP-A
-
Deyter, G.M., and S. Biggins. 2014. The FACT complex interacts with the E3 ubiquitin ligase Psh1 to prevent ectopic localization of CENP-A. Genes Dev. 28:1815-1826. http ://dx.doi.org/10.1101/gad.243113.114
-
(2014)
Genes Dev
, vol.28
, pp. 1815-1826
-
-
Deyter, G.M.1
Biggins, S.2
-
37
-
-
77953955724
-
The death-associated protein DAXX is a novel histone chaperone involved in the replication-independent deposition of H3.3
-
Drané, P., K. Ouararhni, A. Depaux, M. Shuaib, and A. Hamiche. 2010. The death-associated protein DAXX is a novel histone chaperone involved in the replication-independent deposition of H3.3. Genes Dev. 24:1253-1265. http ://dx.doi.org/10.1101/gad.566910
-
(2010)
Genes Dev
, vol.24
, pp. 1253-1265
-
-
Drané, P.1
Ouararhni, K.2
Depaux, A.3
Shuaib, M.4
Hamiche, A.5
-
38
-
-
78649894788
-
Dynamics of a novel centromeric histone variant CenH3 reveals the evolutionary ancestral timing of centromere biogenesis
-
Dubin, M., J. Fuchs, R. Gräf, I. Schubert, and W. Nellen. 2010. Dynamics of a novel centromeric histone variant CenH3 reveals the evolutionary ancestral timing of centromere biogenesis. Nucleic Acids Res. 38:7526-7537. http ://dx.doi.org/10.1093/nar/gkq664
-
(2010)
Nucleic Acids Res
, vol.38
, pp. 7526-7537
-
-
Dubin, M.1
Fuchs, J.2
Gräf, R.3
Schubert, I.4
Nellen, W.5
-
39
-
-
65249129208
-
HJU RP is a cell-cycle-dependent maintenance and deposition factor of CENP-A at centromeres
-
Dunleavy, E.M., D. Roche, H. Tagami, N. Lacoste, D. Ray-Gallet, Y. Nakamura, Y. Daigo, Y. Nakatani, and G. Almouzni-Pettinotti. 2009. HJU RP is a cell-cycle-dependent maintenance and deposition factor of CENP-A at centromeres. Cell. 137:485-497. http ://dx.doi.org/10.1016/j.cell.2009.02.040
-
(2009)
Cell
, vol.137
, pp. 485-497
-
-
Dunleavy, E.M.1
Roche, D.2
Tagami, H.3
Lacoste, N.4
Ray-Gallet, D.5
Nakamura, Y.6
Daigo, Y.7
Nakatani, Y.8
Almouzni-Pettinotti, G.9
-
40
-
-
84855956123
-
H3.3 is deposited at centromeres in S phase as a placeholder for newly assembled CENP-A in G1 phase
-
Dunleavy, E.M., G. Almouzni, and G.H. Karpen. 2011. H3.3 is deposited at centromeres in S phase as a placeholder for newly assembled CENP-A in G1 phase. Nucleus. 2:146-157. http ://dx.doi.org/10.4161/nucl.2.2.15211
-
(2011)
Nucleus
, vol.2
, pp. 146-157
-
-
Dunleavy, E.M.1
Almouzni, G.2
Karpen, G.H.3
-
41
-
-
84871672177
-
The cell cycle timing of centromeric chromatin assembly in Drosophila meiosis is distinct from mitosis yet requires CAL1 and CENP-C
-
Dunleavy, E.M., N.L. Beier, W. Gorgescu, J. Tang, S.V. Costes, and G.H. Karpen. 2012. The cell cycle timing of centromeric chromatin assembly in Drosophila meiosis is distinct from mitosis yet requires CAL1 and CENP-C. PLoS Biol. 10:e1001460. http ://dx.doi.org/10.1371/journal.pbio.1001460
-
(2012)
PLoS Biol
, vol.10
-
-
Dunleavy, E.M.1
Beier, N.L.2
Gorgescu, W.3
Tang, J.4
Costes, S.V.5
Karpen, G.H.6
-
42
-
-
84878918476
-
Solo or doppio: How many CENP-As make a centromeric nucleosome?
-
Dunleavy, E.M., W. Zhang, and G.H. Karpen. 2013. Solo or doppio: How many CENP-As make a centromeric nucleosome? Nat. Struct. Mol. Biol. 20:648-650. http ://dx.doi.org/10.1038/nsmb.2602
-
(2013)
Nat. Struct. Mol. Biol
, vol.20
, pp. 648-650
-
-
Dunleavy, E.M.1
Zhang, W.2
Karpen, G.H.3
-
43
-
-
0021989578
-
Identification of a family of human centromere proteins using autoimmune sera from patients with scleroderma
-
Earnshaw, W.C., and N. Rothfield. 1985. Identification of a family of human centromere proteins using autoimmune sera from patients with scleroderma. Chromosoma. 91:313-321. http ://dx.doi.org/10.1007/BF00328227
-
(1985)
Chromosoma
, vol.91
, pp. 313-321
-
-
Earnshaw, W.C.1
Rothfield, N.2
-
44
-
-
34248167741
-
Immunodeficiency, centromeric region instability, facial anomalies syndrome (ICF)
-
Ehrlich, M., K. Jackson, and C. Weemaes. 2006. Immunodeficiency, centromeric region instability, facial anomalies syndrome (ICF). Orphanet J. Rare Dis. 1:2. http ://dx.doi.org/10.1186/1750-1172-1-2
-
(2006)
Orphanet J. Rare Dis
, vol.1
, pp. 2
-
-
Ehrlich, M.1
Jackson, K.2
Weemaes, C.3
-
45
-
-
84869886446
-
DAXX envelops a histone H3.3-H4 dimer for H3.3-specific recognition
-
Elsässer, S.J., H. Huang, P.W. Lewis, J.W. Chin, C.D. Allis, and D.J. Patel. 2012. DAXX envelops a histone H3.3-H4 dimer for H3.3-specific recognition. Nature. 491:560-565. http ://dx.doi.org/10.1038/nature11608
-
(2012)
Nature
, vol.491
, pp. 560-565
-
-
Elsässer, S.J.1
Huang, H.2
Lewis, P.W.3
Chin, J.W.4
Allis, C.D.5
Patel, D.J.6
-
46
-
-
58149305928
-
Genome-wide analysis reveals a cell cycle-dependent mechanism controlling centromere propagation
-
Erhardt, S., B.G. Mellone, C.M. Betts, W. Zhang, G.H. Karpen, and A.F. Straight. 2008. Genome-wide analysis reveals a cell cycle-dependent mechanism controlling centromere propagation. J. Cell Biol. 183:805-818. http ://dx.doi.org/10.1083/jcb.200806038
-
(2008)
J. Cell Biol
, vol.183
, pp. 805-818
-
-
Erhardt, S.1
Mellone, B.G.2
Betts, C.M.3
Zhang, W.4
Karpen, G.H.5
Straight, A.F.6
-
47
-
-
84883667139
-
A two-step mechanism for epigenetic specification of centromere identity and function
-
Fachinetti, D., H.D. Folco, Y. Nechemia-Arbely, L.P. Valente, K. Nguyen, A.J. Wong, Q. Zhu, A.J. Holland, A. Desai, L.E. Jansen, and D.W. Cleveland. 2013. A two-step mechanism for epigenetic specification of centromere identity and function. Nat. Cell Biol. 15:1056-1066. http ://dx.doi.org/10.1038/ncb2805
-
(2013)
Nat. Cell Biol
, vol.15
, pp. 1056-1066
-
-
Fachinetti, D.1
Folco, H.D.2
Nechemia-Arbely, Y.3
Valente, L.P.4
Nguyen, K.5
Wong, A.J.6
Zhu, Q.7
Holland, A.J.8
Desai, A.9
Jansen, L.E.10
Cleveland, D.W.11
-
48
-
-
84929192908
-
Chromosomes. CENP-C reshapes and stabilizes CENP-A nucleosomes at the centromere
-
Falk, S.J., L.Y. Guo, N. Sekulic, E.M. Smoak, T. Mani, G.A. Logsdon, K. Gupta, L.E. Jansen, G.D. Van Duyne, S.A. Vinogradov, et al. 2015. Chromosomes. CENP-C reshapes and stabilizes CENP-A nucleosomes at the centromere. Science. 348:699-703. http ://dx.doi.org/10.1126/science.1259308
-
(2015)
Science
, vol.348
, pp. 699-703
-
-
Falk, S.J.1
Guo, L.Y.2
Sekulic, N.3
Smoak, E.M.4
Mani, T.5
Logsdon, G.A.6
Gupta, K.7
Jansen, L.E.8
Van Duyne, G.D.9
Vinogradov, S.A.10
-
49
-
-
84959518850
-
CENP-C directs a structural transition of CENP-A nucleosomes mainly through sliding of DNA gyres
-
Falk, S.J., J. Lee, N. Sekulic, M.A. Sennett, T.H. Lee, and B.E. Black. 2016. CENP-C directs a structural transition of CENP-A nucleosomes mainly through sliding of DNA gyres. Nat. Struct. Mol. Biol. 23:204-208. http ://dx.doi.org/10.1038/nsmb.3175
-
(2016)
Nat. Struct. Mol. Biol
, vol.23
, pp. 204-208
-
-
Falk, S.J.1
Lee, J.2
Sekulic, N.3
Sennett, M.A.4
Lee, T.H.5
Black, B.E.6
-
50
-
-
80052284070
-
Structure of the budding yeast Saccharomyces cerevisiae centromeric histones Cse4-H4 complexed with the chaperone Scm3
-
Feng, H., Z. Zhou, B.R. Zhou, and Y. Bai. 2011. Structure of the budding yeast Saccharomyces cerevisiae centromeric histones Cse4-H4 complexed with the chaperone Scm3. Proc. Natl. Acad. Sci. USA. 108:E596. http ://dx.doi.org/10.1073/pnas.1109548108
-
(2011)
Proc. Natl. Acad. Sci. USA
, vol.108
, pp. E596
-
-
Feng, H.1
Zhou, Z.2
Zhou, B.R.3
Bai, Y.4
-
51
-
-
69849105566
-
Non-coding murine centromeric transcripts associate with and potentiate Aurora B kinase
-
Ferri, F., H. Bouzinba-Segard, G. Velasco, F. Hubé, and C. Francastel. 2009. Non-coding murine centromeric transcripts associate with and potentiate Aurora B kinase. Nucleic Acids Res. 37:5071-5080. http ://dx.doi.org/10.1093/nar/gkp529
-
(2009)
Nucleic Acids Res
, vol.37
, pp. 5071-5080
-
-
Ferri, F.1
Bouzinba-Segard, H.2
Velasco, G.3
Hubé, F.4
Francastel, C.5
-
52
-
-
84875805105
-
Eukaryotic replisome components cooperate to process histones during chromosome replication
-
Foltman, M., C. Evrin, G. De Piccoli, R.C. Jones, R.D. Edmondson, Y. Katou, R. Nakato, K. Shirahige, and K. Labib. 2013. Eukaryotic replisome components cooperate to process histones during chromosome replication. Cell Reports. 3:892-904. http ://dx.doi.org/10.1016/j.celrep.2013.02.028
-
(2013)
Cell Reports
, vol.3
, pp. 892-904
-
-
Foltman, M.1
Evrin, C.2
De Piccoli, G.3
Jones, R.C.4
Edmondson, R.D.5
Katou, Y.6
Nakato, R.7
Shirahige, K.8
Labib, K.9
-
53
-
-
33745004786
-
The human CENP-A centromeric nucleosomeassociated complex
-
Foltz, D.R., L.E. Jansen, B.E. Black, A.O. Bailey, J.R. Yates III, and D.W. Cleveland. 2006. The human CENP-A centromeric nucleosomeassociated complex. Nat. Cell Biol. 8:458-469. http ://dx.doi.org/10.1038/ncb1397
-
(2006)
Nat. Cell Biol
, vol.8
, pp. 458-469
-
-
Foltz, D.R.1
Jansen, L.E.2
Black, B.E.3
Bailey, A.O.4
Yates, J.R.5
Cleveland, D.W.6
-
54
-
-
65249115338
-
Centromere-specific assembly of CENP-a nucleosomes is mediated by HJU RP
-
Foltz, D.R., L.E. Jansen, A.O. Bailey, J.R. Yates III, E.A. Bassett, S. Wood, B.E. Black, and D.W. Cleveland. 2009. Centromere-specific assembly of CENP-a nucleosomes is mediated by HJU RP. Cell. 137:472-484. http ://dx.doi.org/10.1016/j.cell.2009.02.039
-
(2009)
Cell
, vol.137
, pp. 472-484
-
-
Foltz, D.R.1
Jansen, L.E.2
Bailey, A.O.3
Yates, J.R.4
Bassett, E.A.5
Wood, S.6
Black, B.E.7
Cleveland, D.W.8
-
55
-
-
84931275592
-
Stable complex formation of CENP-B with the CENP-A nucleosome
-
Fujita, R., K. Otake, Y. Arimura, N. Horikoshi, Y. Miya, T. Shiga, A. Osakabe, H. Tachiwana, J. Ohzeki, V. Larionov, et al. 2015. Stable complex formation of CENP-B with the CENP-A nucleosome. Nucleic Acids Res. 43:4909-4922. http ://dx.doi.org/10.1093/nar/gkv405
-
(2015)
Nucleic Acids Res
, vol.43
, pp. 4909-4922
-
-
Fujita, R.1
Otake, K.2
Arimura, Y.3
Horikoshi, N.4
Miya, Y.5
Shiga, T.6
Osakabe, A.7
Tachiwana, H.8
Ohzeki, J.9
Larionov, V.10
-
56
-
-
33845744494
-
Priming of centromere for CENP-A recruitment by human hMis18alpha, hMis18beta, and M18BP1
-
Fujita, Y., T. Hayashi, T. Kiyomitsu, Y. Toyoda, A. Kokubu, C. Obuse, and M. Yanagida. 2007. Priming of centromere for CENP-A recruitment by human hMis18alpha, hMis18beta, and M18BP1. Dev. Cell. 12:17-30. http ://dx.doi.org/10.1016/j.devcel.2006.11.002
-
(2007)
Dev. Cell
, vol.12
, pp. 17-30
-
-
Fujita, Y.1
Hayashi, T.2
Kiyomitsu, T.3
Toyoda, Y.4
Kokubu, A.5
Obuse, C.6
Yanagida, M.7
-
57
-
-
33646589676
-
Chaperone-mediated assembly of centromeric chromatin in vitro
-
Furuyama, T., Y. Dalal, and S. Henikoff. 2006. Chaperone-mediated assembly of centromeric chromatin in vitro. Proc. Natl. Acad. Sci. USA. 103:6172-6177. http ://dx.doi.org/10.1073/pnas.0601686103
-
(2006)
Proc. Natl. Acad. Sci. USA
, vol.103
, pp. 6172-6177
-
-
Furuyama, T.1
Dalal, Y.2
Henikoff, S.3
-
58
-
-
0029971350
-
The stability of nucleosomes at the replication fork
-
Gasser, R., T. Koller, and J.M. Sogo. 1996. The stability of nucleosomes at the replication fork. J. Mol. Biol. 258:224-239. http ://dx.doi.org/10.1006/jmbi.1996.0245
-
(1996)
J. Mol. Biol
, vol.258
, pp. 224-239
-
-
Gasser, R.1
Koller, T.2
Sogo, J.M.3
-
59
-
-
84870158714
-
RNA as a structural and regulatory component of the centromere
-
Gent, J.I., and R.K. Dawe. 2012. RNA as a structural and regulatory component of the centromere. Annu. Rev. Genet. 46:443-453. http ://dx.doi.org/10.1146/annurev-genet-110711-155419
-
(2012)
Annu. Rev. Genet
, vol.46
, pp. 443-453
-
-
Gent, J.I.1
Dawe, R.K.2
-
60
-
-
77649099092
-
Distinct factors control histone variant H3.3 localization at specific genomic regions
-
Goldberg, A.D., L.A. Banaszynski, K.M. Noh, P.W. Lewis, S.J. Elsaesser, S. Stadler, S. Dewell, M. Law, X. Guo, X. Li, et al. 2010. Distinct factors control histone variant H3.3 localization at specific genomic regions. Cell. 140:678-691. http ://dx.doi.org/10.1016/j.cell.2010.01.003
-
(2010)
Cell
, vol.140
, pp. 678-691
-
-
Goldberg, A.D.1
Banaszynski, L.A.2
Noh, K.M.3
Lewis, P.W.4
Elsaesser, S.J.5
Stadler, S.6
Dewell, S.7
Law, M.8
Guo, X.9
Li, X.10
-
61
-
-
34247468356
-
Genes required for mitotic spindle assembly in Drosophila S2 cells
-
Goshima, G., R. Wollman, S.S. Goodwin, N. Zhang, J.M. Scholey, R.D. Vale, and N. Stuurman. 2007. Genes required for mitotic spindle assembly in Drosophila S2 cells. Science. 316:417-421. http ://dx.doi.org/10.1126/science.1141314
-
(2007)
Science
, vol.316
, pp. 417-421
-
-
Goshima, G.1
Wollman, R.2
Goodwin, S.S.3
Zhang, N.4
Scholey, J.M.5
Vale, R.D.6
Stuurman, N.7
-
62
-
-
33846293581
-
H2A.Z contributes to the unique 3D structure of the centromere
-
Greaves, I.K., D. Rangasamy, P. Ridgway, and D.J. Tremethick. 2007. H2A.Z contributes to the unique 3D structure of the centromere. Proc. Natl. Acad. Sci. USA. 104:525-530. http ://dx.doi.org/10.1073/pnas.0607870104
-
(2007)
Proc. Natl. Acad. Sci. USA
, vol.104
, pp. 525-530
-
-
Greaves, I.K.1
Rangasamy, D.2
Ridgway, P.3
Tremethick, D.J.4
-
63
-
-
37549049820
-
Regulation of replication fork progression through histone supply and demand
-
Groth, A., A. Corpet, A.J. Cook, D. Roche, J. Bartek, J. Lukas, and G. Almouzni. 2007. Regulation of replication fork progression through histone supply and demand. Science. 318:1928-1931. http ://dx.doi.org/10.1126/science.1148992
-
(2007)
Science
, vol.318
, pp. 1928-1931
-
-
Groth, A.1
Corpet, A.2
Cook, A.J.3
Roche, D.4
Bartek, J.5
Lukas, J.6
Almouzni, G.7
-
64
-
-
0027507943
-
Disruption of the nucleosomes at the replication fork
-
Gruss, C., J. Wu, T. Koller, and J.M. Sogo. 1993. Disruption of the nucleosomes at the replication fork. EMBO J. 12:4533-4545.
-
(1993)
EMBO J
, vol.12
, pp. 4533-4545
-
-
Gruss, C.1
Wu, J.2
Koller, T.3
Sogo, J.M.4
-
65
-
-
80052849224
-
In vitro centromere and kinetochore assembly on defined chromatin templates
-
Guse, A., C.W. Carroll, B. Moree, C.J. Fuller, and A.F. Straight. 2011. In vitro centromere and kinetochore assembly on defined chromatin templates. Nature. 477:354-358. http ://dx.doi.org/10.1038/nature10379
-
(2011)
Nature
, vol.477
, pp. 354-358
-
-
Guse, A.1
Carroll, C.W.2
Moree, B.3
Fuller, C.J.4
Straight, A.F.5
-
66
-
-
33646239638
-
Histone H3 variants and their potential role in indexing mammalian genomes: The "H3 barcode hypothesis"
-
Hake, S.B., and C.D. Allis. 2006. Histone H3 variants and their potential role in indexing mammalian genomes: The "H3 barcode hypothesis". Proc. Natl. Acad. Sci. USA. 103:6428-6435. http ://dx.doi.org/10.1073/pnas.0600803103
-
(2006)
Proc. Natl. Acad. Sci. USA
, vol.103
, pp. 6428-6435
-
-
Hake, S.B.1
Allis, C.D.2
-
67
-
-
33644853355
-
Expression patterns and post-translational modifications associated with mammalian histone H3 variants
-
Hake, S.B., B.A. Garcia, E.M. Duncan, M. Kauer, G. Dellaire, J. Shabanowitz, D.P. Bazett-Jones, C.D. Allis, and D.F. Hunt. 2006. Expression patterns and post-translational modifications associated with mammalian histone H3 variants. J. Biol. Chem. 281:559-568. http ://dx.doi.org/10.1074/jbc.M509266200
-
(2006)
J. Biol. Chem
, vol.281
, pp. 559-568
-
-
Hake, S.B.1
Garcia, B.A.2
Duncan, E.M.3
Kauer, M.4
Dellaire, G.5
Shabanowitz, J.6
Bazett-Jones, D.P.7
Allis, C.D.8
Hunt, D.F.9
-
68
-
-
84864881695
-
Pericentric and centromeric transcription: A perfect balance required
-
Hall, L.E., S.E. Mitchell, and R.J. O'Neill. 2012. Pericentric and centromeric transcription: A perfect balance required. Chromosome Res. 20:535-546. http ://dx.doi.org/10.1007/s10577-012-9297-9
-
(2012)
Chromosome Res
, vol.20
, pp. 535-546
-
-
Hall, L.E.1
Mitchell, S.E.2
O'Neill, R.J.3
-
69
-
-
84878931770
-
The octamer is the major form of CENP-A nucleosomes at human centromeres
-
Hasson, D., T. Panchenko, K.J. Salimian, M.U. Salman, N. Sekulic, A. Alonso, P.E. Warburton, and B.E. Black. 2013. The octamer is the major form of CENP-A nucleosomes at human centromeres. Nat. Struct. Mol. Biol. 20:687-695. http ://dx.doi.org/10.1038/nsmb.2562
-
(2013)
Nat. Struct. Mol. Biol
, vol.20
, pp. 687-695
-
-
Hasson, D.1
Panchenko, T.2
Salimian, K.J.3
Salman, M.U.4
Sekulic, N.5
Alonso, A.6
Warburton, P.E.7
Black, B.E.8
-
70
-
-
0041669449
-
Chromatin assembly by DNAtranslocating motors
-
Haushalter, K.A., and J.T. Kadonaga. 2003. Chromatin assembly by DNAtranslocating motors. Nat. Rev. Mol. Cell Biol. 4:613-620. http ://dx.doi.org/10.1038/nrm1177
-
(2003)
Nat. Rev. Mol. Cell Biol
, vol.4
, pp. 613-620
-
-
Haushalter, K.A.1
Kadonaga, J.T.2
-
71
-
-
4544275776
-
Mis16 and Mis18 are required for CENP-A loading and histone deacetylation at centromeres
-
Hayashi, T., Y. Fujita, O. Iwasaki, Y. Adachi, K. Takahashi, and M. Yanagida. 2004. Mis16 and Mis18 are required for CENP-A loading and histone deacetylation at centromeres. Cell. 118:715-729. http ://dx.doi.org/10.1016/j.cell.2004.09.002
-
(2004)
Cell
, vol.118
, pp. 715-729
-
-
Hayashi, T.1
Fujita, Y.2
Iwasaki, O.3
Adachi, Y.4
Takahashi, K.5
Yanagida, M.6
-
72
-
-
41549127153
-
Dynamics of inner kinetochore assembly and maintenance in living cells
-
Hemmerich, P., S. Weidtkamp-Peters, C. Hoischen, L. Schmiedeberg, I. Erliandri, and S. Diekmann. 2008. Dynamics of inner kinetochore assembly and maintenance in living cells. J. Cell Biol. 180:1101-1114. http ://dx.doi.org/10.1083/jcb.200710052
-
(2008)
J. Cell Biol
, vol.180
, pp. 1101-1114
-
-
Hemmerich, P.1
Weidtkamp-Peters, S.2
Hoischen, C.3
Schmiedeberg, L.4
Erliandri, I.5
Diekmann, S.6
-
73
-
-
84864878882
-
The unconventional structure of centromeric nucleosomes
-
Henikoff, S., and T. Furuyama. 2012. The unconventional structure of centromeric nucleosomes. Chromosoma. 121:341-352. http ://dx.doi.org/10.1007/s00412-012-0372-y
-
(2012)
Chromosoma
, vol.121
, pp. 341-352
-
-
Henikoff, S.1
Furuyama, T.2
-
74
-
-
84899635905
-
The budding yeast centromere DNA element II wraps a stable Cse4 hemisome in either orientation in vivo
-
Henikoff, S., S. Ramachandran, K. Krassovsky, T.D. Bryson, C.A. Codomo, K. Brogaard, J. Widom, J.P. Wang, and J.G. Henikoff. 2014. The budding yeast centromere DNA element II wraps a stable Cse4 hemisome in either orientation in vivo. eLife. 3:e01861. http ://dx.doi.org/10.7554/eLife.01861
-
(2014)
eLife
, vol.3
-
-
Henikoff, S.1
Ramachandran, S.2
Krassovsky, K.3
Bryson, T.D.4
Codomo, C.A.5
Brogaard, K.6
Widom, J.7
Wang, J.P.8
Henikoff, J.G.9
-
75
-
-
33644542460
-
Mislocalization of the Drosophila centromere-specific histone CID promotes formation of functional ectopic kinetochores
-
Heun, P., S. Erhardt, M.D. Blower, S. Weiss, A.D. Skora, and G.H. Karpen. 2006. Mislocalization of the Drosophila centromere-specific histone CID promotes formation of functional ectopic kinetochores. Dev. Cell. 10:303-315. http ://dx.doi.org/10.1016/j.devcel.2006.01.014
-
(2006)
Dev. Cell
, vol.10
, pp. 303-315
-
-
Heun, P.1
Erhardt, S.2
Blower, M.D.3
Weiss, S.4
Skora, A.D.5
Karpen, G.H.6
-
76
-
-
85052277951
-
Catch me if you can: How the histone chaperone FACT capitalizes on nucleosome breathing
-
Hondele, M., and A.G. Ladurner. 2013. Catch me if you can: How the histone chaperone FACT capitalizes on nucleosome breathing. Nucleus. 4:443-449. http ://dx.doi.org/10.4161/nucl.27235
-
(2013)
Nucleus
, vol.4
, pp. 443-449
-
-
Hondele, M.1
Ladurner, A.G.2
-
77
-
-
84879883663
-
Structural basis of histone H2A-H2B recognition by the essential chaperone FACT
-
Hondele, M., T. Stuwe, M. Hassler, F. Halbach, A. Bowman, E.T. Zhang, B. Nijmeijer, C. Kotthoff, V. Rybin, S. Amlacher, et al. 2013. Structural basis of histone H2A-H2B recognition by the essential chaperone FACT. Nature. 499:111-114. http ://dx.doi.org/10.1038/nature12242
-
(2013)
Nature
, vol.499
, pp. 111-114
-
-
Hondele, M.1
Stuwe, T.2
Hassler, M.3
Halbach, F.4
Bowman, A.5
Zhang, E.T.6
Nijmeijer, B.7
Kotthoff, C.8
Rybin, V.9
Amlacher, S.10
-
78
-
-
79955678169
-
Structure of a CENP-A-histone H4 heterodimer in complex with chaperone HJU RP
-
Hu, H., Y. Liu, M. Wang, J. Fang, H. Huang, N. Yang, Y. Li, J. Wang, X. Yao, Y. Shi, et al. 2011. Structure of a CENP-A-histone H4 heterodimer in complex with chaperone HJU RP. Genes Dev. 25:901-906. http ://dx.doi.org/10.1101/gad.2045111
-
(2011)
Genes Dev
, vol.25
, pp. 901-906
-
-
Hu, H.1
Liu, Y.2
Wang, M.3
Fang, J.4
Huang, H.5
Yang, N.6
Li, Y.7
Wang, J.8
Yao, X.9
Shi, Y.10
-
79
-
-
33646740560
-
Comprehensive analysis of the ICEN (interphase centromere complex) components enriched in the CENP-A chromatin of human cells
-
Izuta, H., M. Ikeno, N. Suzuki, T. Tomonaga, N. Nozaki, C. Obuse, Y. Kisu, N. Goshima, F. Nomura, N. Nomura, and K. Yoda. 2006. Comprehensive analysis of the ICEN (interphase centromere complex) components enriched in the CENP-A chromatin of human cells. Genes Cells. 11:673-684. http ://dx.doi.org/10.1111/j.1365-2443.2006.00969.x
-
(2006)
Genes Cells
, vol.11
, pp. 673-684
-
-
Izuta, H.1
Ikeno, M.2
Suzuki, N.3
Tomonaga, T.4
Nozaki, N.5
Obuse, C.6
Kisu, Y.7
Goshima, N.8
Nomura, F.9
Nomura, N.10
Yoda, K.11
-
80
-
-
0023945277
-
Deposition of newly synthesized histones: hybrid nucleosomes are not tandemly arranged on daughter DNA strands
-
Jackson, V. 1988. Deposition of newly synthesized histones: hybrid nucleosomes are not tandemly arranged on daughter DNA strands. Biochemistry. 27:2109-2120. http ://dx.doi.org/10.1021/bi00406a044
-
(1988)
Biochemistry
, vol.27
, pp. 2109-2120
-
-
Jackson, V.1
-
81
-
-
0025134076
-
In vivo studies on the dynamics of histone-DNA interaction: Evidence for nucleosome dissolution during replication and transcription and a low level of dissolution independent of both
-
Jackson, V. 1990. In vivo studies on the dynamics of histone-DNA interaction: Evidence for nucleosome dissolution during replication and transcription and a low level of dissolution independent of both. Biochemistry. 29:719-731. http ://dx.doi.org/10.1021/bi00455a019
-
(1990)
Biochemistry
, vol.29
, pp. 719-731
-
-
Jackson, V.1
-
82
-
-
0022367261
-
Histone segregation on replicating chromatin
-
Jackson, V., and R. Chalkley. 1985. Histone segregation on replicating chromatin. Biochemistry. 24:6930-6938. http ://dx.doi.org/10.1021/bi00345a027
-
(1985)
Biochemistry
, vol.24
, pp. 6930-6938
-
-
Jackson, V.1
Chalkley, R.2
-
83
-
-
33947274529
-
Propagation of centromeric chromatin requires exit from mitosis
-
Jansen, L.E., B.E. Black, D.R. Foltz, and D.W. Cleveland. 2007. Propagation of centromeric chromatin requires exit from mitosis. J. Cell Biol. 176:795-805. http ://dx.doi.org/10.1083/jcb.200701066
-
(2007)
J. Cell Biol
, vol.176
, pp. 795-805
-
-
Jansen, L.E.1
Black, B.E.2
Foltz, D.R.3
Cleveland, D.W.4
-
84
-
-
0346306089
-
A molecular view of plant centromeres
-
Jiang, J., J.A. Birchler, W.A. Parrott, and R.K. Dawe. 2003. A molecular view of plant centromeres. Trends Plant Sci. 8:570-575. http ://dx.doi.org/10.1016/j.tplants.2003.10.011
-
(2003)
Trends Plant Sci
, vol.8
, pp. 570-575
-
-
Jiang, J.1
Birchler, J.A.2
Parrott, W.A.3
Dawe, R.K.4
-
85
-
-
79953060951
-
Comprehensive analysis of the chromatin landscape in Drosophila melanogaster
-
Kharchenko, P.V., A.A. Alekseyenko, Y.B. Schwartz, A. Minoda, N.C. Riddle, J. Ernst, P.J. Sabo, E. Larschan, A.A. Gorchakov, T. Gu, et al. 2011. Comprehensive analysis of the chromatin landscape in Drosophila melanogaster. Nature. 471:480-485. http ://dx.doi.org/10.1038/nature09725
-
(2011)
Nature
, vol.471
, pp. 480-485
-
-
Kharchenko, P.V.1
Alekseyenko, A.A.2
Schwartz, Y.B.3
Minoda, A.4
Riddle, N.C.5
Ernst, J.6
Sabo, P.J.7
Larschan, E.8
Gorchakov, A.A.9
Gu, T.10
-
86
-
-
34548272156
-
CHD1 motor protein is required for deposition of histone variant H3.3 into chromatin in vivo
-
Konev, A.Y., M. Tribus, S.Y. Park, V. Podhraski, C.Y. Lim, A.V. Emelyanov, E. Vershilova, V. Pirrotta, J.T. Kadonaga, A. Lusser, and D.V. Fyodorov. 2007. CHD1 motor protein is required for deposition of histone variant H3.3 into chromatin in vivo. Science. 317:1087-1090. http ://dx.doi.org/10.1126/science.1145339
-
(2007)
Science
, vol.317
, pp. 1087-1090
-
-
Konev, A.Y.1
Tribus, M.2
Park, S.Y.3
Podhraski, V.4
Lim, C.Y.5
Emelyanov, A.V.6
Vershilova, E.7
Pirrotta, V.8
Kadonaga, J.T.9
Lusser, A.10
Fyodorov, D.V.11
-
87
-
-
0016221697
-
Chromatin structure: A repeating unit of histones and DNA
-
Kornberg, R.D. 1974. Chromatin structure: A repeating unit of histones and DNA. Science. 184:868-871. http ://dx.doi.org/10.1126/science.184.4139.868
-
(1974)
Science
, vol.184
, pp. 868-871
-
-
Kornberg, R.D.1
-
88
-
-
78649835035
-
A small GTPase molecular switch regulates epigenetic centromere maintenance by stabilizing newly incorporated CENP-A
-
Lagana, A., J.F. Dorn, V. De Rop, A.M. Ladouceur, A.S. Maddox, and P.S. Maddox. 2010. A small GTPase molecular switch regulates epigenetic centromere maintenance by stabilizing newly incorporated CENP-A. Nat. Cell Biol. 12:1186-1193. http ://dx.doi.org/10.1038/ncb2129
-
(2010)
Nat. Cell Biol
, vol.12
, pp. 1186-1193
-
-
Lagana, A.1
Dorn, J.F.2
De Rop, V.3
Ladouceur, A.M.4
Maddox, A.S.5
Maddox, P.S.6
-
89
-
-
33750970858
-
Loading of Arabidopsis centromeric histone CENH3 occurs mainly during G2 and requires the presence of the histone fold domain
-
Lermontova, I., V. Schubert, J. Fuchs, S. Klatte, J. Macas, and I. Schubert. 2006. Loading of Arabidopsis centromeric histone CENH3 occurs mainly during G2 and requires the presence of the histone fold domain. Plant Cell. 18:2443-2451. http ://dx.doi.org/10.1105/tpc.106.043174
-
(2006)
Plant Cell
, vol.18
, pp. 2443-2451
-
-
Lermontova, I.1
Schubert, V.2
Fuchs, J.3
Klatte, S.4
Macas, J.5
Schubert, I.6
-
90
-
-
77956282773
-
Daxx is an H3.3-specific histone chaperone and cooperates with ATRX in replication-independent chromatin assembly at telomeres
-
Lewis, P.W., S.J. Elsaesser, K.M. Noh, S.C. Stadler, and C.D. Allis. 2010. Daxx is an H3.3-specific histone chaperone and cooperates with ATRX in replication-independent chromatin assembly at telomeres. Proc. Natl. Acad. Sci. USA. 107:14075-14080. http ://dx.doi.org/10.1073/pnas.1008850107
-
(2010)
Proc. Natl. Acad. Sci. USA
, vol.107
, pp. 14075-14080
-
-
Lewis, P.W.1
Elsaesser, S.J.2
Noh, K.M.3
Stadler, S.C.4
Allis, C.D.5
-
91
-
-
84885463171
-
Distinct modes of centromere protein dynamics during cell cycle progression in Drosophila S2R+ cells
-
Lidsky, P.V., F. Sprenger, and C.F. Lehner. 2013. Distinct modes of centromere protein dynamics during cell cycle progression in Drosophila S2R+ cells. J. Cell Sci. 126:4782-4793. http ://dx.doi.org/10.1242/jcs.134122
-
(2013)
J. Cell Sci
, vol.126
, pp. 4782-4793
-
-
Lidsky, P.V.1
Sprenger, F.2
Lehner, C.F.3
-
92
-
-
74249102477
-
Structure of an RNA polymerase II-TFI IB complex and the transcription initiation mechanism
-
Liu, X., D.A. Bushnell, D. Wang, G. Calero, and R.D. Kornberg. 2010. Structure of an RNA polymerase II-TFI IB complex and the transcription initiation mechanism. Science. 327:206-209. http ://dx.doi.org/10.1126/science.1182015
-
(2010)
Science
, vol.327
, pp. 206-209
-
-
Liu, X.1
Bushnell, D.A.2
Wang, D.3
Calero, G.4
Kornberg, R.D.5
-
93
-
-
34548433964
-
Marking histone H3 variants: How, when and why?
-
Loyola, A., and G. Almouzni. 2007. Marking histone H3 variants: How, when and why? Trends Biochem. Sci. 32:425-433. http ://dx.doi.org/10.1016/j.tibs.2007.08.004
-
(2007)
Trends Biochem. Sci
, vol.32
, pp. 425-433
-
-
Loyola, A.1
Almouzni, G.2
-
94
-
-
1842411320
-
Crystal structure of the nucleosome core particle at 2.8 A resolution
-
Luger, K., A.W. Mäder, R.K. Richmond, D.F. Sargent, and T.J. Richmond. 1997. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature. 389:251-260. http ://dx.doi.org/10.1038/38444
-
(1997)
Nature
, vol.389
, pp. 251-260
-
-
Luger, K.1
Mäder, A.W.2
Richmond, R.K.3
Sargent, D.F.4
Richmond, T.J.5
-
95
-
-
33947239252
-
Functional genomics identifies a Myb domain-containing protein family required for assembly of CENP-A chromatin
-
Maddox, P.S., F. Hyndman, J. Monen, K. Oegema, and A. Desai. 2007. Functional genomics identifies a Myb domain-containing protein family required for assembly of CENP-A chromatin. J. Cell Biol. 176:757-763. http ://dx.doi.org/10.1083/jcb.200701065
-
(2007)
J. Cell Biol
, vol.176
, pp. 757-763
-
-
Maddox, P.S.1
Hyndman, F.2
Monen, J.3
Oegema, K.4
Desai, A.5
-
96
-
-
84904568486
-
Polo-like kinase 1 licenses CENP-A deposition at centromeres
-
McKinley, K.L., and I.M. Cheeseman. 2014. Polo-like kinase 1 licenses CENP-A deposition at centromeres. Cell. 158:397-411. http ://dx.doi.org/10.1016/j.cell.2014.06.016
-
(2014)
Cell
, vol.158
, pp. 397-411
-
-
McKinley, K.L.1
Cheeseman, I.M.2
-
97
-
-
84952639708
-
The molecular basis for centromere identity and function
-
McKinley, K.L., and I.M. Cheeseman. 2016. The molecular basis for centromere identity and function. Nat. Rev. Mol. Cell Biol. 17:16-29. http ://dx.doi.org/10.1038/nrm.2015.5
-
(2016)
Nat. Rev. Mol. Cell Biol
, vol.17
, pp. 16-29
-
-
McKinley, K.L.1
Cheeseman, I.M.2
-
98
-
-
79958006512
-
Assembly of Drosophila centromeric chromatin proteins during mitosis
-
Mellone, B.G., K.J. Grive, V. Shteyn, S.R. Bowers, I. Oderberg, and G.H. Karpen. 2011. Assembly of Drosophila centromeric chromatin proteins during mitosis. PLoS Genet. 7:e1002068. http ://dx.doi.org/10.1371/journal.pgen.1002068
-
(2011)
PLoS Genet
, vol.7
-
-
Mellone, B.G.1
Grive, K.J.2
Shteyn, V.3
Bowers, S.R.4
Oderberg, I.5
Karpen, G.H.6
-
99
-
-
80555125093
-
Drosophila CENH3 is sufficient for centromere formation
-
Mendiburo, M.J., J. Padeken, S. Fülöp, A. Schepers, and P. Heun. 2011. Drosophila CENH3 is sufficient for centromere formation. Science. 334:686-690. http ://dx.doi.org/10.1126/science.1206880
-
(2011)
Science
, vol.334
, pp. 686-690
-
-
Mendiburo, M.J.1
Padeken, J.2
Fülöp, S.3
Schepers, A.4
Heun, P.5
-
100
-
-
84878898862
-
CENP-A confers a reduction in height on octameric nucleosomes
-
Miell, M.D., C.J. Fuller, A. Guse, H.M. Barysz, A. Downes, T. Owen-Hughes, J. Rappsilber, A.F. Straight, and R.C. Allshire. 2013. CENP-A confers a reduction in height on octameric nucleosomes. Nat. Struct. Mol. Biol. 20:763-765. http ://dx.doi.org/10.1038/nsmb.2574
-
(2013)
Nat. Struct. Mol. Biol
, vol.20
, pp. 763-765
-
-
Miell, M.D.1
Fuller, C.J.2
Guse, A.3
Barysz, H.M.4
Downes, A.5
Owen-Hughes, T.6
Rappsilber, J.7
Straight, A.F.8
Allshire, R.C.9
-
101
-
-
34250173486
-
Nonhistone Scm3 and histones CenH3-H4 assemble the core of centromere-specific nucleosomes
-
Mizuguchi, G., H. Xiao, J. Wisniewski, M.M. Smith, and C. Wu. 2007. Nonhistone Scm3 and histones CenH3-H4 assemble the core of centromere-specific nucleosomes. Cell. 129:1153-1164. http ://dx.doi.org/10.1016/j.cell.2007.04.026
-
(2007)
Cell
, vol.129
, pp. 1153-1164
-
-
Mizuguchi, G.1
Xiao, H.2
Wisniewski, J.3
Smith, M.M.4
Wu, C.5
-
102
-
-
80053934686
-
CENP-C recruits M18BP1 to centromeres to promote CENP-A chromatin assembly
-
Moree, B., C.B. Meyer, C.J. Fuller, and A.F. Straight. 2011. CENP-C recruits M18BP1 to centromeres to promote CENP-A chromatin assembly. J. Cell Biol. 194:855-871. http ://dx.doi.org/10.1083/jcb.201106079
-
(2011)
J. Cell Biol
, vol.194
, pp. 855-871
-
-
Moree, B.1
Meyer, C.B.2
Fuller, C.J.3
Straight, A.F.4
-
103
-
-
80052800314
-
The F box protein partner of paired regulates stability of Drosophila centromeric histone H3, CenH3(CID)
-
Moreno-Moreno, O., S. Medina-Giró, M. Torras-Llort, and F. Azorín. 2011. The F box protein partner of paired regulates stability of Drosophila centromeric histone H3, CenH3(CID). Curr. Biol. 21:1488-1493. http ://dx.doi.org/10.1016/j.cub.2011.07.041
-
(2011)
Curr. Biol
, vol.21
, pp. 1488-1493
-
-
Moreno-Moreno, O.1
Medina-Giró, S.2
Torras-Llort, M.3
Azorín, F.4
-
104
-
-
0842289255
-
Sequencing of a rice centromere uncovers active genes
-
Nagaki, K., Z. Cheng, S. Ouyang, P.B. Talbert, M. Kim, K.M. Jones, S. Henikoff, C.R. Buell, and J. Jiang. 2004. Sequencing of a rice centromere uncovers active genes. Nat. Genet. 36:138-145. http ://dx.doi.org/10.1038/ng1289
-
(2004)
Nat. Genet
, vol.36
, pp. 138-145
-
-
Nagaki, K.1
Cheng, Z.2
Ouyang, S.3
Talbert, P.B.4
Kim, M.5
Jones, K.M.6
Henikoff, S.7
Buell, C.R.8
Jiang, J.9
-
105
-
-
0035920211
-
Multistep chromatin assembly on supercoiled plasmid DNA by nucleosome assembly protein-1 and ATP-utilizing chromatin assembly and remodeling factor
-
Nakagawa, T., M. Bulger, M. Muramatsu, and T. Ito. 2001. Multistep chromatin assembly on supercoiled plasmid DNA by nucleosome assembly protein-1 and ATP-utilizing chromatin assembly and remodeling factor. J. Biol. Chem. 276:27384-27391. http ://dx.doi.org/10.1074/jbc.M101331200
-
(2001)
J. Biol. Chem
, vol.276
, pp. 27384-27391
-
-
Nakagawa, T.1
Bulger, M.2
Muramatsu, M.3
Ito, T.4
-
106
-
-
33947138617
-
Drosophila GAGA factor directs histone H3.3 replacement that prevents the heterochromatin spreading
-
Nakayama, T., K. Nishioka, Y.X. Dong, T. Shimojima, and S. Hirose. 2007. Drosophila GAGA factor directs histone H3.3 replacement that prevents the heterochromatin spreading. Genes Dev. 21:552-561. http ://dx.doi.org/10.1101/gad.1503407
-
(2007)
Genes Dev
, vol.21
, pp. 552-561
-
-
Nakayama, T.1
Nishioka, K.2
Dong, Y.X.3
Shimojima, T.4
Hirose, S.5
-
107
-
-
84959546702
-
Licensing of centromeric chromatin assembly through the Mis18a-Mis18ß heterotetramer
-
Nardi, I.K., E. Zasadzinska, M.E. Stellfox, C.M. Knippler, and D.R. Foltz. 2016. Licensing of centromeric chromatin assembly through the Mis18a-Mis18ß heterotetramer. Mol. Cell. 61:774-787. http ://dx.doi.org/10.1016/j.molcel.2016.02.014
-
(2016)
Mol. Cell
, vol.61
, pp. 774-787
-
-
Nardi, I.K.1
Zasadzinska, E.2
Stellfox, M.E.3
Knippler, C.M.4
Foltz, D.R.5
-
108
-
-
70149104039
-
The role of ncRNA in centromeres: A lesson from marsupials
-
O'Neill, R.J., and D.M. Carone. 2009. The role of ncRNA in centromeres: A lesson from marsupials. Prog. Mol. Subcell. Biol. 48:77-101. http ://dx.doi.org/10.1007/978-3-642-00182-6 4
-
(2009)
Prog. Mol. Subcell. Biol
, vol.48
, pp. 77-101
-
-
O'Neill, R.J.1
Carone, D.M.2
-
109
-
-
1542330121
-
Proteomics analysis of the centromere complex from HeLa interphase cells: UV-damaged DNA binding protein 1 (DDB-1) is a component of the CEN-complex, while BMI-1 is transiently co-localized with the centromeric region in interphase
-
Obuse, C., H. Yang, N. Nozaki, S. Goto, T. Okazaki, and K. Yoda. 2004. Proteomics analysis of the centromere complex from HeLa interphase cells: UV-damaged DNA binding protein 1 (DDB-1) is a component of the CEN-complex, while BMI-1 is transiently co-localized with the centromeric region in interphase. Genes Cells. 9:105-120. http ://dx.doi.org/10.1111/j.1365-2443.2004.00705.x
-
(2004)
Genes Cells
, vol.9
, pp. 105-120
-
-
Obuse, C.1
Yang, H.2
Nozaki, N.3
Goto, S.4
Okazaki, T.5
Yoda, K.6
-
110
-
-
80055005108
-
Endogenous transcription at the centromere facilitates centromere activity in budding yeast
-
Ohkuni, K., and K. Kitagawa. 2011. Endogenous transcription at the centromere facilitates centromere activity in budding yeast. Curr. Biol. 21:1695-1703. http ://dx.doi.org/10.1016/j.cub.2011.08.056
-
(2011)
Curr. Biol
, vol.21
, pp. 1695-1703
-
-
Ohkuni, K.1
Kitagawa, K.2
-
111
-
-
84979792055
-
KAT7/HBO1/MYST2 Regulates CENP-A Chromatin Assembly by Antagonizing Suv39h1-Mediated Centromere Inactivation
-
Ohzeki, J., N. Shono, K. Otake, N.M. Martins, K. Kugou, H. Kimura, T. Nagase, V. Larionov, W.C. Earnshaw, and H. Masumoto. 2016. KAT7/HBO1/MYST2 Regulates CENP-A Chromatin Assembly by Antagonizing Suv39h1-Mediated Centromere Inactivation. Dev. Cell. 37:413-427. http ://dx.doi.org/10.1016/j.devcel.2016.05.006
-
(2016)
Dev. Cell
, vol.37
, pp. 413-427
-
-
Ohzeki, J.1
Shono, N.2
Otake, K.3
Martins, N.M.4
Kugou, K.5
Kimura, H.6
Nagase, T.7
Larionov, V.8
Earnshaw, W.C.9
Masumoto, H.10
-
112
-
-
70350234665
-
CENP-H-containing complex facilitates centromere deposition of CENP-A in cooperation with FACT and CHD1
-
Okada, M., K. Okawa, T. Isobe, and T. Fukagawa. 2009. CENP-H-containing complex facilitates centromere deposition of CENP-A in cooperation with FACT and CHD1. Mol. Biol. Cell. 20:3986-3995. http ://dx.doi.org/10.1091/mbc.E09-01-0065
-
(2009)
Mol. Biol. Cell
, vol.20
, pp. 3986-3995
-
-
Okada, M.1
Okawa, K.2
Isobe, T.3
Fukagawa, T.4
-
113
-
-
0015964401
-
Spheroid chromatin units (v bodies)
-
Olins, A.L., and D.E. Olins. 1974. Spheroid chromatin units (v bodies). Science. 183:330-332. http ://dx.doi.org/10.1126/science.183.4122.330
-
(1974)
Science
, vol.183
, pp. 330-332
-
-
Olins, A.L.1
Olins, D.E.2
-
114
-
-
84877577424
-
Octameric CENP-A nucleosomes are present at human centromeres throughout the cell cycle
-
Padeganeh, A., J. Ryan, J. Boisvert, A.M. Ladouceur, J.F. Dorn, and P.S. Maddox. 2013. Octameric CENP-A nucleosomes are present at human centromeres throughout the cell cycle. Curr. Biol. 23:764-769. http ://dx.doi.org/10.1016/j.cub.2013.03.037
-
(2013)
Curr. Biol
, vol.23
, pp. 764-769
-
-
Padeganeh, A.1
Ryan, J.2
Boisvert, J.3
Ladouceur, A.M.4
Dorn, J.F.5
Maddox, P.S.6
-
115
-
-
7944229979
-
Stable kinetochore-microtubule attachment constrains centromere positioning in metaphase
-
Pearson, C.G., E. Yeh, M. Gardner, D. Odde, E.D. Salmon, and K. Bloom. 2004. Stable kinetochore-microtubule attachment constrains centromere positioning in metaphase. Curr. Biol. 14:1962-1967. http ://dx.doi.org/10.1016/j.cub.2004.09.086
-
(2004)
Curr. Biol
, vol.14
, pp. 1962-1967
-
-
Pearson, C.G.1
Yeh, E.2
Gardner, M.3
Odde, D.4
Salmon, E.D.5
Bloom, K.6
-
116
-
-
65649124957
-
Active establishment of centromeric CENP-A chromatin by RSF complex
-
Perpelescu, M., N. Nozaki, C. Obuse, H. Yang, and K. Yoda. 2009. Active establishment of centromeric CENP-A chromatin by RSF complex. J. Cell Biol. 185:397-407. http ://dx.doi.org/10.1083/jcb.200903088
-
(2009)
J. Cell Biol
, vol.185
, pp. 397-407
-
-
Perpelescu, M.1
Nozaki, N.2
Obuse, C.3
Yang, H.4
Yoda, K.5
-
117
-
-
84864872957
-
Evolutionary insights into the role of the essential centromere protein CAL1 in Drosophila
-
Phansalkar, R., P. Lapierre, and B.G. Mellone. 2012. Evolutionary insights into the role of the essential centromere protein CAL1 in Drosophila. Chromosome Res. 20:493-504. http ://dx.doi.org/10.1007/s10577-012-9299-7
-
(2012)
Chromosome Res
, vol.20
, pp. 493-504
-
-
Phansalkar, R.1
Lapierre, P.2
Mellone, B.G.3
-
118
-
-
59649099984
-
Fission yeast Scm3: A CENP-A receptor required for integrity of subkinetochore chromatin
-
Pidoux, A.L., E.S. Choi, J.K. Abbott, X. Liu, A. Kagansky, A.G. Castillo, G.L. Hamilton, W. Richardson, J. Rappsilber, X. He, and R.C. Allshire. 2009. Fission yeast Scm3: A CENP-A receptor required for integrity of subkinetochore chromatin. Mol. Cell. 33:299-311. http ://dx.doi.org/10.1016/j.molcel.2009.01.019
-
(2009)
Mol. Cell
, vol.33
, pp. 299-311
-
-
Pidoux, A.L.1
Choi, E.S.2
Abbott, J.K.3
Liu, X.4
Kagansky, A.5
Castillo, A.G.6
Hamilton, G.L.7
Richardson, W.8
Rappsilber, J.9
He, X.10
Allshire, R.C.11
-
119
-
-
77956316223
-
CenH3/CID incorporation is not dependent on the chromatin assembly factor CHD1 in Drosophila
-
Podhraski, V., B. Campo-Fernandez, H. Wörle, P. Piatti, H. Niederegger, G. Böck, D.V. Fyodorov, and A. Lusser. 2010. CenH3/CID incorporation is not dependent on the chromatin assembly factor CHD1 in Drosophila. PLoS One. 5:e10120. http ://dx.doi.org/10.1371/journal.pone.0010120
-
(2010)
PLoS One
, vol.5
-
-
Podhraski, V.1
Campo-Fernandez, B.2
Wörle, H.3
Piatti, P.4
Niederegger, H.5
Böck, G.6
Fyodorov, D.V.7
Lusser, A.8
-
120
-
-
84929468570
-
A long non-coding RNA is required for targeting centromeric protein A to the human centromere
-
Quénet, D., and Y. Dalal. 2014. A long non-coding RNA is required for targeting centromeric protein A to the human centromere. eLife. 3:e03254. http ://dx.doi.org/10.7554/eLife.03254
-
(2014)
eLife
, vol.3
-
-
Quénet, D.1
Dalal, Y.2
-
121
-
-
74549138158
-
Chaperoning histones during DNA replication and repair
-
Ransom, M., B.K. Dennehey, and J.K. Tyler. 2010. Chaperoning histones during DNA replication and repair. Cell. 140:183-195. http ://dx.doi.org/10.1016/j.cell.2010.01.004
-
(2010)
Cell
, vol.140
, pp. 183-195
-
-
Ransom, M.1
Dennehey, B.K.2
Tyler, J.K.3
-
122
-
-
84255162049
-
Dynamics of histone H3 deposition in vivo reveal a nucleosome gap-filling mechanism for H3.3 to maintain chromatin integrity
-
Ray-Gallet, D., A. Woolfe, I. Vassias, C. Pellentz, N. Lacoste, A. Puri, D.C. Schultz, N.A. Pchelintsev, P.D. Adams, L.E. Jansen, and G. Almouzni. 2011. Dynamics of histone H3 deposition in vivo reveal a nucleosome gap-filling mechanism for H3.3 to maintain chromatin integrity. Mol. Cell. 44:928-941. http ://dx.doi.org/10.1016/j.molcel.2011.12.006
-
(2011)
Mol. Cell
, vol.44
, pp. 928-941
-
-
Ray-Gallet, D.1
Woolfe, A.2
Vassias, I.3
Pellentz, C.4
Lacoste, N.5
Puri, A.6
Schultz, D.C.7
Pchelintsev, N.A.8
Adams, P.D.9
Jansen, L.E.10
Almouzni, G.11
-
123
-
-
77953801741
-
A super-resolution map of the vertebrate kinetochore
-
Ribeiro, S.A., P. Vagnarelli, Y. Dong, T. Hori, B.F. McEwen, T. Fukagawa, C. Flors, and W.C. Earnshaw. 2010. A super-resolution map of the vertebrate kinetochore. Proc. Natl. Acad. Sci. USA. 107:10484-10489. http ://dx.doi.org/10.1073/pnas.1002325107
-
(2010)
Proc. Natl. Acad. Sci. USA
, vol.107
, pp. 10484-10489
-
-
Ribeiro, S.A.1
Vagnarelli, P.2
Dong, Y.3
Hori, T.4
McEwen, B.F.5
Fukagawa, T.6
Flors, C.7
Earnshaw, W.C.8
-
124
-
-
84953376654
-
No longer a nuisance: Long non-coding RNAs join CENP-A in epigenetic centromere regulation
-
Rošic, S., and S. Erhardt. 2016. No longer a nuisance: Long non-coding RNAs join CENP-A in epigenetic centromere regulation. Cell. Mol. Life Sci. 73:1387-1398. http ://dx.doi.org/10.1007/s00018-015-2124-7
-
(2016)
Cell. Mol. Life Sci
, vol.73
, pp. 1387-1398
-
-
Rošic, S.1
Erhardt, S.2
-
125
-
-
84918500464
-
Repetitive centromeric satellite RNA is essential for kinetochore formation and cell division
-
Rošic, S., F. Köhler, and S. Erhardt. 2014. Repetitive centromeric satellite RNA is essential for kinetochore formation and cell division. J. Cell Biol. 207:335-349. http ://dx.doi.org/10.1083/jcb.201404097
-
(2014)
J. Cell Biol
, vol.207
, pp. 335-349
-
-
Rošic, S.1
Köhler, F.2
Erhardt, S.3
-
126
-
-
84963594065
-
Co-evolving CENP-A and CAL1 domains mediate centromeric CENP-A deposition across Drosophila species
-
Rosin, L., and B.G. Mellone. 2016. Co-evolving CENP-A and CAL1 domains mediate centromeric CENP-A deposition across Drosophila species. Dev. Cell. 37:136-147. http ://dx.doi.org/10.1016/j.devcel.2016.03.021
-
(2016)
Dev. Cell
, vol.37
, pp. 136-147
-
-
Rosin, L.1
Mellone, B.G.2
-
127
-
-
85007564435
-
Inheritance of the CENP-A chromatin domain is spatially and temporally constrained at human centromeres
-
Ross, J.E., K.S. Woodlief, and B.A. Sullivan. 2016. Inheritance of the CENP-A chromatin domain is spatially and temporally constrained at human centromeres. Epigenetics Chromatin. 9:20. http ://dx.doi.org/10.1186/s13072-016-0071-7
-
(2016)
Epigenetics Chromatin
, vol.9
, pp. 20
-
-
Ross, J.E.1
Woodlief, K.S.2
Sullivan, B.A.3
-
128
-
-
0033958663
-
Human centromeres and neocentromeres show identical distribution patterns of >20 functionally important kinetochore-associated proteins
-
Saffery, R., D.V. Irvine, B. Griffiths, P. Kalitsis, L. Wordeman, and K.H. Choo. 2000. Human centromeres and neocentromeres show identical distribution patterns of >20 functionally important kinetochore-associated proteins. Hum. Mol. Genet. 9:175-185. http ://dx.doi.org/10.1093/hmg/9.2.175
-
(2000)
Hum. Mol. Genet
, vol.9
, pp. 175-185
-
-
Saffery, R.1
Irvine, D.V.2
Griffiths, B.3
Kalitsis, P.4
Wordeman, L.5
Choo, K.H.6
-
129
-
-
0026650005
-
CENP-C, an autoantigen in scleroderma, is a component of the human inner kinetochore plate
-
Saitoh, H., J. Tomkiel, C.A. Cooke, H. Ratrie III, M. Maurer, N.F. Rothfield, and W.C. Earnshaw. 1992. CENP-C, an autoantigen in scleroderma, is a component of the human inner kinetochore plate. Cell. 70:115-125. http ://dx.doi.org/10.1016/0092-8674(92)90538-N
-
(1992)
Cell
, vol.70
, pp. 115-125
-
-
Saitoh, H.1
Tomkiel, J.2
Cooke, C.A.3
Ratrie, H.4
Maurer, M.5
Rothfield, N.F.6
Earnshaw, W.C.7
-
130
-
-
67549104312
-
Common ancestry of the CENP-A chaperones Scm3 and HJU RP
-
Sanchez-Pulido, L., A.L. Pidoux, C.P. Ponting, and R.C. Allshire. 2009. Common ancestry of the CENP-A chaperones Scm3 and HJU RP. Cell. 137:1173-1174. http ://dx.doi.org/10.1016/j.cell.2009.06.010
-
(2009)
Cell
, vol.137
, pp. 1173-1174
-
-
Sanchez-Pulido, L.1
Pidoux, A.L.2
Ponting, C.P.3
Allshire, R.C.4
-
131
-
-
84883304136
-
WHSC1 links transcription elongation to HIRAmediated histone H3.3 deposition
-
Sarai, N., K. Nimura, T. Tamura, T. Kanno, M.C. Patel, T.D. Heightman, K. Ura, and K. Ozato. 2013. WHSC1 links transcription elongation to HIRAmediated histone H3.3 deposition. EMBO J. 32:2392-2406. http ://dx.doi.org/10.1038/emboj.2013.176
-
(2013)
EMBO J
, vol.32
, pp. 2392-2406
-
-
Sarai, N.1
Nimura, K.2
Tamura, T.3
Kanno, T.4
Patel, M.C.5
Heightman, T.D.6
Ura, K.7
Ozato, K.8
-
132
-
-
33846638827
-
Incorporation of Drosophila CID/CENP-A and CENP-C into centromeres during early embryonic anaphase
-
Schuh, M., C.F. Lehner, and S. Heidmann. 2007. Incorporation of Drosophila CID/CENP-A and CENP-C into centromeres during early embryonic anaphase. Curr. Biol. 17:237-243. http ://dx.doi.org/10.1016/j.cub.2006.11.051
-
(2007)
Curr. Biol
, vol.17
, pp. 237-243
-
-
Schuh, M.1
Lehner, C.F.2
Heidmann, S.3
-
133
-
-
0033582544
-
Replication-dependent marking of DNA by PCNA facilitates CAF-1-coupled inheritance of chromatin
-
Shibahara, K., and B. Stillman. 1999. Replication-dependent marking of DNA by PCNA facilitates CAF-1-coupled inheritance of chromatin. Cell. 96:575-585. http ://dx.doi.org/10.1016/S0092-8674(00)80661-3
-
(1999)
Cell
, vol.96
, pp. 575-585
-
-
Shibahara, K.1
Stillman, B.2
-
134
-
-
76549131870
-
HJU RP binds CENP-A via a highly conserved N-terminal domain and mediates its deposition at centromeres
-
Shuaib, M., K. Ouararhni, S. Dimitrov, and A. Hamiche. 2010. HJU RP binds CENP-A via a highly conserved N-terminal domain and mediates its deposition at centromeres. Proc. Natl. Acad. Sci. USA. 107:1349-1354. http ://dx.doi.org/10.1073/pnas.0913709107
-
(2010)
Proc. Natl. Acad. Sci. USA
, vol.107
, pp. 1349-1354
-
-
Shuaib, M.1
Ouararhni, K.2
Dimitrov, S.3
Hamiche, A.4
-
135
-
-
84855969901
-
Cdk activity couples epigenetic centromere inheritance to cell cycle progression
-
Silva, M.C., D.L. Bodor, M.E. Stellfox, N.M. Martins, H. Hochegger, D.R. Foltz, and L.E. Jansen. 2012. Cdk activity couples epigenetic centromere inheritance to cell cycle progression. Dev. Cell. 22:52-63. http ://dx.doi.org/10.1016/j.devcel.2011.10.014
-
(2012)
Dev. Cell
, vol.22
, pp. 52-63
-
-
Silva, M.C.1
Bodor, D.L.2
Stellfox, M.E.3
Martins, N.M.4
Hochegger, H.5
Foltz, D.R.6
Jansen, L.E.7
-
136
-
-
0024372060
-
Purification and characterization of CAFI, a human cell factor required for chromatin assembly during DNA replication in vitro
-
Smith, S., and B. Stillman. 1989. Purification and characterization of CAFI, a human cell factor required for chromatin assembly during DNA replication in vitro. Cell. 58:15-25. http ://dx.doi.org/10.1016/0092-8674(89)90398-X
-
(1989)
Cell
, vol.58
, pp. 15-25
-
-
Smith, S.1
Stillman, B.2
-
137
-
-
0022457421
-
Structure of replicating simian virus 40 minichromosomes. The replication fork, core histone segregation and terminal structures
-
Sogo, J.M., H. Stahl, T. Koller, and R. Knippers. 1986. Structure of replicating simian virus 40 minichromosomes. The replication fork, core histone segregation and terminal structures. J. Mol. Biol. 189:189-204. http ://dx.doi.org/10.1016/0022-2836(86)90390-6
-
(1986)
J. Mol. Biol
, vol.189
, pp. 189-204
-
-
Sogo, J.M.1
Stahl, H.2
Koller, T.3
Knippers, R.4
-
138
-
-
34547112848
-
Scm3, an essential Saccharomyces cerevisiae centromere protein required for G2/M progression and Cse4 localization
-
Stoler, S., K. Rogers, S. Weitze, L. Morey, M. Fitzgerald-Hayes, and R.E. Baker. 2007. Scm3, an essential Saccharomyces cerevisiae centromere protein required for G2/M progression and Cse4 localization. Proc. Natl. Acad. Sci. USA. 104:10571-10576. http ://dx.doi.org/10.1073/pnas.0703178104
-
(2007)
Proc. Natl. Acad. Sci. USA
, vol.104
, pp. 10571-10576
-
-
Stoler, S.1
Rogers, K.2
Weitze, S.3
Morey, L.4
Fitzgerald-Hayes, M.5
Baker, R.E.6
-
139
-
-
84959556012
-
Centromere localization and function of Mis18 requires Yippeelike domain-mediated oligomerization
-
Subramanian, L., B. Medina-Pritchard, R. Barton, F. Spiller, R. Kulasegaran-Shylini, G. Radaviciute, R.C. Allshire, and A. Arockia Jeyaprakash. 2016. Centromere localization and function of Mis18 requires Yippeelike domain-mediated oligomerization. EMBO Rep. 17:496-507. http ://dx.doi.org/10.15252/embr.201541520
-
(2016)
EMBO Rep
, vol.17
, pp. 496-507
-
-
Subramanian, L.1
Medina-Pritchard, B.2
Barton, R.3
Spiller, F.4
Kulasegaran-Shylini, R.5
Radaviciute, G.6
Allshire, R.C.7
Arockia Jeyaprakash, A.8
-
140
-
-
0028104174
-
Human CENP-A contains a histone H3 related histone fold domain that is required for targeting to the centromere
-
Sullivan, K.F., M. Hechenberger, and K. Masri. 1994. Human CENP-A contains a histone H3 related histone fold domain that is required for targeting to the centromere. J. Cell Biol. 127:581-592. http ://dx.doi.org/10.1083/jcb.127.3.581
-
(1994)
J. Cell Biol
, vol.127
, pp. 581-592
-
-
Sullivan, K.F.1
Hechenberger, M.2
Masri, K.3
-
141
-
-
80051685994
-
Crystal structure of the human centromeric nucleosome containing CENP-A
-
Tachiwana, H., W. Kagawa, T. Shiga, A. Osakabe, Y. Miya, K. Saito, Y. Hayashi-Takanaka, T. Oda, M. Sato, S.Y. Park, et al. 2011. Crystal structure of the human centromeric nucleosome containing CENP-A. Nature. 476:232-235. http ://dx.doi.org/10.1038/nature10258
-
(2011)
Nature
, vol.476
, pp. 232-235
-
-
Tachiwana, H.1
Kagawa, W.2
Shiga, T.3
Osakabe, A.4
Miya, Y.5
Saito, K.6
Hayashi-Takanaka, Y.7
Oda, T.8
Sato, M.9
Park, S.Y.10
-
142
-
-
0742304304
-
Histone H3.1 and H3.3 complexes mediate nucleosome assembly pathways dependent or independent of DNA synthesis
-
Tagami, H., D. Ray-Gallet, G. Almouzni, and Y. Nakatani. 2004. Histone H3.1 and H3.3 complexes mediate nucleosome assembly pathways dependent or independent of DNA synthesis. Cell. 116:51-61. http ://dx.doi.org/10.1016/S0092-8674(03)01064-X
-
(2004)
Cell
, vol.116
, pp. 51-61
-
-
Tagami, H.1
Ray-Gallet, D.2
Almouzni, G.3
Nakatani, Y.4
-
143
-
-
20544448498
-
Two distinct pathways responsible for the loading of CENP-A to centromeres in the fission yeast cell cycle
-
Takahashi, K., Y. Takayama, F. Masuda, Y. Kobayashi, and S. Saitoh. 2005. Two distinct pathways responsible for the loading of CENP-A to centromeres in the fission yeast cell cycle. Philos. Trans. R. Soc. Lond. B Biol. Sci. 360:595-606. http ://dx.doi.org/10.1098/rstb.2004.1614
-
(2005)
Philos. Trans. R. Soc. Lond. B Biol. Sci
, vol.360
, pp. 595-606
-
-
Takahashi, K.1
Takayama, Y.2
Masuda, F.3
Kobayashi, Y.4
Saitoh, S.5
-
144
-
-
84882704779
-
Phylogeny as the basis for naming histones
-
Talbert, P.B., and S. Henikoff. 2013. Phylogeny as the basis for naming histones. Trends Genet. 29:499-500. http ://dx.doi.org/10.1016/j.tig.2013.06.009
-
(2013)
Trends Genet
, vol.29
, pp. 499-500
-
-
Talbert, P.B.1
Henikoff, S.2
-
145
-
-
8644230905
-
Centromere-encoded RNAs are integral components of the maize kinetochore
-
Topp, C.N., C.X. Zhong, and R.K. Dawe. 2004. Centromere-encoded RNAs are integral components of the maize kinetochore. Proc. Natl. Acad. Sci. USA. 101:15986-15991. http ://dx.doi.org/10.1073/pnas.0407154101
-
(2004)
Proc. Natl. Acad. Sci. USA
, vol.101
, pp. 15986-15991
-
-
Topp, C.N.1
Zhong, C.X.2
Dawe, R.K.3
-
146
-
-
0034809530
-
Interaction between the Drosophila CAF-1 and ASF1 chromatin assembly factors
-
Tyler, J.K., K.A. Collins, J. Prasad-Sinha, E. Amiott, M. Bulger, P.J. Harte, R. Kobayashi, and J.T. Kadonaga. 2001. Interaction between the Drosophila CAF-1 and ASF1 chromatin assembly factors. Mol. Cell. Biol. 21:6574-6584. http ://dx.doi.org/10.1128/MCB.21.19.6574-6584.2001
-
(2001)
Mol. Cell. Biol
, vol.21
, pp. 6574-6584
-
-
Tyler, J.K.1
Collins, K.A.2
Prasad-Sinha, J.3
Amiott, E.4
Bulger, M.5
Harte, P.J.6
Kobayashi, R.7
Kadonaga, J.T.8
-
147
-
-
84864869223
-
Temporal control of epigenetic centromere specification
-
Valente, L.P., M.C. Silva, and L.E. Jansen. 2012. Temporal control of epigenetic centromere specification. Chromosome Res. 20:481-492. http ://dx.doi.org/10.1007/s10577-012-9291-2
-
(2012)
Chromosome Res
, vol.20
, pp. 481-492
-
-
Valente, L.P.1
Silva, M.C.2
Jansen, L.E.3
-
148
-
-
0036837686
-
Centromere targeting element within the histone fold domain of Cid
-
Vermaak, D., H.S. Hayden, and S. Henikoff. 2002. Centromere targeting element within the histone fold domain of Cid. Mol. Cell. Biol. 22:7553-7561. http ://dx.doi.org/10.1128/MCB.22.21.7553-7561.2002
-
(2002)
Mol. Cell. Biol
, vol.22
, pp. 7553-7561
-
-
Vermaak, D.1
Hayden, H.S.2
Henikoff, S.3
-
149
-
-
84960484784
-
New players in heterochromatin silencing: Histone variant H3.3 and the ATRX/DAXX chaperone
-
Voon, H.P., and L.H. Wong. 2016. New players in heterochromatin silencing: Histone variant H3.3 and the ATRX/DAXX chaperone. Nucleic Acids Res. 44:1496-1501. http ://dx.doi.org/10.1093/nar/gkw012
-
(2016)
Nucleic Acids Res
, vol.44
, pp. 1496-1501
-
-
Voon, H.P.1
Wong, L.H.2
-
150
-
-
20144376151
-
The CHD remodeling factor Hrp1 stimulates CENP-A loading to centromeres
-
Walfridsson, J., P. Bjerling, M. Thalen, E.J. Yoo, S.D. Park, and K. Ekwall. 2005. The CHD remodeling factor Hrp1 stimulates CENP-A loading to centromeres. Nucleic Acids Res. 33:2868-2879. http ://dx.doi.org/10.1093/nar/gki579
-
(2005)
Nucleic Acids Res
, vol.33
, pp. 2868-2879
-
-
Walfridsson, J.1
Bjerling, P.2
Thalen, M.3
Yoo, E.J.4
Park, S.D.5
Ekwall, K.6
-
151
-
-
0017840355
-
Reconstitution of chromatin: Assembly of the nucleosome
-
Wilhelm, F.X., M.L. Wilhelm, M. Erard, and M.P. Duane. 1978. Reconstitution of chromatin: Assembly of the nucleosome. Nucleic Acids Res. 5:505-521. http ://dx.doi.org/10.1093/nar/5.2.505
-
(1978)
Nucleic Acids Res
, vol.5
, pp. 505-521
-
-
Wilhelm, F.X.1
Wilhelm, M.L.2
Erard, M.3
Duane, M.P.4
-
152
-
-
0019865207
-
Separation of basal histone synthesis from S-phase histone synthesis in dividing cells
-
Wu, R.S., and W.M. Bonner. 1981. Separation of basal histone synthesis from S-phase histone synthesis in dividing cells. Cell. 27:321-330. http ://dx.doi.org/10.1016/0092-8674(81)90415-3
-
(1981)
Cell
, vol.27
, pp. 321-330
-
-
Wu, R.S.1
Bonner, W.M.2
-
153
-
-
0025138502
-
Conservative segregation of tetrameric units of H3 and H4 histones during nucleosome replication
-
Yamasu, K., and T. Senshu. 1990. Conservative segregation of tetrameric units of H3 and H4 histones during nucleosome replication. J. Biochem. 107:15-20.
-
(1990)
J. Biochem
, vol.107
, pp. 15-20
-
-
Yamasu, K.1
Senshu, T.2
-
154
-
-
33847139450
-
Rice as a model for centromere and heterochromatin research
-
Yan, H., and J. Jiang. 2007. Rice as a model for centromere and heterochromatin research. Chromosome Res. 15:77-84. http ://dx.doi.org/10.1007/s10577-006-1104-z
-
(2007)
Chromosome Res
, vol.15
, pp. 77-84
-
-
Yan, H.1
Jiang, J.2
-
155
-
-
84922343527
-
Dynamic phosphorylation of CENP-A at Ser68 orchestrates its cell-cycle-dependent deposition at centromeres
-
Yu, Z., X. Zhou, W. Wang, W. Deng, J. Fang, H. Hu, Z. Wang, S. Li, L. Cui, J. Shen, et al. 2015. Dynamic phosphorylation of CENP-A at Ser68 orchestrates its cell-cycle-dependent deposition at centromeres. Dev. Cell. 32:68-81. http ://dx.doi.org/10.1016/j.devcel.2014.11.030
-
(2015)
Dev. Cell
, vol.32
, pp. 68-81
-
-
Yu, Z.1
Zhou, X.2
Wang, W.3
Deng, W.4
Fang, J.5
Hu, H.6
Wang, Z.7
Li, S.8
Cui, L.9
Shen, J.10
-
156
-
-
84881476542
-
Dimerization of the CENP-A assembly factor HJU RP is required for centromeric nucleosome deposition
-
Zasadzinska, E., M.C. Barnhart-Dailey, P.H. Kuich, and D.R. Foltz. 2013. Dimerization of the CENP-A assembly factor HJU RP is required for centromeric nucleosome deposition. EMBO J. 32:2113-2124. http ://dx.doi.org/10.1038/emboj.2013.142
-
(2013)
EMBO J
, vol.32
, pp. 2113-2124
-
-
Zasadzinska, E.1
Barnhart-Dailey, M.C.2
Kuich, P.H.3
Foltz, D.R.4
|