메뉴 건너뛰기




Volumn 11, Issue 3, 2015, Pages

Sequence Features and Transcriptional Stalling within Centromere DNA Promote Establishment of CENP-A Chromatin

Author keywords

[No Author keywords available]

Indexed keywords

CENTROMERE PROTEIN A; FUNGAL PROTEIN; RNA POLYMERASE II; TFIIS PROTEIN; UBP3 PROTEIN; UNCLASSIFIED DRUG; AUTOANTIGEN; CHROMATIN; DNA; HETEROCHROMATIN; HISTONE; NONHISTONE PROTEIN;

EID: 84926161769     PISSN: 15537390     EISSN: 15537404     Source Type: Journal    
DOI: 10.1371/journal.pgen.1004986     Document Type: Article
Times cited : (80)

References (86)
  • 1
    • 84878149050 scopus 로고    scopus 로고
    • Family matters: structural and functional conservation of centromere-associated proteins from yeast to humans
    • Westermann S, Schleiffer A, (2013) Family matters: structural and functional conservation of centromere-associated proteins from yeast to humans. Trends in Cell Biology 23: 260–269. doi: 10.1016/j.tcb.2013.01.010 23481674
    • (2013) Trends in Cell Biology , vol.23 , pp. 260-269
    • Westermann, S.1    Schleiffer, A.2
  • 2
    • 0035839066 scopus 로고    scopus 로고
    • The centromere paradox: stable inheritance with rapidly evolving DNA
    • Henikoff S, Ahmad K, Malik HS, (2001) The centromere paradox: stable inheritance with rapidly evolving DNA. Science 293: 1098–1102. 11498581
    • (2001) Science , vol.293 , pp. 1098-1102
    • Henikoff, S.1    Ahmad, K.2    Malik, H.S.3
  • 3
    • 33744786043 scopus 로고    scopus 로고
    • Phylogenetic and structural analysis of centromeric DNA and kinetochore proteins
    • Meraldi P, McAinsh AD, Rheinbay E, Sorger PK, (2006) Phylogenetic and structural analysis of centromeric DNA and kinetochore proteins. Genome Biol 7: R23. 16563186
    • (2006) Genome Biol , vol.7 , pp. 23
    • Meraldi, P.1    McAinsh, A.D.2    Rheinbay, E.3    Sorger, P.K.4
  • 5
    • 84873032132 scopus 로고    scopus 로고
    • Comparative analysis of tandem repeats from hundreds of species reveals unique insights into centromere evolution
    • Melters DP, Bradnam KR, Young HA, Telis N, May MR, et al. (2013) Comparative analysis of tandem repeats from hundreds of species reveals unique insights into centromere evolution. Genome Biol 14: R10. doi: 10.1186/gb-2013-14-1-r10 23363705
    • (2013) Genome Biol , vol.14 , pp. 10
    • Melters, D.P.1    Bradnam, K.R.2    Young, H.A.3    Telis, N.4    May, M.R.5
  • 6
    • 84881082807 scopus 로고    scopus 로고
    • The composition, functions, and regulation of the budding yeast kinetochore
    • Biggins S, (2013) The composition, functions, and regulation of the budding yeast kinetochore. Genetics 194: 817–846. doi: 10.1534/genetics.112.145276 23908374
    • (2013) Genetics , vol.194 , pp. 817-846
    • Biggins, S.1
  • 7
    • 84898464557 scopus 로고    scopus 로고
    • Holocentromeres are dispersed point centromeres localized at transcription factor hotspots
    • Steiner FA, Henikoff S, (2014) Holocentromeres are dispersed point centromeres localized at transcription factor hotspots. eLife Sciences 3: e02025. doi: 10.7554/eLife.02025 24714495
    • (2014) eLife Sciences , vol.3 , pp. 02025
    • Steiner, F.A.1    Henikoff, S.2
  • 8
    • 4444223267 scopus 로고    scopus 로고
    • “Holo”er than thou: chromosome segregation and kinetochore function in C. elegans
    • Maddox PS, Oegema K, Desai A, Cheeseman IM, (2004) “Holo”er than thou: chromosome segregation and kinetochore function in C. elegans. Chromosome Res 12: 641–653. 15289669
    • (2004) Chromosome Res , vol.12 , pp. 641-653
    • Maddox, P.S.1    Oegema, K.2    Desai, A.3    Cheeseman, I.M.4
  • 9
    • 0021874985 scopus 로고
    • Chromosome-specific organization of human alpha satellite DNA
    • Willard HF, (1985) Chromosome-specific organization of human alpha satellite DNA. Am J Hum Genet 37: 524–532. 2988334
    • (1985) Am J Hum Genet , vol.37 , pp. 524-532
    • Willard, H.F.1
  • 10
    • 0024929406 scopus 로고
    • The genomics of long tandem arrays of satellite DNA in the human genome
    • Willard HF, (1989) The genomics of long tandem arrays of satellite DNA in the human genome. Genome 31: 737–744. 2698839
    • (1989) Genome , vol.31 , pp. 737-744
    • Willard, H.F.1
  • 11
    • 0027179021 scopus 로고
    • Organization of the variant domains of alpha satellite DNA on human chromosome 21
    • Marçais B, Laurent AM, Charlieu JP, Roizès G, (1993) Organization of the variant domains of alpha satellite DNA on human chromosome 21. J Mol Evol 37: 171–178. 8411206
    • (1993) J Mol Evol , vol.37 , pp. 171-178
    • Marçais, B.1    Laurent, A.M.2    Charlieu, J.P.3    Roizès, G.4
  • 12
    • 16644385308 scopus 로고    scopus 로고
    • Kinetochore and heterochromatin domains of the fission yeast centromere
    • Pidoux AL, Allshire RC, (2004) Kinetochore and heterochromatin domains of the fission yeast centromere. Chromosome Res 12: 521–534. 15289660
    • (2004) Chromosome Res , vol.12 , pp. 521-534
    • Pidoux, A.L.1    Allshire, R.C.2
  • 13
    • 3843076217 scopus 로고    scopus 로고
    • Centromeric DNA sequences in the pathogenic yeast Candida albicans are all different and unique
    • Sanyal K, Baum M, Carbon J, (2004) Centromeric DNA sequences in the pathogenic yeast Candida albicans are all different and unique. Proc Natl Acad Sci USA 101: 11374–11379. 15272074
    • (2004) Proc Natl Acad Sci USA , vol.101 , pp. 11374-11379
    • Sanyal, K.1    Baum, M.2    Carbon, J.3
  • 14
    • 77956285927 scopus 로고    scopus 로고
    • Chickens possess centromeres with both extended tandem repeats and short non-tandem-repetitive sequences
    • Shang WH, Hori T, Toyoda A, Kato J, Popendorf K, et al. (2010) Chickens possess centromeres with both extended tandem repeats and short non-tandem-repetitive sequences. Genome Research 20: 1219–1228. doi: 10.1101/gr.106245.110 20534883
    • (2010) Genome Research , vol.20 , pp. 1219-1228
    • Shang, W.H.1    Hori, T.2    Toyoda, A.3    Kato, J.4    Popendorf, K.5
  • 15
    • 84868104217 scopus 로고    scopus 로고
    • Repeatless and repeat-based centromeres in potato: implications for centromere evolution
    • Gong Z, Wu Y, Koblízková A, Torres GA, Wang K, et al. (2012) Repeatless and repeat-based centromeres in potato: implications for centromere evolution. Plant Cell 24: 3559–3574. doi: 10.1105/tpc.112.100511 22968715
    • (2012) Plant Cell , vol.24 , pp. 3559-3574
    • Gong, Z.1    Wu, Y.2    Koblízková, A.3    Torres, G.A.4    Wang, K.5
  • 16
    • 56549108407 scopus 로고    scopus 로고
    • Epigenetic regulation of centromeric chromatin: old dogs, new tricks?
    • Allshire RC, Karpen GH, (2008) Epigenetic regulation of centromeric chromatin: old dogs, new tricks? Nat Rev Genet 9: 923–937. doi: 10.1038/nrg2466 19002142
    • (2008) Nat Rev Genet , vol.9 , pp. 923-937
    • Allshire, R.C.1    Karpen, G.H.2
  • 17
    • 84864884507 scopus 로고    scopus 로고
    • Neocentromeres and epigenetically inherited features of centromeres
    • Burrack LS, Berman J, (2012) Neocentromeres and epigenetically inherited features of centromeres. Chromosome Res 20: 607–619. doi: 10.1007/s10577-012-9296-x 22723125
    • (2012) Chromosome Res , vol.20 , pp. 607-619
    • Burrack, L.S.1    Berman, J.2
  • 18
    • 40749092486 scopus 로고    scopus 로고
    • Neocentromeres: new insights into centromere structure, disease development, and karyotype evolution
    • Marshall OJ, Chueh AC, Wong LH, Choo KHA, (2008) Neocentromeres: new insights into centromere structure, disease development, and karyotype evolution. Am J Hum Genet 82: 261–282. doi: 10.1016/j.ajhg.2007.11.009 18252209
    • (2008) Am J Hum Genet , vol.82 , pp. 261-282
    • Marshall, O.J.1    Chueh, A.C.2    Wong, L.H.3    Choo, K.H.A.4
  • 19
    • 50149103619 scopus 로고    scopus 로고
    • Heterochromatin Integrity Affects Chromosome Reorganization After Centromere Dysfunction
    • Ishii K, Ogiyama Y, Chikashige Y, Soejima S, Masuda F, et al. (2008) Heterochromatin Integrity Affects Chromosome Reorganization After Centromere Dysfunction. Science 321: 1088–1091. doi: 10.1126/science.1158699 18719285
    • (2008) Science , vol.321 , pp. 1088-1091
    • Ishii, K.1    Ogiyama, Y.2    Chikashige, Y.3    Soejima, S.4    Masuda, F.5
  • 20
    • 84864875871 scopus 로고    scopus 로고
    • Dicentric chromosomes: unique models to study centromere function and inactivation
    • Stimpson KM, Matheny JE, Sullivan BA, (2012) Dicentric chromosomes: unique models to study centromere function and inactivation. Chromosome Res 20: 595–605. doi: 10.1007/s10577-012-9302-3 22801777
    • (2012) Chromosome Res , vol.20 , pp. 595-605
    • Stimpson, K.M.1    Matheny, J.E.2    Sullivan, B.A.3
  • 21
    • 84860279272 scopus 로고    scopus 로고
    • Epigenetic inactivation and subsequent heterochromatinization of a centromere stabilize dicentric chromosomes
    • Sato H, Masuda F, Takayama Y, Takahashi K, Saitoh S, (2012) Epigenetic inactivation and subsequent heterochromatinization of a centromere stabilize dicentric chromosomes. Curr Biol 22: 658–667. doi: 10.1016/j.cub.2012.02.062 22464190
    • (2012) Curr Biol , vol.22 , pp. 658-667
    • Sato, H.1    Masuda, F.2    Takayama, Y.3    Takahashi, K.4    Saitoh, S.5
  • 22
    • 84885977964 scopus 로고    scopus 로고
    • Anarchic centromeres: deciphering order from apparent chaos
    • Catania S, Allshire RC, (2014) Anarchic centromeres: deciphering order from apparent chaos. Current Opinion in Cell Biology 26: 41–50. doi: 10.1016/j.ceb.2013.09.004 24529245
    • (2014) Current Opinion in Cell Biology , vol.26 , pp. 41-50
    • Catania, S.1    Allshire, R.C.2
  • 23
    • 84857122106 scopus 로고    scopus 로고
    • Centromeric chromatin and the pathway that drives its propagation
    • Falk SJ, Black BE, (2012) Centromeric chromatin and the pathway that drives its propagation. Biochim Biophys Acta 1819: 313–321. doi: 10.1016/j.bbagrm.2011.11.002 22154124
    • (2012) Biochim Biophys Acta , vol.1819 , pp. 313-321
    • Falk, S.J.1    Black, B.E.2
  • 24
    • 80555125093 scopus 로고    scopus 로고
    • Drosophila CENH3 is sufficient for centromere formation
    • Mendiburo MJ, Padeken J, Fülöp S, Schepers A, Heun P, (2011) Drosophila CENH3 is sufficient for centromere formation. Science 334: 686–690. doi: 10.1126/science.1206880 22053052
    • (2011) Science , vol.334 , pp. 686-690
    • Mendiburo, M.J.1    Padeken, J.2    Fülöp, S.3    Schepers, A.4    Heun, P.5
  • 25
    • 79961113679 scopus 로고    scopus 로고
    • HJURP is a CENP-A chromatin assembly factor sufficient to form a functional de novo kinetochore
    • Barnhart MC, Kuich PHJL, Stellfox ME, Ward JA, Bassett EA, et al. (2011) HJURP is a CENP-A chromatin assembly factor sufficient to form a functional de novo kinetochore. The Journal of Cell Biology 194: 229–243. doi: 10.1083/jcb.201012017 21768289
    • (2011) The Journal of Cell Biology , vol.194 , pp. 229-243
    • Barnhart, M.C.1    Kuich, P.H.J.L.2    Stellfox, M.E.3    Ward, J.A.4    Bassett, E.A.5
  • 26
    • 84883667139 scopus 로고    scopus 로고
    • A two-step mechanism for epigenetic specification of centromere identity and function
    • Fachinetti D, Diego Folco H, Nechemia-Arbely Y, Valente LP, Nguyen K, et al. (2013) A two-step mechanism for epigenetic specification of centromere identity and function. Nature Cell Biology 15: 1056–1066. doi: 10.1038/ncb2805 23873148
    • (2013) Nature Cell Biology , vol.15 , pp. 1056-1066
    • Fachinetti, D.1    Diego, F.H.2    Nechemia-Arbely, Y.3    Valente, L.P.4    Nguyen, K.5
  • 27
    • 84873566883 scopus 로고    scopus 로고
    • Myb-domain protein Teb1 controls histone levels and centromere assembly in fission yeast
    • Valente LP, Dehé P-M, Klutstein M, Aligianni S, Watt S, et al. (2013) Myb-domain protein Teb1 controls histone levels and centromere assembly in fission yeast. EMBO J.
    • (2013)
    • Valente, L.P.1    Dehé, P.-M.2    Klutstein, M.3    Aligianni, S.4    Watt, S.5
  • 28
    • 70149095590 scopus 로고    scopus 로고
    • Major evolutionary transitions in centromere complexity
    • Malik HS, Henikoff S, (2009) Major evolutionary transitions in centromere complexity. Cell 138: 1067–1082. doi: 10.1016/j.cell.2009.08.036 19766562
    • (2009) Cell , vol.138 , pp. 1067-1082
    • Malik, H.S.1    Henikoff, S.2
  • 29
    • 0142106339 scopus 로고    scopus 로고
    • Epigenetic assembly of centromeric chromatin at ectopic-satellite sites on human chromosomes
    • Nakano M, (2003) Epigenetic assembly of centromeric chromatin at ectopic-satellite sites on human chromosomes. Journal of Cell Science 116: 4021–4034. 12953060
    • (2003) Journal of Cell Science , vol.116 , pp. 4021-4034
    • Nakano, M.1
  • 30
    • 84864886891 scopus 로고    scopus 로고
    • HACking the centromere chromatin code: insights from human artificial chromosomes
    • Bergmann JH, Martins NMC, Larionov V, Masumoto H, Earnshaw WC, (2012) HACking the centromere chromatin code: insights from human artificial chromosomes. Chromosome Res 20: 505–519. doi: 10.1007/s10577-012-9293-0 22825423
    • (2012) Chromosome Res , vol.20 , pp. 505-519
    • Bergmann, J.H.1    Martins, N.M.C.2    Larionov, V.3    Masumoto, H.4    Earnshaw, W.C.5
  • 31
    • 0025942107 scopus 로고
    • Efficient gene transfer in C.elegans: extrachromosomal maintenance and integration of transforming sequences
    • Mello CC, Kramer JM, Stinchcomb D, Ambros V, (1991) Efficient gene transfer in C.elegans: extrachromosomal maintenance and integration of transforming sequences. EMBO J 10: 3959–3970. 1935914
    • (1991) EMBO J , vol.10 , pp. 3959-3970
    • Mello, C.C.1    Kramer, J.M.2    Stinchcomb, D.3    Ambros, V.4
  • 32
    • 80755136621 scopus 로고    scopus 로고
    • Rapid de novo centromere formation occurs independently of heterochromatin protein 1 in C. elegans embryos
    • Yuen KWY, Nabeshima K, Oegema K, Desai A, (2011) Rapid de novo centromere formation occurs independently of heterochromatin protein 1 in C. elegans embryos. Curr Biol 21: 1800–1807. doi: 10.1016/j.cub.2011.09.016 22018540
    • (2011) Curr Biol , vol.21 , pp. 1800-1807
    • Yuen, K.W.Y.1    Nabeshima, K.2    Oegema, K.3    Desai, A.4
  • 33
    • 84890984449 scopus 로고    scopus 로고
    • Transcription and ncRNAs: at the cent(rome)re of kinetochore assembly and maintenance
    • Scott KC (2013) Transcription and ncRNAs: at the cent(rome)re of kinetochore assembly and maintenance. Chromosome Res.
    • (2013)
    • Scott, K.C.1
  • 34
    • 84918500464 scopus 로고    scopus 로고
    • Repetitive centromeric satellite RNA is essential for kinetochore formation and cell division
    • Rošić S, Köhler F, Erhardt S, (2014) Repetitive centromeric satellite RNA is essential for kinetochore formation and cell division. The Journal of Cell Biology 207: 335–349. doi: 10.1083/jcb.201404097 25365994
    • (2014) The Journal of Cell Biology , vol.207 , pp. 335-349
    • Rošić, S.1    Köhler, F.2    Erhardt, S.3
  • 35
    • 80055005108 scopus 로고    scopus 로고
    • Endogenous Transcription at the Centromere Facilitates Centromere Activity in Budding Yeast
    • Ohkuni K, Kitagawa K (2011) Endogenous Transcription at the Centromere Facilitates Centromere Activity in Budding Yeast. Curr Biol.
    • (2011)
    • Ohkuni, K.1    Kitagawa, K.2
  • 36
    • 8644230905 scopus 로고    scopus 로고
    • Centromere-encoded RNAs are integral components of the maize kinetochore
    • Topp CN, Zhong CX, Dawe RK, (2004) Centromere-encoded RNAs are integral components of the maize kinetochore. Proc Natl Acad Sci USA 101: 15986–15991. 15514020
    • (2004) Proc Natl Acad Sci USA , vol.101 , pp. 15986-15991
    • Topp, C.N.1    Zhong, C.X.2    Dawe, R.K.3
  • 37
    • 79959553631 scopus 로고    scopus 로고
    • Identification of noncoding transcripts from within CENP-A chromatin at fission yeast centromeres
    • Choi ES, Stralfors A, Castillo AG, Durand-Dubief M, Ekwall K, et al. (2011) Identification of noncoding transcripts from within CENP-A chromatin at fission yeast centromeres. J Biol Chem 286: 23600–23607. doi: 10.1074/jbc.M111.228510 21531710
    • (2011) J Biol Chem , vol.286 , pp. 23600-23607
    • Choi, E.S.1    Stralfors, A.2    Castillo, A.G.3    Durand-Dubief, M.4    Ekwall, K.5
  • 38
    • 84863174471 scopus 로고    scopus 로고
    • Active transcription and essential role of RNA polymerase II at the centromere during mitosis
    • Chan FL, Marshall OJ, Saffery R, Won Kim B, Earle E, et al. (2012) Active transcription and essential role of RNA polymerase II at the centromere during mitosis. Proceedings of the National Academy of Sciences 109: 1979–1984. doi: 10.1073/pnas.1108705109 22308327
    • (2012) Proceedings of the National Academy of Sciences , vol.109 , pp. 1979-1984
    • Chan, F.L.1    Marshall, O.J.2    Saffery, R.3    Won Kim, B.4    Earle, E.5
  • 39
    • 78751636707 scopus 로고    scopus 로고
    • Epigenetic engineering shows H3K4me2 is required for HJURP targeting and CENP-A assembly on a synthetic human kinetochore
    • Bergmann JH, Rodríguez MG, Martins NMC, Kimura H, Kelly DA, et al. (2011) Epigenetic engineering shows H3K4me2 is required for HJURP targeting and CENP-A assembly on a synthetic human kinetochore. EMBO J 30: 328–340. doi: 10.1038/emboj.2010.329 21157429
    • (2011) EMBO J , vol.30 , pp. 328-340
    • Bergmann, J.H.1    Rodríguez, M.G.2    Martins, N.M.C.3    Kimura, H.4    Kelly, D.A.5
  • 40
    • 84858116073 scopus 로고    scopus 로고
    • Epigenetic engineering: histone H3K9 acetylation is compatible with kinetochore structure and function
    • Bergmann JH, Jakubsche JN, Martins NM, Kagansky A, Nakano M, et al. (2012) Epigenetic engineering: histone H3K9 acetylation is compatible with kinetochore structure and function. Journal of Cell Science 125: 411–421. doi: 10.1242/jcs.090639 22331359
    • (2012) Journal of Cell Science , vol.125 , pp. 411-421
    • Bergmann, J.H.1    Jakubsche, J.N.2    Martins, N.M.3    Kagansky, A.4    Nakano, M.5
  • 41
    • 84866914587 scopus 로고    scopus 로고
    • Factors That Promote H3 Chromatin Integrity during Transcription Prevent Promiscuous Deposition of CENP-ACnp1 in Fission Yeast
    • Choi ES, Strålfors A, Catania S, Castillo AG, Svensson JP, et al. (2012) Factors That Promote H3 Chromatin Integrity during Transcription Prevent Promiscuous Deposition of CENP-ACnp1 in Fission Yeast. PLoS Genet 8: e1002985. doi: 10.1371/journal.pgen.1002985 23028377
    • (2012) PLoS Genet , vol.8 , pp. 1002985
    • Choi, E.S.1    Strålfors, A.2    Catania, S.3    Castillo, A.G.4    Svensson, J.P.5
  • 42
    • 84895879913 scopus 로고    scopus 로고
    • Centromeric histone H2B monoubiquitination promotes noncoding transcription and chromatin integrity
    • Sadeghi L, Siggens L, Svensson JP, Ekwall K (2014) Centromeric histone H2B monoubiquitination promotes noncoding transcription and chromatin integrity. Nat Struct Mol Biol: 236–243.
    • (2014) Nat Struct Mol Biol , pp. 236-243
    • Sadeghi, L.1    Siggens, L.2    Svensson, J.P.3    Ekwall, K.4
  • 43
    • 59249100073 scopus 로고    scopus 로고
    • LINE retrotransposon RNA is an essential structural and functional epigenetic component of a core neocentromeric chromatin
    • Chueh AC, Northrop EL, Brettingham-Moore KH, Choo KHA, Wong LH, (2009) LINE retrotransposon RNA is an essential structural and functional epigenetic component of a core neocentromeric chromatin. PLoS Genet 5: e1000354. doi: 10.1371/journal.pgen.1000354 19180186
    • (2009) PLoS Genet , vol.5 , pp. 1000354
    • Chueh, A.C.1    Northrop, E.L.2    Brettingham-Moore, K.H.3    Choo, K.H.A.4    Wong, L.H.5
  • 44
    • 84929468570 scopus 로고    scopus 로고
    • A long non-coding RNA is required for targeting centromeric protein A to the human centromere
    • Quénet D, Dalal Y (2014) A long non-coding RNA is required for targeting centromeric protein A to the human centromere. eLife Sciences: e03254.
    • (2014)
    • Quénet, D.1    Dalal, Y.2
  • 45
    • 37849021647 scopus 로고    scopus 로고
    • Heterochromatin and RNAi Are Required to Establish CENP-A Chromatin at Centromeres
    • Folco HD, Pidoux AL, Urano T, Allshire RC, (2008) Heterochromatin and RNAi Are Required to Establish CENP-A Chromatin at Centromeres. Science 319: 94–97. doi: 10.1126/science.1150944 18174443
    • (2008) Science , vol.319 , pp. 94-97
    • Folco, H.D.1    Pidoux, A.L.2    Urano, T.3    Allshire, R.C.4
  • 46
    • 67649939154 scopus 로고    scopus 로고
    • Synthetic Heterochromatin Bypasses RNAi and Centromeric Repeats to Establish Functional Centromeres
    • Kagansky A, Folco HD, Almeida R, Pidoux AL, Boukaba A, et al. (2009) Synthetic Heterochromatin Bypasses RNAi and Centromeric Repeats to Establish Functional Centromeres. Science 324: 1716–1719. doi: 10.1126/science.1172026 19556509
    • (2009) Science , vol.324 , pp. 1716-1719
    • Kagansky, A.1    Folco, H.D.2    Almeida, R.3    Pidoux, A.L.4    Boukaba, A.5
  • 47
    • 84881133164 scopus 로고    scopus 로고
    • Telomeric Repeats Facilitate CENP-A(Cnp1) Incorporation via Telomere Binding Proteins
    • Castillo AG, Pidoux AL, Catania S, Durand-Dubief M, Choi ES, et al. (2013) Telomeric Repeats Facilitate CENP-A(Cnp1) Incorporation via Telomere Binding Proteins. PLoS ONE 8: e69673. doi: 10.1371/journal.pone.0069673 23936074
    • (2013) PLoS ONE , vol.8 , pp. 69673
    • Castillo, A.G.1    Pidoux, A.L.2    Catania, S.3    Durand-Dubief, M.4    Choi, E.S.5
  • 48
    • 0024387172 scopus 로고
    • Characterization of Schizosaccharomyces pombe minichromosome deletion derivatives and a functional allocation of their centromere
    • Niwa O, Matsumoto T, Chikashige Y, Yanagida M, (1989) Characterization of Schizosaccharomyces pombe minichromosome deletion derivatives and a functional allocation of their centromere. EMBO J 8: 3045–3052. 2583093
    • (1989) EMBO J , vol.8 , pp. 3045-3052
    • Niwa, O.1    Matsumoto, T.2    Chikashige, Y.3    Yanagida, M.4
  • 49
    • 84864232821 scopus 로고    scopus 로고
    • Quantitative single-molecule microscopy reveals that CENP-A(Cnp1) deposition occurs during G2 in fission yeast
    • Lando D, Endesfelder U, Berger H, Subramanian L, Dunne PD, et al. (2012) Quantitative single-molecule microscopy reveals that CENP-A(Cnp1) deposition occurs during G2 in fission yeast. Open Biol 2: 120078. doi: 10.1098/rsob.120078 22870388
    • (2012) Open Biol , vol.2 , pp. 120078
    • Lando, D.1    Endesfelder, U.2    Berger, H.3    Subramanian, L.4    Dunne, P.D.5
  • 50
    • 0028065035 scopus 로고
    • The centromeric K-type repeat and the central core are together sufficient to establish a functional Schizosaccharomyces pombe centromere
    • Baum M, Ngan VK, Clarke L, (1994) The centromeric K-type repeat and the central core are together sufficient to establish a functional Schizosaccharomyces pombe centromere. Mol Biol Cell 5: 747–761. 7812044
    • (1994) Mol Biol Cell , vol.5 , pp. 747-761
    • Baum, M.1    Ngan, V.K.2    Clarke, L.3
  • 51
    • 0028873187 scopus 로고
    • Mutations derepressing silent centromeric domains in fission yeast disrupt chromosome segregation
    • Allshire RC, Nimmo ER, Ekwall K, Javerzat JP, Cranston G, (1995) Mutations derepressing silent centromeric domains in fission yeast disrupt chromosome segregation. Genes & Development 9: 218–233.
    • (1995) Genes & Development , vol.9 , pp. 218-233
    • Allshire, R.C.1    Nimmo, E.R.2    Ekwall, K.3    Javerzat, J.P.4    Cranston, G.5
  • 52
    • 84875196326 scopus 로고    scopus 로고
    • Determinants of nucleosome positioning
    • Struhl K, Segal E, (2013) Determinants of nucleosome positioning. Nature Publishing Group 20: 267–273.
    • (2013) Nature Publishing Group , vol.20 , pp. 267-273
    • Struhl, K.1    Segal, E.2
  • 53
    • 67649976639 scopus 로고    scopus 로고
    • Centromeres: long intergenic spaces with adaptive features
    • Kanizay L, Dawe RK, (2009) Centromeres: long intergenic spaces with adaptive features. Funct Integr Genomics 9: 287–292. doi: 10.1007/s10142-009-0124-0 19434433
    • (2009) Funct Integr Genomics , vol.9 , pp. 287-292
    • Kanizay, L.1    Dawe, R.K.2
  • 54
    • 68349125112 scopus 로고    scopus 로고
    • What controls nucleosome positions?
    • Segal E, Widom J, (2009) What controls nucleosome positions? Trends in Genetics 25: 335–343. doi: 10.1016/j.tig.2009.06.002 19596482
    • (2009) Trends in Genetics , vol.25 , pp. 335-343
    • Segal, E.1    Widom, J.2
  • 55
    • 62649085538 scopus 로고    scopus 로고
    • The DNA-encoded nucleosome organization of a eukaryotic genome
    • Kaplan N, Moore IK, Fondufe-Mittendorf Y, Gossett AJ, Tillo D, et al. (2009) The DNA-encoded nucleosome organization of a eukaryotic genome. Nature 458: 362–366. doi: 10.1038/nature07667 19092803
    • (2009) Nature , vol.458 , pp. 362-366
    • Kaplan, N.1    Moore, I.K.2    Fondufe-Mittendorf, Y.3    Gossett, A.J.4    Tillo, D.5
  • 56
    • 84883405887 scopus 로고    scopus 로고
    • Proteasome-mediated processing of def1, a critical step in the cellular response to transcription stress
    • Wilson MD, Harreman M, Taschner M, Reid J, Walker J, et al. (2013) Proteasome-mediated processing of def1, a critical step in the cellular response to transcription stress. Cell 154: 983–995. doi: 10.1016/j.cell.2013.07.028 23993092
    • (2013) Cell , vol.154 , pp. 983-995
    • Wilson, M.D.1    Harreman, M.2    Taschner, M.3    Reid, J.4    Walker, J.5
  • 57
    • 77953629213 scopus 로고    scopus 로고
    • Transcript Elongation by RNA Polymerase II
    • Selth LA, Sigurdsson S, Svejstrup JQ, (2010) Transcript Elongation by RNA Polymerase II. Annu Rev Biochem 79: 271–293. doi: 10.1146/annurev.biochem.78.062807.091425 20367031
    • (2010) Annu Rev Biochem , vol.79 , pp. 271-293
    • Selth, L.A.1    Sigurdsson, S.2    Svejstrup, J.Q.3
  • 58
    • 0034974850 scopus 로고    scopus 로고
    • TFIIS enhances transcriptional elongation through an artificial arrest site in vivo
    • Kulish D, Struhl K, (2001) TFIIS enhances transcriptional elongation through an artificial arrest site in vivo. Molecular and Cellular Biology 21: 4162–4168. 11390645
    • (2001) Molecular and Cellular Biology , vol.21 , pp. 4162-4168
    • Kulish, D.1    Struhl, K.2
  • 59
    • 79952440464 scopus 로고    scopus 로고
    • Structural basis of RNA polymerase II backtracking, arrest and reactivation
    • Cheung ACM, Cramer P, (2011) Structural basis of RNA polymerase II backtracking, arrest and reactivation. Nature 471: 249–253. doi: 10.1038/nature09785 21346759
    • (2011) Nature , vol.471 , pp. 249-253
    • Cheung, A.C.M.1    Cramer, P.2
  • 60
    • 77950998789 scopus 로고    scopus 로고
    • Evidence that Transcript Cleavage Is Essential for RNA Polymerase II Transcription and Cell Viability
    • Sigurdsson S, Dirac-Svejstrup AB, Svejstrup JQ, (2010) Evidence that Transcript Cleavage Is Essential for RNA Polymerase II Transcription and Cell Viability. Molecular Cell 38: 202–210. doi: 10.1016/j.molcel.2010.02.026 20417599
    • (2010) Molecular Cell , vol.38 , pp. 202-210
    • Sigurdsson, S.1    Dirac-Svejstrup, A.B.2    Svejstrup, J.Q.3
  • 61
    • 43449113530 scopus 로고    scopus 로고
    • Reversal of RNA polymerase II ubiquitylation by the ubiquitin protease Ubp3
    • Kvint K, Uhler JP, Taschner MJ, Sigurdsson S, Erdjument-Bromage H, et al. (2008) Reversal of RNA polymerase II ubiquitylation by the ubiquitin protease Ubp3. Molecular Cell 30: 498–506. doi: 10.1016/j.molcel.2008.04.018 18498751
    • (2008) Molecular Cell , vol.30 , pp. 498-506
    • Kvint, K.1    Uhler, J.P.2    Taschner, M.J.3    Sigurdsson, S.4    Erdjument-Bromage, H.5
  • 62
    • 0031009123 scopus 로고    scopus 로고
    • Reading-frame restoration by transcriptional slippage at long stretches of adenine residues in mammalian cells
    • Linton MF, Raabe M, Pierotti V, Young SG, (1997) Reading-frame restoration by transcriptional slippage at long stretches of adenine residues in mammalian cells. J Biol Chem 272: 14127–14132. 9162040
    • (1997) J Biol Chem , vol.272 , pp. 14127-14132
    • Linton, M.F.1    Raabe, M.2    Pierotti, V.3    Young, S.G.4
  • 63
    • 0029910940 scopus 로고    scopus 로고
    • In Vitro Transcription of a Poly(dA){middle dot}Poly(dT)-Containing Sequence is Inhibited by Interaction between the Template and Its Transcripts
    • Kiyama R, Oishi M, (1996) In Vitro Transcription of a Poly(dA){middle dot}Poly(dT)-Containing Sequence is Inhibited by Interaction between the Template and Its Transcripts. Nucleic Acids Research 24: 4577–4583. 8948652
    • (1996) Nucleic Acids Research , vol.24 , pp. 4577-4583
    • Kiyama, R.1    Oishi, M.2
  • 65
    • 79951709224 scopus 로고    scopus 로고
    • Epigenetic Centromere Propagation and the Nature of CENP-A Nucleosomes
    • Black BE, Cleveland DW, (2011) Epigenetic Centromere Propagation and the Nature of CENP-A Nucleosomes. Cell 144: 471–479. doi: 10.1016/j.cell.2011.02.002 21335232
    • (2011) Cell , vol.144 , pp. 471-479
    • Black, B.E.1    Cleveland, D.W.2
  • 66
    • 0027097142 scopus 로고
    • A low copy number central sequence with strict symmetry and unusual chromatin structure in fission yeast centromere
    • Takahashi K, Murakami S, Chikashige Y, Funabiki H, Niwa O, et al. (1992) A low copy number central sequence with strict symmetry and unusual chromatin structure in fission yeast centromere. Mol Biol Cell 3: 819–835. 1515677
    • (1992) Mol Biol Cell , vol.3 , pp. 819-835
    • Takahashi, K.1    Murakami, S.2    Chikashige, Y.3    Funabiki, H.4    Niwa, O.5
  • 67
    • 0026056958 scopus 로고
    • The chromatin structure of centromeres from fission yeast: differentiation of the central core that correlates with function
    • Polizzi C, Clarke L, (1991) The chromatin structure of centromeres from fission yeast: differentiation of the central core that correlates with function. The Journal of Cell Biology 112: 191–201. 1988457
    • (1991) The Journal of Cell Biology , vol.112 , pp. 191-201
    • Polizzi, C.1    Clarke, L.2
  • 68
    • 0037148758 scopus 로고    scopus 로고
    • The genome sequence of Schizosaccharomyces pombe
    • Wood V, Gwilliam R, Rajandream M- A, Lyne M, Lyne R, et al. (2002) The genome sequence of Schizosaccharomyces pombe. Nature 415: 871–880 11859360
    • (2002) Nature , vol.415 , pp. 871-880
    • Wood, V.1    Gwilliam, R.2    Rajandream M-, A.3    Lyne, M.4    Lyne, R.5
  • 69
    • 84898883789 scopus 로고    scopus 로고
    • Histone variants: dynamic punctuation in transcription
    • Weber CM, Henikoff S, (2014) Histone variants: dynamic punctuation in transcription. Genes & Development 28: 672–682.
    • (2014) Genes & Development , vol.28 , pp. 672-682
    • Weber, C.M.1    Henikoff, S.2
  • 70
    • 79952111963 scopus 로고    scopus 로고
    • Nucleosome dynamics and histone variants
    • Ray-Gallet D, Almouzni G, (2010) Nucleosome dynamics and histone variants. Essays Biochem 48: 75–87. doi: 10.1042/bse0480075 20822487
    • (2010) Essays Biochem , vol.48 , pp. 75-87
    • Ray-Gallet, D.1    Almouzni, G.2
  • 71
    • 0028076016 scopus 로고
    • Instability of plasmid DNA maintenance caused by transcription of poly(dT)-containing sequences in Escherichia coli
    • Kiyama R, Oishi M, (1994) Instability of plasmid DNA maintenance caused by transcription of poly(dT)-containing sequences in Escherichia coli. Gene 150: 57–61. 7959063
    • (1994) Gene , vol.150 , pp. 57-61
    • Kiyama, R.1    Oishi, M.2
  • 72
    • 60349115060 scopus 로고    scopus 로고
    • Poly(dA:dT) tracts: major determinants of nucleosome organization
    • Segal E, Widom J, (2009) Poly(dA:dT) tracts: major determinants of nucleosome organization. Curr Opin Struct Biol 19: 65–71. doi: 10.1016/j.sbi.2009.01.004 19208466
    • (2009) Curr Opin Struct Biol , vol.19 , pp. 65-71
    • Segal, E.1    Widom, J.2
  • 73
    • 84862984796 scopus 로고    scopus 로고
    • Manipulating nucleosome disfavoring sequences allows fine-tune regulation of gene expression in yeast
    • Raveh-Sadka T, Levo M, Shabi U, Shany B, Keren L, et al. (2012) Manipulating nucleosome disfavoring sequences allows fine-tune regulation of gene expression in yeast. Nat Genet 44: 743–750. doi: 10.1038/ng.2305 22634752
    • (2012) Nat Genet , vol.44 , pp. 743-750
    • Raveh-Sadka, T.1    Levo, M.2    Shabi, U.3    Shany, B.4    Keren, L.5
  • 74
    • 70449641057 scopus 로고    scopus 로고
    • Progression through the RNA Polymerase II CTD Cycle
    • Buratowski S, (2009) Progression through the RNA Polymerase II CTD Cycle. Molecular Cell 36: 541–546. doi: 10.1016/j.molcel.2009.10.019 19941815
    • (2009) Molecular Cell , vol.36 , pp. 541-546
    • Buratowski, S.1
  • 75
    • 84872405841 scopus 로고    scopus 로고
    • Dynamic phosphorylation patterns of RNA polymerase II CTD during transcription
    • Heidemann M, Hintermair C, Voß K, Eick D, (2013) Dynamic phosphorylation patterns of RNA polymerase II CTD during transcription. Biochim Biophys Acta 1829: 55–62. doi: 10.1016/j.bbagrm.2012.08.013 22982363
    • (2013) Biochim Biophys Acta , vol.1829 , pp. 55-62
    • Heidemann, M.1    Hintermair, C.2    Voß, K.3    Eick, D.4
  • 76
    • 20444428382 scopus 로고    scopus 로고
    • Multiple mechanisms confining RNA polymerase II ubiquitylation to polymerases undergoing transcriptional arrest
    • Somesh BP, Reid J, Liu W-F, Søgaard TMM, Erdjument-Bromage H, et al. (2005) Multiple mechanisms confining RNA polymerase II ubiquitylation to polymerases undergoing transcriptional arrest. Cell 121: 913–923. 15960978
    • (2005) Cell , vol.121 , pp. 913-923
    • Somesh, B.P.1    Reid, J.2    Liu, W.-F.3    Søgaard, T.M.M.4    Erdjument-Bromage, H.5
  • 77
    • 84872386768 scopus 로고    scopus 로고
    • Structural basis of transcription elongation
    • Martinez-Rucobo FW, Cramer P, (2013) Structural basis of transcription elongation. Biochim Biophys Acta 1829: 9–19. doi: 10.1016/j.bbagrm.2012.09.002 22982352
    • (2013) Biochim Biophys Acta , vol.1829 , pp. 9-19
    • Martinez-Rucobo, F.W.1    Cramer, P.2
  • 78
    • 84868028972 scopus 로고    scopus 로고
    • Quantitative analysis of fission yeast transcriptomes and proteomes in proliferating and quiescent cells
    • Marguerat S, Schmidt A, Codlin S, Chen W, Aebersold R, et al. (2012) Quantitative analysis of fission yeast transcriptomes and proteomes in proliferating and quiescent cells. Cell 151: 671–683. doi: 10.1016/j.cell.2012.09.019 23101633
    • (2012) Cell , vol.151 , pp. 671-683
    • Marguerat, S.1    Schmidt, A.2    Codlin, S.3    Chen, W.4    Aebersold, R.5
  • 79
    • 84933045174 scopus 로고    scopus 로고
    • Centromeric histone variant CENP-A represses acetylation-dependent chromatin transcription that is relieved by histone chaperone NPM1
    • Shandilya J, Senapati P, Hans F, Menoni H, Bouvet P, et al. (2014) Centromeric histone variant CENP-A represses acetylation-dependent chromatin transcription that is relieved by histone chaperone NPM1. J Biochem.
    • (2014)
    • Shandilya, J.1    Senapati, P.2    Hans, F.3    Menoni, H.4    Bouvet, P.5
  • 80
    • 0027151998 scopus 로고
    • Cell cycle-dependent specific positioning and clustering of centromeres and telomeres in fission yeast
    • Funabiki H, Hagan I, Uzawa S, Yanagida M, (1993) Cell cycle-dependent specific positioning and clustering of centromeres and telomeres in fission yeast. The Journal of Cell Biology 121: 961–976. 8388878
    • (1993) The Journal of Cell Biology , vol.121 , pp. 961-976
    • Funabiki, H.1    Hagan, I.2    Uzawa, S.3    Yanagida, M.4
  • 81
    • 84855956123 scopus 로고    scopus 로고
    • H3.3 is deposited at centromeres in S phase as a placeholder for newly assembled CENP-A in G₁ phase
    • Dunleavy EM, Almouzni G, Karpen GH, (2011) H3.3 is deposited at centromeres in S phase as a placeholder for newly assembled CENP-A in G₁ phase. Nucleus 2: 146–157. doi: 10.4161/nucl.2.2.15211 21738837
    • (2011) Nucleus , vol.2 , pp. 146-157
    • Dunleavy, E.M.1    Almouzni, G.2    Karpen, G.H.3
  • 82
    • 41849114919 scopus 로고    scopus 로고
    • Inactivation of a Human Kinetochore by Specific Targeting of Chromatin Modifiers
    • Nakano M, Cardinale S, Noskov VN, Gassmann R, Vagnarelli P, et al. (2008) Inactivation of a Human Kinetochore by Specific Targeting of Chromatin Modifiers. Developmental Cell 14: 507–522. doi: 10.1016/j.devcel.2008.02.001 18410728
    • (2008) Developmental Cell , vol.14 , pp. 507-522
    • Nakano, M.1    Cardinale, S.2    Noskov, V.N.3    Gassmann, R.4    Vagnarelli, P.5
  • 83
    • 0026025891 scopus 로고
    • Molecular genetic analysis of fission yeast Schizosaccharomyces pombe
    • Moreno S, Klar A, Nurse P, (1991) Molecular genetic analysis of fission yeast Schizosaccharomyces pombe. Meth Enzymol 194: 795–823. 2005825
    • (1991) Meth Enzymol , vol.194 , pp. 795-823
    • Moreno, S.1    Klar, A.2    Nurse, P.3
  • 84
    • 34547639766 scopus 로고    scopus 로고
    • Plasticity of Fission Yeast CENP-A Chromatin Driven by Relative Levels of Histone H3 and H4
    • Castillo AG, Mellone BG, Partridge JF, Richardson W, Hamilton GL, et al. (2007) Plasticity of Fission Yeast CENP-A Chromatin Driven by Relative Levels of Histone H3 and H4. PLoS Genet 3: e121. 17677001
    • (2007) PLoS Genet , vol.3 , pp. 121
    • Castillo, A.G.1    Mellone, B.G.2    Partridge, J.F.3    Richardson, W.4    Hamilton, G.L.5
  • 85
    • 0020645052 scopus 로고
    • Yeast promoters and lacZ fusions designed to study expression of cloned genes in yeast
    • Guarente L, (1983) Yeast promoters and lacZ fusions designed to study expression of cloned genes in yeast. Meth Enzymol 101: 181–191. 6310321
    • (1983) Meth Enzymol , vol.101 , pp. 181-191
    • Guarente, L.1
  • 86
    • 59649099984 scopus 로고    scopus 로고
    • Fission Yeast Scm3: A CENP-A Receptor Required for Integrity of Subkinetochore Chromatin
    • Pidoux AL, Choi ES, Abbott JKR, Liu X, Kagansky A, et al. (2009) Fission Yeast Scm3: A CENP-A Receptor Required for Integrity of Subkinetochore Chromatin. Molecular Cell 33: 299–311. doi: 10.1016/j.molcel.2009.01.019 19217404
    • (2009) Molecular Cell , vol.33 , pp. 299-311
    • Pidoux, A.L.1    Choi, E.S.2    Abbott, J.K.R.3    Liu, X.4    Kagansky, A.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.