-
1
-
-
0033405452
-
Development of erythroid and myeloid progenitors in the yolk sac and embryo proper of the mouse
-
10529424
-
J.Palis, S.Robertson, M.Kennedy, C.Wall, G.M.Keller. Development of erythroid and myeloid progenitors in the yolk sac and embryo proper of the mouse. Development 1999; 126:5073-84; PMID:10529424
-
(1999)
Development
, vol.126
, pp. 5073-5084
-
-
Palis, J.1
Robertson, S.2
Kennedy, M.3
Wall, C.4
Keller, G.M.5
-
2
-
-
84933677570
-
Distinct sources of hematopoietic progenitors emerge before HSCs and provide functional blood cells in the mammalian embryo
-
K.E.McGrath, J.M.Frame, K.H.Fegan, J.R.Bowen, S.J.Conway, S.C.Catherman, P.D.Kingsley, A.D.Koniski, J.Palis. Distinct sources of hematopoietic progenitors emerge before HSCs and provide functional blood cells in the mammalian embryo. Cell Reports 2015; 11:1892-904
-
(2015)
Cell Reports
, vol.11
, pp. 1892-1904
-
-
McGrath, K.E.1
Frame, J.M.2
Fegan, K.H.3
Bowen, J.R.4
Conway, S.J.5
Catherman, S.C.6
Kingsley, P.D.7
Koniski, A.D.8
Palis, J.9
-
3
-
-
84958157404
-
Definitive hematopoiesis in the yolk sac emerges from wnt-responsive hemogenic endothelium independently of circulation and arterial identity
-
26418893
-
J.M.Frame, K.H.Fegan, S.J.Conway, K.E.McGrath, J.Palis. Definitive hematopoiesis in the yolk sac emerges from wnt-responsive hemogenic endothelium independently of circulation and arterial identity. Stem Cells 2016; 34:431-44; PMID:26418893; http://dx.doi.org/10.1002/stem.2213
-
(2016)
Stem Cells
, vol.34
, pp. 431-444
-
-
Frame, J.M.1
Fegan, K.H.2
Conway, S.J.3
McGrath, K.E.4
Palis, J.5
-
4
-
-
84860359758
-
Origin of blood cells and HSC production in the embryo
-
22365572
-
G.Costa, V.Kouskoff, G.Lacaud. Origin of blood cells and HSC production in the embryo. Trends Immunol 2012; 33:215-23; PMID:22365572; http://dx.doi.org/10.1016/j.it.2012.01.012
-
(2012)
Trends Immunol
, vol.33
, pp. 215-223
-
-
Costa, G.1
Kouskoff, V.2
Lacaud, G.3
-
5
-
-
43549087193
-
All primitive and definitive hematopoietic progenitor cells emerging before E10 in the mouse embryo are products of the yolk sac
-
17932251
-
C.T.Lux, M.Yoshimoto, K.McGrath, S.J.Conway, J.Palis, M.C.Yoder. All primitive and definitive hematopoietic progenitor cells emerging before E10 in the mouse embryo are products of the yolk sac. Blood 2008; 111:3435-8; PMID:17932251; http://dx.doi.org/10.1182/blood-2007-08-107086
-
(2008)
Blood
, vol.111
, pp. 3435-3438
-
-
Lux, C.T.1
Yoshimoto, M.2
McGrath, K.3
Conway, S.J.4
Palis, J.5
Yoder, M.C.6
-
6
-
-
33846907357
-
The megakaryocyte lineage originates from hemangioblast precursors and is an integral component both of primitive and of definitive hematopoiesis
-
17062726
-
J.Tober, A.Koniski, K.E.Mcgrath, R.Vemishetti, R.Emerson, K.K.L.de Mesy-Bentley, R.Waugh, J.Palis. The megakaryocyte lineage originates from hemangioblast precursors and is an integral component both of primitive and of definitive hematopoiesis. Blood 2007; 109:1433-41; PMID:17062726; http://dx.doi.org/10.1182/blood-2006-06-031898
-
(2007)
Blood
, vol.109
, pp. 1433-1441
-
-
Tober, J.1
Koniski, A.2
Mcgrath, K.E.3
Vemishetti, R.4
Emerson, R.5
de Mesy-Bentley, K.K.L.6
Waugh, R.7
Palis, J.8
-
7
-
-
0027178567
-
An early pre-liver intraembryonic source of CFU-S in the developing mouse
-
8316298
-
A.J.Medvinsky, N.L.Samoylina, A.M.Müller, E.A.Dzierzak. An early pre-liver intraembryonic source of CFU-S in the developing mouse. Nature 1993; 364:64-7; PMID:8316298; http://dx.doi.org/10.1038/364064a0
-
(1993)
Nature
, vol.364
, pp. 64-67
-
-
Medvinsky, A.J.1
Samoylina, N.L.2
Müller, A.M.3
Dzierzak, E.A.4
-
8
-
-
0030595341
-
Definitive hematopoiesis is autonomously initiated by the AGM region
-
8808625
-
A.J.Medvinsky, E.A.Dzierzak. Definitive hematopoiesis is autonomously initiated by the AGM region. Cell 1996; 86:897-906; PMID:8808625; http://dx.doi.org/10.1016/S0092-8674(00)80165-8
-
(1996)
Cell
, vol.86
, pp. 897-906
-
-
Medvinsky, A.J.1
Dzierzak, E.A.2
-
9
-
-
79955150089
-
Embryonic origin of the adult hematopoietic system: advances and questions
-
21343360
-
A.J.Medvinsky, S.Rybtsov, S.Taoudi. Embryonic origin of the adult hematopoietic system:advances and questions. Development 2011; 138:1017-31; PMID:21343360; http://dx.doi.org/10.1242/dev.040998
-
(2011)
Development
, vol.138
, pp. 1017-1031
-
-
Medvinsky, A.J.1
Rybtsov, S.2
Taoudi, S.3
-
10
-
-
84865344602
-
A long way to stemness
-
22871731
-
I.M.Samokhvalov. A long way to stemness. Cell Cycle 2012; 11:2965-6; PMID:22871731; http://dx.doi.org/10.4161/cc.21388
-
(2012)
Cell Cycle
, vol.11
, pp. 2965-2966
-
-
Samokhvalov, I.M.1
-
11
-
-
17744416048
-
In vitro generation of lymphohematopoietic cells from endothelial cells purified from murine embryos
-
9655490
-
S.Nishikawa, S.I.Nishikawa, H.Kawamoto, H.Yoshida, M.Kizumoto, H.Kataoka, Y.Katsura. In vitro generation of lymphohematopoietic cells from endothelial cells purified from murine embryos. Immunity 1998; 8:761-9; PMID:9655490; http://dx.doi.org/10.1016/S1074-7613(00)80581-6
-
(1998)
Immunity
, vol.8
, pp. 761-769
-
-
Nishikawa, S.1
Nishikawa, S.I.2
Kawamoto, H.3
Yoshida, H.4
Kizumoto, M.5
Kataoka, H.6
Katsura, Y.7
-
12
-
-
0031696447
-
Intraaortic hemopoietic cells are derived from endothelial cells during ontogeny
-
9778515
-
T.Jaffredo, R.Gautier, A.Eichmann, F.Dieterlen-Lièvre. Intraaortic hemopoietic cells are derived from endothelial cells during ontogeny. Development 1998; 125:4575-83; PMID:9778515
-
(1998)
Development
, vol.125
, pp. 4575-4583
-
-
Jaffredo, T.1
Gautier, R.2
Eichmann, A.3
Dieterlen-Lièvre, F.4
-
13
-
-
56549101520
-
Fate tracing reveals the endothelial origin of hematopoietic stem cells
-
19041779
-
A.C.Zovein, J.J.Hofmann, M.Lynch, W.J.French, K.A.Turlo, Y.Yang, M.S.Becker, L.Zanetta, E.Dejana, J.C.Gasson, et al. Fate tracing reveals the endothelial origin of hematopoietic stem cells. Cell Stem Cell 2008; 3:625-36; PMID:19041779; http://dx.doi.org/10.1016/j.stem.2008.09.018
-
(2008)
Cell Stem Cell
, vol.3
, pp. 625-636
-
-
Zovein, A.C.1
Hofmann, J.J.2
Lynch, M.3
French, W.J.4
Turlo, K.A.5
Yang, Y.6
Becker, M.S.7
Zanetta, L.8
Dejana, E.9
Gasson, J.C.10
-
14
-
-
0035135174
-
Requirement of Runx1/AML1/PEBP2alphaB for the generation of hematopoietic cells from endothelial cells
-
11168593
-
T.Yokomizo, M.Ogawa, M.Osato, T.Kanno, H.Yoshida, T.Fujimoto, S.Fraser, S.Nishikawa, H.Okada, M.Satake, et al. Requirement of Runx1/AML1/PEBP2alphaB for the generation of hematopoietic cells from endothelial cells. Genes Cells 2001; 6:13-23; PMID:11168593; http://dx.doi.org/10.1046/j.1365-2443.2001.00393.x
-
(2001)
Genes Cells
, vol.6
, pp. 13-23
-
-
Yokomizo, T.1
Ogawa, M.2
Osato, M.3
Kanno, T.4
Yoshida, H.5
Fujimoto, T.6
Fraser, S.7
Nishikawa, S.8
Okada, H.9
Satake, M.10
-
15
-
-
77949911441
-
In vivo imaging of hematopoietic cells emerging from the mouse aortic endothelium
-
20154729
-
J.C.Boisset, W.van Cappellen, C.Andrieu-Soler, N.Galjart, E.A.Dzierzak, C.Robin. In vivo imaging of hematopoietic cells emerging from the mouse aortic endothelium. Nature 2010; 464:116-20; PMID:20154729; http://dx.doi.org/10.1038/nature08764
-
(2010)
Nature
, vol.464
, pp. 116-120
-
-
Boisset, J.C.1
van Cappellen, W.2
Andrieu-Soler, C.3
Galjart, N.4
Dzierzak, E.A.5
Robin, C.6
-
16
-
-
77949895151
-
Haematopoietic stem cells derive directly from aortic endothelium during development
-
20154733
-
J.Y.Bertrand, N.C.Chi, B.Santoso, S.Teng, D.Y.Stainier, D.Traver. Haematopoietic stem cells derive directly from aortic endothelium during development. Nature 2010; 464:108-11; PMID:20154733; http://dx.doi.org/10.1038/nature08738
-
(2010)
Nature
, vol.464
, pp. 108-111
-
-
Bertrand, J.Y.1
Chi, N.C.2
Santoso, B.3
Teng, S.4
Stainier, D.Y.5
Traver, D.6
-
17
-
-
77949903295
-
Blood stem cells emerge from aortic endothelium by a novel type of cell transition
-
20154732
-
K.Kissa, P.Herbomel. Blood stem cells emerge from aortic endothelium by a novel type of cell transition. Nature 2010; 464:112-5; PMID:20154732; http://dx.doi.org/10.1038/nature08761
-
(2010)
Nature
, vol.464
, pp. 112-115
-
-
Kissa, K.1
Herbomel, P.2
-
18
-
-
77956544161
-
Live imaging of Runx1 expression in the dorsal aorta tracks the emergence of blood progenitors from endothelial cells
-
20453160
-
E.Y.Lam, C.J.Hall, P.S.Crosier, K.E.Crosier, M.V.Flores. Live imaging of Runx1 expression in the dorsal aorta tracks the emergence of blood progenitors from endothelial cells. Blood 2010; 116:909-14; PMID:20453160; http://dx.doi.org/10.1182/blood-2010-01-264382
-
(2010)
Blood
, vol.116
, pp. 909-914
-
-
Lam, E.Y.1
Hall, C.J.2
Crosier, P.S.3
Crosier, K.E.4
Flores, M.V.5
-
19
-
-
77955444367
-
Imaging the founder of adult hematopoiesis in the mouse embryo aorta
-
21081839
-
J.C.Boisset, C.Robin. Imaging the founder of adult hematopoiesis in the mouse embryo aorta. Cell Cycle 2010; 9:2489-90; PMID:21081839; http://dx.doi.org/10.4161/cc.9.13.12319
-
(2010)
Cell Cycle
, vol.9
, pp. 2489-2490
-
-
Boisset, J.C.1
Robin, C.2
-
21
-
-
60149110371
-
The haemangioblast generates hematopoietic cells through a haemogenic endothelium stage
-
19182774
-
C.Lancrin, P.Sroczynska, C.Stephenson, T.Allen, V.Kouskoff, G.Lacaud. The haemangioblast generates hematopoietic cells through a haemogenic endothelium stage. Nature 2009; 457:892-5; PMID:19182774; http://dx.doi.org/10.1038/nature07679
-
(2009)
Nature
, vol.457
, pp. 892-895
-
-
Lancrin, C.1
Sroczynska, P.2
Stephenson, C.3
Allen, T.4
Kouskoff, V.5
Lacaud, G.6
-
22
-
-
65649113629
-
In vitro differentiation of mouse embryonic stem cells as a model of early hematopoietic development
-
PMID:19277585
-
P.Sroczynska, C.Lancrin, S.Pearson, V.Kouskoff, G.Lacaud. In vitro differentiation of mouse embryonic stem cells as a model of early hematopoietic development. Methods Mol Biol 2009; 538:317-34; PMID:19277585; http://dx.doi.org/10.1007/978-1-59745-418-6_16
-
(2009)
Methods Mol Biol
, vol.538
, pp. 317-334
-
-
Sroczynska, P.1
Lancrin, C.2
Pearson, S.3
Kouskoff, V.4
Lacaud, G.5
-
23
-
-
84924593916
-
In vivo repopulating activity emerges at the onset of hematopoietic specification during embryonic stem cell differentiation
-
25660408
-
S.Pearson, S.Cuvertino, M.Fleury, G.Lacaud, V.Kouskoff. In vivo repopulating activity emerges at the onset of hematopoietic specification during embryonic stem cell differentiation. Stem Cell Reports 2015; 4:431-44; PMID:25660408; http://dx.doi.org/10.1016/j.stemcr.2015.01.003
-
(2015)
Stem Cell Reports
, vol.4
, pp. 431-444
-
-
Pearson, S.1
Cuvertino, S.2
Fleury, M.3
Lacaud, G.4
Kouskoff, V.5
-
24
-
-
0034214284
-
Definitive hematopoietic stem cells first develop within the major arterial regions of the mouse embryo
-
10835345
-
M.F.T.R.de Bruijn, N.A.Speck, M.C.Peeters, E.A.Dzierzak. Definitive hematopoietic stem cells first develop within the major arterial regions of the mouse embryo. EMBO J 2000; 19:2465-74; PMID:10835345; http://dx.doi.org/10.1093/emboj/19.11.2465
-
(2000)
EMBO J
, vol.19
, pp. 2465-2474
-
-
de Bruijn, M.F.T.R.1
Speck, N.A.2
Peeters, M.C.3
Dzierzak, E.A.4
-
25
-
-
84886261115
-
Mouse extra-embryonic arterial vessels harbor precursors capable of maturing into definitive HSCs
-
23863896
-
S.Gordon-Keylock, M.Sobiesiak, S.Rybtsov, K.Moore, A.J.Medvinsky. Mouse extra-embryonic arterial vessels harbor precursors capable of maturing into definitive HSCs. Blood 2013; 122(14):2338-45; PMID:23863896; http://dx.doi.org/10.1182/blood-2012-12-470971
-
(2013)
Blood
, vol.122
, Issue.14
, pp. 2338-2345
-
-
Gordon-Keylock, S.1
Sobiesiak, M.2
Rybtsov, S.3
Moore, K.4
Medvinsky, A.J.5
-
26
-
-
34547174800
-
Functional identification of the hematopoietic stem cell niche in the ventral domain of the embryonic dorsal aorta
-
17517650
-
S.Taoudi, A.J.Medvinsky. Functional identification of the hematopoietic stem cell niche in the ventral domain of the embryonic dorsal aorta. Proc Natl Acad Sci USA 2007; 104:9399-403; PMID:17517650; http://dx.doi.org/10.1073/pnas.0700984104
-
(2007)
Proc Natl Acad Sci USA
, vol.104
, pp. 9399-9403
-
-
Taoudi, S.1
Medvinsky, A.J.2
-
27
-
-
77951204123
-
Blood cell generation from the hemangioblast
-
19856139
-
C.Lancrin, P.Sroczynska, A.G.Serrano, A.Gandillet, C.Ferreras, V.Kouskoff, G.Lacaud. Blood cell generation from the hemangioblast. J Mol Med 2010; 88:167-72; PMID:19856139; http://dx.doi.org/10.1007/s00109-009-0554-0
-
(2010)
J Mol Med
, vol.88
, pp. 167-172
-
-
Lancrin, C.1
Sroczynska, P.2
Serrano, A.G.3
Gandillet, A.4
Ferreras, C.5
Kouskoff, V.6
Lacaud, G.7
-
28
-
-
18844396119
-
Embryonic stem cell differentiation: emergence of a new era in biology and medicine
-
15905405
-
G.M.Keller. Embryonic stem cell differentiation:emergence of a new era in biology and medicine. Genes Dev 2005; 19:1129-55; PMID:15905405; http://dx.doi.org/10.1101/gad.1303605
-
(2005)
Genes Dev
, vol.19
, pp. 1129-1155
-
-
Keller, G.M.1
-
29
-
-
84915791031
-
Direct reprogramming of murine fibroblasts to hematopoietic progenitor cells
-
K.Batta, M.Florkowska, V.Kouskoff, G.Lacaud. Direct reprogramming of murine fibroblasts to hematopoietic progenitor cells. CellReports 2014; 9:1871-84
-
(2014)
CellReports
, vol.9
, pp. 1871-1884
-
-
Batta, K.1
Florkowska, M.2
Kouskoff, V.3
Lacaud, G.4
-
30
-
-
84881149632
-
Induction of a hemogenic program in mouse fibroblasts
-
23770078
-
C.F.Pereira, B.Chang, J.Qiu, X.Niu, D.Papatsenko, C.E.Hendry, N.R.Clark, A.Nomura-Kitabayashi, J.C.Kovacic, A.Ma'ayan, et al. Induction of a hemogenic program in mouse fibroblasts. Cell Stem Cell 2013; 13:205-18; PMID:23770078; http://dx.doi.org/10.1016/j.stem.2013.05.024
-
(2013)
Cell Stem Cell
, vol.13
, pp. 205-218
-
-
Pereira, C.F.1
Chang, B.2
Qiu, J.3
Niu, X.4
Papatsenko, D.5
Hendry, C.E.6
Clark, N.R.7
Nomura-Kitabayashi, A.8
Kovacic, J.C.9
Ma'ayan, A.10
-
31
-
-
84896884486
-
There will be blood” from fibroblasts
-
C.F.Pereira, I.R.Lemischka, K.A.Moore. “There will be blood” from fibroblasts. Cell Cycle 2014; 13:0-1; http://dx.doi.org/10.4161/cc.27507
-
(2014)
Cell Cycle
, vol.13
, pp. 0-1
-
-
Pereira, C.F.1
Lemischka, I.R.2
Moore, K.A.3
-
32
-
-
60149100010
-
Runx1 is required for the endothelial to hematopoietic cell transition but not thereafter
-
19129762
-
M.J.Chen, T.Yokomizo, B.M.Zeigler, E.A.Dzierzak, N.A.Speck. Runx1 is required for the endothelial to hematopoietic cell transition but not thereafter. Nature 2009; 457:887-91; PMID:19129762; http://dx.doi.org/10.1038/nature07619
-
(2009)
Nature
, vol.457
, pp. 887-891
-
-
Chen, M.J.1
Yokomizo, T.2
Zeigler, B.M.3
Dzierzak, E.A.4
Speck, N.A.5
-
33
-
-
0033036971
-
Cbfa2 is required for the formation of intra-aortic hematopoietic clusters
-
10226014
-
T.North, T.L.Gu, T.Stacy, Q.Wang, L.Howard, M.Binder, M.Marín-Padilla, N.A.Speck. Cbfa2 is required for the formation of intra-aortic hematopoietic clusters. Development 1999; 126:2563-75; PMID:10226014
-
(1999)
Development
, vol.126
, pp. 2563-2575
-
-
North, T.1
Gu, T.L.2
Stacy, T.3
Wang, Q.4
Howard, L.5
Binder, M.6
Marín-Padilla, M.7
Speck, N.A.8
-
34
-
-
0037100461
-
Runx1 is essential for hematopoietic commitment at the hemangioblast stage of development in vitro
-
12091336
-
G.Lacaud, L.Gore, M.Kennedy, V.Kouskoff, P.D.Kingsley, C.Hogan, L.Carlsson, N.A.Speck, J.Palis, G.M.Keller. Runx1 is essential for hematopoietic commitment at the hemangioblast stage of development in vitro. Blood 2002; 100:458-66; PMID:12091336; http://dx.doi.org/10.1182/blood-2001-12-0321
-
(2002)
Blood
, vol.100
, pp. 458-466
-
-
Lacaud, G.1
Gore, L.2
Kennedy, M.3
Kouskoff, V.4
Kingsley, P.D.5
Hogan, C.6
Carlsson, L.7
Speck, N.A.8
Palis, J.9
Keller, G.M.10
-
35
-
-
13244277465
-
Runx1/AML-1 ranks as a master regulator of adult hematopoiesis
-
15213471
-
M.Ichikawa, T.Asai, S.Chiba, M.Kurokawa, S.Ogawa. Runx1/AML-1 ranks as a master regulator of adult hematopoiesis. Cell Cycle 2004; 3:722-4; PMID:15213471; http://dx.doi.org/10.4161/cc.3.6.951
-
(2004)
Cell Cycle
, vol.3
, pp. 722-724
-
-
Ichikawa, M.1
Asai, T.2
Chiba, S.3
Kurokawa, M.4
Ogawa, S.5
-
36
-
-
77949903295
-
Blood stem cells emerge from aortic endothelium by a novel type of cell transition
-
20154732
-
K.Kissa, P.Herbomel. Blood stem cells emerge from aortic endothelium by a novel type of cell transition. Nature 2010; 464:112-5; PMID:20154732; http://dx.doi.org/10.1038/nature08761
-
(2010)
Nature
, vol.464
, pp. 112-115
-
-
Kissa, K.1
Herbomel, P.2
-
37
-
-
84864073523
-
GFI1 and GFI1B control the loss of endothelial identity of hemogenic endothelium during hematopoietic commitment
-
22668850
-
C.Lancrin, M.Mazan, M.Mazan, M.Stefanska, R.Patel, R.Patel, M.Lichtinger, G.Costa, O.Vargel, O.Vargel, et al. GFI1 and GFI1B control the loss of endothelial identity of hemogenic endothelium during hematopoietic commitment. Blood 2012; 120:314-22; PMID:22668850; http://dx.doi.org/10.1182/blood-2011-10-386094
-
(2012)
Blood
, vol.120
, pp. 314-322
-
-
Lancrin, C.1
Mazan, M.2
Mazan, M.3
Stefanska, M.4
Patel, R.5
Patel, R.6
Lichtinger, M.7
Costa, G.8
Vargel, O.9
Vargel, O.10
-
38
-
-
77954071946
-
Gfi1-cells and circuits: unraveling transcriptional networks of development and disease
-
20571393
-
J.Phelan, N.Shroyer, T.Cook, B.Gebelein, H.Grimes. Gfi1-cells and circuits:unraveling transcriptional networks of development and disease. Curr Opin Hematol 2010; 17:300; PMID:20571393; http://dx.doi.org/10.1097/MOH.0b013e32833a06f8
-
(2010)
Curr Opin Hematol
, vol.17
, pp. 300
-
-
Phelan, J.1
Shroyer, N.2
Cook, T.3
Gebelein, B.4
Grimes, H.5
-
39
-
-
78149471436
-
Gfi1 and Gfi1b: key regulators of hematopoiesis
-
20861919
-
L.van der Meer, J.Jansen, B.van der Reijden. Gfi1 and Gfi1b:key regulators of hematopoiesis. Leukemia 2010; 24(11):1834-43; PMID:20861919; http://dx.doi.org/10.1038/leu.2010.195
-
(2010)
Leukemia
, vol.24
, Issue.11
, pp. 1834-1843
-
-
van der Meer, L.1
Jansen, J.2
van der Reijden, B.3
-
40
-
-
0142180052
-
Gfi-1 oncoproteins in hematopoiesis
-
14530176
-
Z.Duan, M.Horwitz. Gfi-1 oncoproteins in hematopoiesis. Hematology 2003; 8:339-44; PMID:14530176; http://dx.doi.org/10.1080/10245330310001612116
-
(2003)
Hematology
, vol.8
, pp. 339-344
-
-
Duan, Z.1
Horwitz, M.2
-
41
-
-
0036510161
-
Inflammatory reactions and severe neutropenia in mice lacking the transcriptional repressor Gfi1
-
11810106
-
H.Karsunky, H.Zeng, T.Schmidt, B.Zevnik, R.Kluge, K.W.Schmid, U.Dührsen, T.Möröy. Inflammatory reactions and severe neutropenia in mice lacking the transcriptional repressor Gfi1. Nat Genet 2002; 30:295-300; PMID:11810106; http://dx.doi.org/10.1038/ng831
-
(2002)
Nat Genet
, vol.30
, pp. 295-300
-
-
Karsunky, H.1
Zeng, H.2
Schmidt, T.3
Zevnik, B.4
Kluge, R.5
Schmid, K.W.6
Dührsen, U.7
Möröy, T.8
-
42
-
-
0037244284
-
Intrinsic requirement for zinc finger transcription factor Gfi-1 in neutrophil differentiation
-
12530980
-
H.Hock, M.J.Hamblen, H.M.Rooke, D.Traver, R.T.Bronson, S.Cameron, S.Orkin. Intrinsic requirement for zinc finger transcription factor Gfi-1 in neutrophil differentiation. Immunity 2003; 18:109-20; PMID:12530980; http://dx.doi.org/10.1016/S1074-7613(02)00501-0
-
(2003)
Immunity
, vol.18
, pp. 109-120
-
-
Hock, H.1
Hamblen, M.J.2
Rooke, H.M.3
Traver, D.4
Bronson, R.T.5
Cameron, S.6
Orkin, S.7
-
43
-
-
7244231429
-
Gfi-1 restricts proliferation and preserves functional integrity of hematopoietic stem cells
-
15457180
-
H.Hock, M.J.Hamblen, H.M.Rooke, J.W.Schindler, S.Saleque, Y.Fujiwara, S.Orkin. Gfi-1 restricts proliferation and preserves functional integrity of hematopoietic stem cells. Nature 2004; 431:1002-7; PMID:15457180; http://dx.doi.org/10.1038/nature02994
-
(2004)
Nature
, vol.431
, pp. 1002-1007
-
-
Hock, H.1
Hamblen, M.J.2
Rooke, H.M.3
Schindler, J.W.4
Saleque, S.5
Fujiwara, Y.6
Orkin, S.7
-
44
-
-
8144220648
-
Transcription factor Gfi1 regulates self-renewal and engraftment of hematopoietic stem cells
-
15385956
-
H.Zeng, R.Yücel, C.Kosan, L.Klein-Hitpass, T.Möröy. Transcription factor Gfi1 regulates self-renewal and engraftment of hematopoietic stem cells. EMBO J 2004; 23:4116-25; PMID:15385956; http://dx.doi.org/10.1038/sj.emboj.7600419
-
(2004)
EMBO J
, vol.23
, pp. 4116-4125
-
-
Zeng, H.1
Yücel, R.2
Kosan, C.3
Klein-Hitpass, L.4
Möröy, T.5
-
45
-
-
33947251378
-
Gfi1b:green fluorescent protein knock-in mice reveal a dynamic expression pattern of Gfi1b during hematopoiesis that is largely complementary to Gfi1
-
17095621
-
L.Vassen, T.Okayama, T.Möröy. Gfi1b:green fluorescent protein knock-in mice reveal a dynamic expression pattern of Gfi1b during hematopoiesis that is largely complementary to Gfi1. Blood 2007; 109:2356-64; PMID:17095621; http://dx.doi.org/10.1182/blood-2006-06-030031
-
(2007)
Blood
, vol.109
, pp. 2356-2364
-
-
Vassen, L.1
Okayama, T.2
Möröy, T.3
-
46
-
-
84952636556
-
GFI1 proteins orchestrate the emergence of hematopoietic stem cells through recruitment of LSD1
-
26619147
-
R.Thambyrajah, M.Mazan, M.Mazan, R.Patel, R.Patel, V.Moignard, M.Stefanska, E.Marinopoulou, E.Marinopoulou, Y.Li, et al. GFI1 proteins orchestrate the emergence of hematopoietic stem cells through recruitment of LSD1. Nat Cell Biol 2016; 18:21-32; PMID:26619147; http://dx.doi.org/10.1038/ncb3276
-
(2016)
Nat Cell Biol
, vol.18
, pp. 21-32
-
-
Thambyrajah, R.1
Mazan, M.2
Mazan, M.3
Patel, R.4
Patel, R.5
Moignard, V.6
Stefanska, M.7
Marinopoulou, E.8
Marinopoulou, E.9
Li, Y.10
-
47
-
-
0030061554
-
AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis
-
8565077
-
T.Okuda, J.van Deursen, S.W.Hiebert, G.Grosveld, J.R.Downing. AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell 1996; 84:321-30; PMID:8565077; http://dx.doi.org/10.1016/S0092-8674(00)80986-1
-
(1996)
Cell
, vol.84
, pp. 321-330
-
-
Okuda, T.1
van Deursen, J.2
Hiebert, S.W.3
Grosveld, G.4
Downing, J.R.5
-
48
-
-
0030588487
-
The CBFbeta subunit is essential for CBFalpha2 (AML1) function in vivo
-
8929538
-
Q.Wang, T.Stacy, J.D.Miller, A.F.Lewis, T.L.Gu, X.Huang, J.H.Bushweller, J.C.Bories, F.W.Alt, G.Ryan, et al. The CBFbeta subunit is essential for CBFalpha2 (AML1) function in vivo. Cell 1996; 87:697-708; PMID:8929538; http://dx.doi.org/10.1016/S0092-8674(00)81389-6
-
(1996)
Cell
, vol.87
, pp. 697-708
-
-
Wang, Q.1
Stacy, T.2
Miller, J.D.3
Lewis, A.F.4
Gu, T.L.5
Huang, X.6
Bushweller, J.H.7
Bories, J.C.8
Alt, F.W.9
Ryan, G.10
-
49
-
-
4944267210
-
Growth factor Independence-1 is expressed in primary human neuroendocrine lung carcinomas and mediates the differentiation of murine pulmonary neuroendocrine cells
-
15466176
-
A.Kazanjian. Growth factor Independence-1 is expressed in primary human neuroendocrine lung carcinomas and mediates the differentiation of murine pulmonary neuroendocrine cells. Cancer Res 2004; 64:6874-82; PMID:15466176; http://dx.doi.org/10.1158/0008-5472.CAN-04-0633
-
(2004)
Cancer Res
, vol.64
, pp. 6874-6882
-
-
Kazanjian, A.1
-
50
-
-
79952138371
-
Growth factor independence 1 protects hematopoietic stem cells against apoptosis but also prevents the development of a myeloproliferative-like disease
-
21732494
-
C.Khandanpour, C.Kosan, M.-C.Gaudreau, U.Dührsen, J.Hébert, H.Zeng, T.Möröy. Growth factor independence 1 protects hematopoietic stem cells against apoptosis but also prevents the development of a myeloproliferative-like disease. Stem Cells 2011; 29:376-85; PMID:21732494; http://dx.doi.org/10.1002/stem.575
-
(2011)
Stem Cells
, vol.29
, pp. 376-385
-
-
Khandanpour, C.1
Kosan, C.2
Gaudreau, M.-C.3
Dührsen, U.4
Hébert, J.5
Zeng, H.6
Möröy, T.7
-
51
-
-
0036467868
-
The zinc-finger proto-oncogene Gfi-1b is essential for development of the erythroid and megakaryocytic lineages
-
11825872
-
S.Saleque, S.Orkin, S.Cameron. The zinc-finger proto-oncogene Gfi-1b is essential for development of the erythroid and megakaryocytic lineages. Genes Dev 2002; 16:301-6; PMID:11825872; http://dx.doi.org/10.1101/gad.959102
-
(2002)
Genes Dev
, vol.16
, pp. 301-306
-
-
Saleque, S.1
Orkin, S.2
Cameron, S.3
-
52
-
-
33645766023
-
Gfi1 and Gfi1b act equivalently in haematopoiesis, but have distinct, non-overlapping functions in inner ear development
-
16397623
-
K.Fiolka, R.Hertzano, L.Vassen, H.Zeng, O.Hermesh, K.B.Avraham, U.Dührsen, T.Möröy. Gfi1 and Gfi1b act equivalently in haematopoiesis, but have distinct, non-overlapping functions in inner ear development. EMBO Rep 2006; 7:326-33; PMID:16397623; http://dx.doi.org/10.1038/sj.embor.7400618
-
(2006)
EMBO Rep
, vol.7
, pp. 326-333
-
-
Fiolka, K.1
Hertzano, R.2
Vassen, L.3
Zeng, H.4
Hermesh, O.5
Avraham, K.B.6
Dührsen, U.7
Möröy, T.8
-
53
-
-
14244258985
-
Direct transcriptional repression of the genes encoding the zinc-finger proteins Gfi1b and Gfi1 by Gfi1b
-
15718298
-
L.Vassen, K.Fiolka, S.Mahlmann, T.Möröy. Direct transcriptional repression of the genes encoding the zinc-finger proteins Gfi1b and Gfi1 by Gfi1b. Nucleic Acids Res 2005; 33:987-98; PMID:15718298; http://dx.doi.org/10.1093/nar/gki243
-
(2005)
Nucleic Acids Res
, vol.33
, pp. 987-998
-
-
Vassen, L.1
Fiolka, K.2
Mahlmann, S.3
Möröy, T.4
-
54
-
-
2442599107
-
Targeted transcriptional repression of Gfi1 by GFI1 and GFI1B in lymphoid cells
-
15131254
-
L.L.Doan, S.D.Porter, Z.Duan, M.M.Flubacher, D.Montoya, P.N.Tsichlis, M.Horwitz, C.B.Gilks, H.L.Grimes. Targeted transcriptional repression of Gfi1 by GFI1 and GFI1B in lymphoid cells. Nucleic Acids Res 2004; 32:2508-19; PMID:15131254; http://dx.doi.org/10.1093/nar/gkh570
-
(2004)
Nucleic Acids Res
, vol.32
, pp. 2508-2519
-
-
Doan, L.L.1
Porter, S.D.2
Duan, Z.3
Flubacher, M.M.4
Montoya, D.5
Tsichlis, P.N.6
Horwitz, M.7
Gilks, C.B.8
Grimes, H.L.9
-
55
-
-
4644272644
-
Gfi1:green fluorescent protein knock-in mutant reveals differential expression and autoregulation of the growth factor independence 1 (Gfi1) gene during lymphocyte development
-
15252036
-
R.Yücel, C.Kosan, F.Heyd, T.Möröy. Gfi1:green fluorescent protein knock-in mutant reveals differential expression and autoregulation of the growth factor independence 1 (Gfi1) gene during lymphocyte development. J Biol Chem 2004; 279:40906-17; PMID:15252036; http://dx.doi.org/10.1074/jbc.M400808200
-
(2004)
J Biol Chem
, vol.279
, pp. 40906-40917
-
-
Yücel, R.1
Kosan, C.2
Heyd, F.3
Möröy, T.4
-
56
-
-
73949140773
-
GFI1B controls its own expression binding to multiple sites
-
19773260
-
E.Anguita, A.Villegas, F.Iborra, A.Hernandez. GFI1B controls its own expression binding to multiple sites. Haematologica 2010; 95:36; PMID:19773260; http://dx.doi.org/10.3324/haematol.2009.012351
-
(2010)
Haematologica
, vol.95
, pp. 36
-
-
Anguita, E.1
Villegas, A.2
Iborra, F.3
Hernandez, A.4
-
57
-
-
24944569193
-
GATA-1 mediates auto-regulation of Gfi-1B transcription in K562 cells
-
16177182
-
D.-Y.Huang, Y.-Y.Kuo, Z.-F.Chang. GATA-1 mediates auto-regulation of Gfi-1B transcription in K562 cells. Nucleic Acids Res 2005; 33:5331-42; PMID:16177182; http://dx.doi.org/10.1093/nar/gki838
-
(2005)
Nucleic Acids Res
, vol.33
, pp. 5331-5342
-
-
Huang, D.-Y.1
Kuo, Y.-Y.2
Chang, Z.-F.3
-
58
-
-
78650049003
-
Evidence that Growth factor independence 1b (Gfi1b) regulates dormancy and peripheral blood mobilization of hematopoietic stem cells
-
20826720
-
C.Khandanpour, E.Sharif-Askari, L.Vassen, L.Vassen. Evidence that Growth factor independence 1b (Gfi1b) regulates dormancy and peripheral blood mobilization of hematopoietic stem cells. Blood 2010; 116(24):5149-61; PMID:20826720; http://dx.doi.org/10.1182/blood-2010-04-280305
-
(2010)
Blood
, vol.116
, Issue.24
, pp. 5149-5161
-
-
Khandanpour, C.1
Sharif-Askari, E.2
Vassen, L.3
Vassen, L.4
-
59
-
-
34547785073
-
Epigenetic regulation of hematopoietic differentiation by Gfi-1 and Gfi-1b is mediated by the cofactors CoREST and LSD1
-
17707228
-
S.Saleque, S.Orkin, J.Kim, H.M.Rooke. Epigenetic regulation of hematopoietic differentiation by Gfi-1 and Gfi-1b is mediated by the cofactors CoREST and LSD1. Molecular Cell 2007; 27:562-72; PMID:17707228; http://dx.doi.org/10.1016/j.molcel.2007.06.039
-
(2007)
Molecular Cell
, vol.27
, pp. 562-572
-
-
Saleque, S.1
Orkin, S.2
Kim, J.3
Rooke, H.M.4
-
60
-
-
84872155381
-
Differential Transcriptional Regulation of meis1 by Gfi1b and Its Co-Factors LSD1 and CoREST
-
23308270
-
A.H.Chowdhury, J.R.Ramroop, G.Upadhyay, A.Sengupta, A.Andrzejczyk, S.Saleque. Differential Transcriptional Regulation of meis1 by Gfi1b and Its Co-Factors LSD1 and CoREST. PLoS One 2013; 8:e53666; PMID:23308270; http://dx.doi.org/10.1371/journal.pone.0053666
-
(2013)
PLoS One
, vol.8
, pp. 53666
-
-
Chowdhury, A.H.1
Ramroop, J.R.2
Upadhyay, G.3
Sengupta, A.4
Andrzejczyk, A.5
Saleque, S.6
-
61
-
-
84878273525
-
The physiological roles of histone deacetylase (HDAC) 1 and 2: complex co-stars with multiple leading parts
-
23697933
-
R.D.Kelly, S.M.Cowley. The physiological roles of histone deacetylase (HDAC) 1 and 2:complex co-stars with multiple leading parts. Biochem Soc Trans 2013; 41:741-9; PMID:23697933; http://dx.doi.org/10.1042/BST20130010
-
(2013)
Biochem Soc Trans
, vol.41
, pp. 741-749
-
-
Kelly, R.D.1
Cowley, S.M.2
-
62
-
-
78049357469
-
Lysine-specific demethylase 1 regulates the embryonic transcriptome and CoREST stability
-
20713442
-
C.T.Foster, O.M.Dovey, L.Lezina, J.L.Luo, T.W.Gant, N.Barlev, A.Bradley, S.M.Cowley. Lysine-specific demethylase 1 regulates the embryonic transcriptome and CoREST stability. Mol Cell Biol 2010; 30:4851-63; PMID:20713442; http://dx.doi.org/10.1128/MCB.00521-10
-
(2010)
Mol Cell Biol
, vol.30
, pp. 4851-4863
-
-
Foster, C.T.1
Dovey, O.M.2
Lezina, L.3
Luo, J.L.4
Gant, T.W.5
Barlev, N.6
Bradley, A.7
Cowley, S.M.8
-
63
-
-
84908653395
-
RUNX1 positively regulates a cell adhesion and migration program in murine hemogenic endothelium prior to blood emergence
-
25082880
-
M.Lie-A-Ling, E.Marinopoulou, Y.Li, R.Patel, M.Stefanska, C.Bonifer, C.Miller, V.Kouskoff, G.Lacaud. RUNX1 positively regulates a cell adhesion and migration program in murine hemogenic endothelium prior to blood emergence. Blood 2014; 124(11):e11-20; PMID:25082880; http://dx.doi.org/10.1182/blood-2014-04-572958
-
(2014)
Blood
, vol.124
, Issue.11
, pp. e11-e20
-
-
Lie-A-Ling, M.1
Marinopoulou, E.2
Li, Y.3
Patel, R.4
Stefanska, M.5
Bonifer, C.6
Miller, C.7
Kouskoff, V.8
Lacaud, G.9
-
64
-
-
0034007256
-
Identification of in vivo DNA targets of chromatin proteins using tethered dam methyltransferase
-
B.van Steensel, S.Henikoff. Identification of in vivo DNA targets of chromatin proteins using tethered dam methyltransferase. Nat Biotech 2000; 18:424-8; ; http://dx.doi.org/10.1038/74487
-
(2000)
Nat Biotech
, vol.18
, pp. 424-428
-
-
van Steensel, B.1
Henikoff, S.2
-
65
-
-
84859608557
-
Hematopoietic stem cells: to be or Notch to be
-
22308291
-
A.Bigas, L.Espinosa. Hematopoietic stem cells:to be or Notch to be. Blood 2012; PMID:22308291
-
(2012)
Blood
-
-
Bigas, A.1
Espinosa, L.2
-
66
-
-
84976649752
-
Endothelial-to-hematopoietic transition: Notch-ing vessels into blood
-
D.Kanz, M.Konantz, E.Alghisi, T.E.North, C.Lengerke. Endothelial-to-hematopoietic transition:Notch-ing vessels into blood. Annals N York Acad Sci 2016; 1370(1):97-108; PMID:27015586; http://dx.doi.org/10.1111/nyas.13030
-
(2016)
Annals N York Acad Sci
, vol.1370
, Issue.1
, pp. 97-108
-
-
Kanz, D.1
Konantz, M.2
Alghisi, E.3
North, T.E.4
Lengerke, C.5
-
67
-
-
73949153461
-
Notch signalling and hematopoietic stem cell formation during embryogenesis
-
19725072
-
M.Gering, R.Patient. Notch signalling and hematopoietic stem cell formation during embryogenesis. J Cell Physiol 2010; 222:11-6; PMID:19725072; http://dx.doi.org/10.1002/jcp.21905
-
(2010)
J Cell Physiol
, vol.222
, pp. 11-16
-
-
Gering, M.1
Patient, R.2
-
68
-
-
84904439259
-
Reprogramming human endothelial cells to hematopoietic cells requires vascular induction
-
25030167
-
V.M.Sandler, V.M.Sandler, V.M.Sandler, R.Lis, Y.Liu, A.Kedem, D.James, O.Elemento, J.M.Butler, J.M.Scandura, et al. Reprogramming human endothelial cells to hematopoietic cells requires vascular induction. Nature 2014; 511:312-8; PMID:25030167; http://dx.doi.org/10.1038/nature13547
-
(2014)
Nature
, vol.511
, pp. 312-318
-
-
Sandler, V.M.1
Sandler, V.M.2
Sandler, V.M.3
Lis, R.4
Liu, Y.5
Kedem, A.6
James, D.7
Elemento, O.8
Butler, J.M.9
Scandura, J.M.10
-
69
-
-
84869232815
-
RUNX1 reshapes the epigenetic landscape at the onset of haematopoiesis
-
1-16, 23064151
-
M.Lichtinger, R.Ingram, R.Hannah, D.Muller, D.Clarke, S.A.Assi, M.Lie-A-Ling, L.Noailles, M.S.Vijayabaskar, M.Wu, et al. RUNX1 reshapes the epigenetic landscape at the onset of haematopoiesis. EMBO J 2012; 31(22):4318-33:1-16; PMID:23064151; http://dx.doi.org/10.1038/emboj.2012.275
-
(2012)
EMBO J
, vol.31
, Issue.22
, pp. 4318-4333
-
-
Lichtinger, M.1
Ingram, R.2
Hannah, R.3
Muller, D.4
Clarke, D.5
Assi, S.A.6
Lie-A-Ling, M.7
Noailles, L.8
Vijayabaskar, M.S.9
Wu, M.10
-
70
-
-
77957348625
-
Combinatorial transcriptional control in blood stem/progenitor cells: genome-wide analysis of ten major transcriptional regulators
-
20887958
-
N.K.Wilson, S.D.Foster, X.Wang, K.Knezevic, J.Schütte, P.Kaimakis, P.M.Chilarska, S.Kinston, W.H.Ouwehand, E.A.Dzierzak, et al. Combinatorial transcriptional control in blood stem/progenitor cells:genome-wide analysis of ten major transcriptional regulators. Cell Stem Cell 2010; 7:532-44; PMID:20887958; http://dx.doi.org/10.1016/j.stem.2010.07.016
-
(2010)
Cell Stem Cell
, vol.7
, pp. 532-544
-
-
Wilson, N.K.1
Foster, S.D.2
Wang, X.3
Knezevic, K.4
Schütte, J.5
Kaimakis, P.6
Chilarska, P.M.7
Kinston, S.8
Ouwehand, W.H.9
Dzierzak, E.A.10
-
71
-
-
67651111994
-
Early chromatin unfolding by RUNX1: a molecular explanation for differential requirements during specification versus maintenance of the hematopoietic gene expression program
-
19339695
-
M.Hoogenkamp, M.Lichtinger, H.Krysinska, C.Lancrin, D.Clarke, A.Williamson, L.Mazzarella, R.Ingram, H.Jorgensen, A.G.Fisher, et al. Early chromatin unfolding by RUNX1:a molecular explanation for differential requirements during specification versus maintenance of the hematopoietic gene expression program. Blood 2009; 114:299-309; PMID:19339695; http://dx.doi.org/10.1182/blood-2008-11-191890
-
(2009)
Blood
, vol.114
, pp. 299-309
-
-
Hoogenkamp, M.1
Lichtinger, M.2
Krysinska, H.3
Lancrin, C.4
Clarke, D.5
Williamson, A.6
Mazzarella, L.7
Ingram, R.8
Jorgensen, H.9
Fisher, A.G.10
-
72
-
-
84890649933
-
Early dynamic fate changes in haemogenic endothelium characterized at the single-cell level
-
24326267
-
G.Swiers, C.Baumann, J.O'Rourke, J.O'Rourke, E.Giannoulatou, S.Taylor, A.Joshi, V.Moignard, C.Pina, T.Bee, et al. Early dynamic fate changes in haemogenic endothelium characterized at the single-cell level. Nature Communications 2013; 4:2924; PMID:24326267; http://dx.doi.org/10.1038/ncomms3924
-
(2013)
Nature Communications
, vol.4
, pp. 2924
-
-
Swiers, G.1
Baumann, C.2
O'Rourke, J.3
O'Rourke, J.4
Giannoulatou, E.5
Taylor, S.6
Joshi, A.7
Moignard, V.8
Pina, C.9
Bee, T.10
-
73
-
-
84888045420
-
Smooth muscle cells largely develop independently of functional hemogenic endothelium
-
24270161
-
M.Stefanska, G.Costa, M.Lie-A-Ling, V.Kouskoff, G.Lacaud. Smooth muscle cells largely develop independently of functional hemogenic endothelium. Stem Cell Res 2014; 12:222-32; PMID:24270161; http://dx.doi.org/10.1016/j.scr.2013.10.009
-
(2014)
Stem Cell Res
, vol.12
, pp. 222-232
-
-
Stefanska, M.1
Costa, G.2
Lie-A-Ling, M.3
Kouskoff, V.4
Lacaud, G.5
-
74
-
-
84959327669
-
Dynamic gene regulatory networks drive hematopoietic specification and differentiation
-
26923725
-
D.K.Goode, N.Obier, M.S.Vijayabaskar, M.Lie-A-Ling, A.J.Lilly, R.Hannah, M.Lichtinger, K.Batta, M.Florkowska, R.Patel, et al. Dynamic gene regulatory networks drive hematopoietic specification and differentiation. Dev Cell 2016; 36:572-87; PMID:26923725; http://dx.doi.org/10.1016/j.devcel.2016.01.024
-
(2016)
Dev Cell
, vol.36
, pp. 572-587
-
-
Goode, D.K.1
Obier, N.2
Vijayabaskar, M.S.3
Lie-A-Ling, M.4
Lilly, A.J.5
Hannah, R.6
Lichtinger, M.7
Batta, K.8
Florkowska, M.9
Patel, R.10
-
75
-
-
84886285133
-
ETS transcription factors in hematopoietic stem cell development
-
23927967
-
A.Ciau-Uitz, L.Wang, R.Patient, F.Liu. ETS transcription factors in hematopoietic stem cell development. Blood Cells Mol Dis 2013; 51:248-55; PMID:23927967; http://dx.doi.org/10.1016/j.bcmd.2013.07.010
-
(2013)
Blood Cells Mol Dis
, vol.51
, pp. 248-255
-
-
Ciau-Uitz, A.1
Wang, L.2
Patient, R.3
Liu, F.4
-
76
-
-
49649086600
-
Fli1 acts at the top of the transcriptional network driving blood and endothelial development
-
18718762
-
F.Liu, M.Walmsley, A.Rodaway, R.Patient. Fli1 acts at the top of the transcriptional network driving blood and endothelial development. Curr Biol 2008; 18:1234-40; PMID:18718762; http://dx.doi.org/10.1016/j.cub.2008.07.048
-
(2008)
Curr Biol
, vol.18
, pp. 1234-1240
-
-
Liu, F.1
Walmsley, M.2
Rodaway, A.3
Patient, R.4
-
77
-
-
58149158212
-
Genome-wide analysis of the zebrafish ETS family identifies three genes required for hemangioblast differentiation or angiogenesis
-
18832752
-
F.Liu, R.Patient. Genome-wide analysis of the zebrafish ETS family identifies three genes required for hemangioblast differentiation or angiogenesis. Circulation Res 2008; 103:1147-54; PMID:18832752; http://dx.doi.org/10.1161/CIRCRESAHA.108.179713
-
(2008)
Circulation Res
, vol.103
, pp. 1147-1154
-
-
Liu, F.1
Patient, R.2
-
78
-
-
84862878344
-
The Flk1-Cre-mediated deletion of ETV2 defines its narrow temporal requirement during embryonic hematopoietic development
-
22570122
-
S.Wareing, A.Mazan, S.Pearson, B.Göttgens, G.Lacaud, V.Kouskoff. The Flk1-Cre-mediated deletion of ETV2 defines its narrow temporal requirement during embryonic hematopoietic development. Stem Cells 2012; 30:1521-31; PMID:22570122; http://dx.doi.org/10.1002/stem.1115
-
(2012)
Stem Cells
, vol.30
, pp. 1521-1531
-
-
Wareing, S.1
Mazan, A.2
Pearson, S.3
Göttgens, B.4
Lacaud, G.5
Kouskoff, V.6
-
79
-
-
84455175900
-
Etv2/ER71 induces vascular mesoderm from Flk1+PDGFRα+ primitive mesoderm
-
21911838
-
H.Kataoka, M.Hayashi, R.Nakagawa, Y.Tanaka, N.Izumi, S.Nishikawa, M.L.Jakt, H.Tarui, S.Nishikawa. Etv2/ER71 induces vascular mesoderm from Flk1+PDGFRα+ primitive mesoderm. Blood 2011; 118:6975-86; PMID:21911838; http://dx.doi.org/10.1182/blood-2011-05-352658
-
(2011)
Blood
, vol.118
, pp. 6975-6986
-
-
Kataoka, H.1
Hayashi, M.2
Nakagawa, R.3
Tanaka, Y.4
Izumi, N.5
Nishikawa, S.6
Jakt, M.L.7
Tarui, H.8
Nishikawa, S.9
-
80
-
-
42649138891
-
ER71 acts downstream of BMP, Notch, and Wnt signaling in blood and vessel progenitor specification
-
18462699
-
D.Lee, C.Park, H.Lee, J.J.Lugus, S.H.Kim, E.Arentson, Y.S.Chung, G.Gomez, M.Kyba, S.Lin, et al. ER71 acts downstream of BMP, Notch, and Wnt signaling in blood and vessel progenitor specification. Cell Stem Cell 2008; 2:497-507; PMID:18462699; http://dx.doi.org/10.1016/j.stem.2008.03.008
-
(2008)
Cell Stem Cell
, vol.2
, pp. 497-507
-
-
Lee, D.1
Park, C.2
Lee, H.3
Lugus, J.J.4
Kim, S.H.5
Arentson, E.6
Chung, Y.S.7
Gomez, G.8
Kyba, M.9
Lin, S.10
-
81
-
-
84859607597
-
ER71 specifies Flk-1+ hemangiogenic mesoderm by inhibiting cardiac mesoderm and Wnt signaling
-
22343916
-
F.Liu, I.Kang, C.Park, L.W.Chang, W.Wang, D.Lee, D.S.Lim, D.Vittet, J.M.Nerbonne, K.Choi. ER71 specifies Flk-1+ hemangiogenic mesoderm by inhibiting cardiac mesoderm and Wnt signaling. Blood 2012; 119(14):3295-305; PMID:22343916; http://dx.doi.org/10.1182/blood-2012-01-403766
-
(2012)
Blood
, vol.119
, Issue.14
, pp. 3295-3305
-
-
Liu, F.1
Kang, I.2
Park, C.3
Chang, L.W.4
Wang, W.5
Lee, D.6
Lim, D.S.7
Vittet, D.8
Nerbonne, J.M.9
Choi, K.10
-
82
-
-
84865366974
-
ETV2 expression marks blood and endothelium precursors, including hemogenic endothelium, at the onset of blood development
-
22733530
-
S.Wareing, A.Eliades, G.Lacaud, V.Kouskoff. ETV2 expression marks blood and endothelium precursors, including hemogenic endothelium, at the onset of blood development. Dev Dyn 2012; 241:1454-64; PMID:22733530; http://dx.doi.org/10.1002/dvdy.23825
-
(2012)
Dev Dyn
, vol.241
, pp. 1454-1464
-
-
Wareing, S.1
Eliades, A.2
Lacaud, G.3
Kouskoff, V.4
-
83
-
-
84859317394
-
SOX7 regulates the expression of VE-cadherin in the haemogenic endothelium at the onset of hematopoietic development
-
22492353
-
G.Costa, A.Mazan, A.Gandillet, S.Pearson, G.Lacaud, V.Kouskoff. SOX7 regulates the expression of VE-cadherin in the haemogenic endothelium at the onset of hematopoietic development. Development 2012; 139:1587-98; PMID:22492353; http://dx.doi.org/10.1242/dev.071282
-
(2012)
Development
, vol.139
, pp. 1587-1598
-
-
Costa, G.1
Mazan, A.2
Gandillet, A.3
Pearson, S.4
Lacaud, G.5
Kouskoff, V.6
-
84
-
-
84924353105
-
Decoding the regulatory network of early blood development from single-cell gene expression measurements
-
V.Moignard, S.Woodhouse, L.Haghverdi, A.J.Lilly, Y.Tanaka, A.C.Wilkinson, F.Buettner, I.C.Macaulay, W.Jawaid, E.Diamanti, et al. Decoding the regulatory network of early blood development from single-cell gene expression measurements. Nat Biotech 2015; 33:269-76; http://dx.doi.org/10.1038/nbt.3154
-
(2015)
Nat Biotech
, vol.33
, pp. 269-276
-
-
Moignard, V.1
Woodhouse, S.2
Haghverdi, L.3
Lilly, A.J.4
Tanaka, Y.5
Wilkinson, A.C.6
Buettner, F.7
Macaulay, I.C.8
Jawaid, W.9
Diamanti, E.10
-
85
-
-
77952979275
-
Contrasting effects of Sox17- and Sox18-sustained expression at the onset of blood specification
-
20228271
-
A.G.Serrano, A.Gandillet, S.Pearson, G.Lacaud, V.Kouskoff. Contrasting effects of Sox17- and Sox18-sustained expression at the onset of blood specification. Blood 2010; 115:3895-8; PMID:20228271; http://dx.doi.org/10.1182/blood-2009-10-247395
-
(2010)
Blood
, vol.115
, pp. 3895-3898
-
-
Serrano, A.G.1
Gandillet, A.2
Pearson, S.3
Lacaud, G.4
Kouskoff, V.5
-
86
-
-
84906569555
-
Sox7 is regulated by ETV2 during cardiovascular development
-
24762086
-
A.N.Behrens, C.Zierold, X.Shi, Y.Ren, N.Koyano-Nakagawa, D.J.Garry, C.M.Martin. Sox7 is regulated by ETV2 during cardiovascular development. Stem Cells Dev 2014; 23:2004-13; PMID:24762086; http://dx.doi.org/10.1089/scd.2013.0525
-
(2014)
Stem Cells Dev
, vol.23
, pp. 2004-2013
-
-
Behrens, A.N.1
Zierold, C.2
Shi, X.3
Ren, Y.4
Koyano-Nakagawa, N.5
Garry, D.J.6
Martin, C.M.7
-
87
-
-
33947223259
-
The transcription factors Scl and Lmo2 act together during development of the hemangioblast in zebrafish
-
17090656
-
L.J.Patterson, M.Gering, C.E.Eckfeldt, A.R.Green, C.M.Verfaillie, S.C.Ekker, R.Patient. The transcription factors Scl and Lmo2 act together during development of the hemangioblast in zebrafish. Blood 2007; 109:2389-98; PMID:17090656; http://dx.doi.org/10.1182/blood-2006-02-003087
-
(2007)
Blood
, vol.109
, pp. 2389-2398
-
-
Patterson, L.J.1
Gering, M.2
Eckfeldt, C.E.3
Green, A.R.4
Verfaillie, C.M.5
Ekker, S.C.6
Patient, R.7
-
88
-
-
18244392936
-
Scl is required for dorsal aorta as well as blood formation in zebrafish embryos
-
15644413
-
L.J.Patterson, M.Gering, R.Patient. Scl is required for dorsal aorta as well as blood formation in zebrafish embryos. Blood 2005; 105:3502-11; PMID:15644413; http://dx.doi.org/10.1182/blood-2004-09-3547
-
(2005)
Blood
, vol.105
, pp. 3502-3511
-
-
Patterson, L.J.1
Gering, M.2
Patient, R.3
-
89
-
-
0346888544
-
Lmo2 and Scl/Tal1 convert non-axial mesoderm into haemangioblasts which differentiate into endothelial cells in the absence of Gata1
-
14602685
-
M.Gering. Lmo2 and Scl/Tal1 convert non-axial mesoderm into haemangioblasts which differentiate into endothelial cells in the absence of Gata1. Development 2003; 130:6187-99; PMID:14602685; http://dx.doi.org/10.1242/dev.00875
-
(2003)
Development
, vol.130
, pp. 6187-6199
-
-
Gering, M.1
-
90
-
-
84864579536
-
Scl represses cardiomyogenesis in prospective hemogenic endothelium and endocardium
-
22863011
-
B.van Handel, A.Montel-Hagen, R.Sasidharan, H.Nakano, R.Ferrari, C.J.Boogerd, J.Schredelseker, Y.Wang, S.Hunter, T.Org, et al. Scl represses cardiomyogenesis in prospective hemogenic endothelium and endocardium. Cell 2012; 150:590-605; PMID:22863011; http://dx.doi.org/10.1016/j.cell.2012.06.026
-
(2012)
Cell
, vol.150
, pp. 590-605
-
-
van Handel, B.1
Montel-Hagen, A.2
Sasidharan, R.3
Nakano, H.4
Ferrari, R.5
Boogerd, C.J.6
Schredelseker, J.7
Wang, Y.8
Hunter, S.9
Org, T.10
-
91
-
-
78650516843
-
HoxA3 is an apical regulator of haemogenic endothelium
-
21170035
-
M.Iacovino, D.Chong, I.Szatmari, L.Hartweck, D.Rux, A.Caprioli, O.Cleaver, M.Kyba. HoxA3 is an apical regulator of haemogenic endothelium. Nat Cell Biol 2010; 13:72-8; PMID:21170035; http://dx.doi.org/10.1038/ncb2137
-
(2010)
Nat Cell Biol
, vol.13
, pp. 72-78
-
-
Iacovino, M.1
Chong, D.2
Szatmari, I.3
Hartweck, L.4
Rux, D.5
Caprioli, A.6
Cleaver, O.7
Kyba, M.8
-
92
-
-
84872437725
-
Role of SOX17 in hematopoietic development from human embryonic stem cells
-
Nakajima-Takagi Y, Osawa M, Oshima M, Takagi H, Miyagi S, Endoh M, Endo TA, Takayama N, Eto K, Toyoda T, et al. Role of SOX17 in hematopoietic development from human embryonic stem cells. Blood 2013; 121:447-58. PMID:23169777; http://dx.doi.org/10.1182/blood-2012-05-431403
-
(2013)
Blood
-
-
-
93
-
-
84877577135
-
The expression of Sox17 identifies and regulates haemogenic endothelium
-
23263367
-
R.L.Clarke, A.D.Yzaguirre, Y.Yashiro-Ohtani, A.Bondue, C.Blanpain, W.S.Pear, N.A.Speck, G.M.Keller. The expression of Sox17 identifies and regulates haemogenic endothelium. Nat Cell Biol 2013; 15:1-10; PMID:23263367; http://dx.doi.org/10.1038/ncb2724
-
(2013)
Nat Cell Biol
, vol.15
, pp. 1-10
-
-
Clarke, R.L.1
Yzaguirre, A.D.2
Yashiro-Ohtani, Y.3
Bondue, A.4
Blanpain, C.5
Pear, W.S.6
Speck, N.A.7
Keller, G.M.8
-
94
-
-
84899861356
-
Sox17-mediated maintenance of fetal intra-aortic hematopoietic cell clusters
-
24662049
-
I.Nobuhisa, M.Osawa, M.Uemura, Y.Kishikawa, M.Anani, K.Harada, H.Takagi, K.Saito, M.Kanai-Azuma, Y.Kanai, et al. Sox17-mediated maintenance of fetal intra-aortic hematopoietic cell clusters. Mol Cell Biol 2014; 34:1976-90; PMID:24662049; http://dx.doi.org/10.1128/MCB.01485-13
-
(2014)
Mol Cell Biol
, vol.34
, pp. 1976-1990
-
-
Nobuhisa, I.1
Osawa, M.2
Uemura, M.3
Kishikawa, Y.4
Anani, M.5
Harada, K.6
Takagi, H.7
Saito, K.8
Kanai-Azuma, M.9
Kanai, Y.10
-
95
-
-
5444223724
-
GATA-2 plays two functionally distinct roles during the ontogeny of hematopoietic stem cells
-
PMID:15466621
-
K.W.Ling, K.Ottersbach, J.P.van Hamburg, A.Oziemlak, F.Y.Tsai, S.Orkin, R.Ploemacher, R.W.Hendriks, E.A.Dzierzak. GATA-2 plays two functionally distinct roles during the ontogeny of hematopoietic stem cells. J Exp Med 2004; 200:871-82; PMID:15466621; http://dx.doi.org/10.1084/jem.20031556
-
(2004)
J Exp Med
, vol.200
, pp. 871-882
-
-
Ling, K.W.1
Ottersbach, K.2
van Hamburg, J.P.3
Oziemlak, A.4
Tsai, F.Y.5
Orkin, S.6
Ploemacher, R.7
Hendriks, R.W.8
Dzierzak, E.A.9
-
96
-
-
84937908711
-
Gata2 is required for HSC generation and survival
-
E.de Pater, P.Kaimakis, C.S.Vink, T.Yokomizo, T.Yamada-Inagawa, R.van der Linden, P.S.Kartalaei, S.A.Camper, N.A.Speck, E.A.Dzierzak. Gata2 is required for HSC generation and survival. J Exp Med 2013; 464:116
-
(2013)
J Exp Med
, vol.464
, pp. 116
-
-
de Pater, E.1
Kaimakis, P.2
Vink, C.S.3
Yokomizo, T.4
Yamada-Inagawa, T.5
van der Linden, R.6
Kartalaei, P.S.7
Camper, S.A.8
Speck, N.A.9
Dzierzak, E.A.10
-
97
-
-
84943554436
-
FOXF1 inhibits hematopoietic lineage commitment during early mesoderm specification
-
26293303
-
M.Fleury, A.Eliades, P.Carlsson, G.Lacaud, V.Kouskoff. FOXF1 inhibits hematopoietic lineage commitment during early mesoderm specification. Development 2015; 142:3307-20; PMID:26293303; http://dx.doi.org/10.1242/dev.124685
-
(2015)
Development
, vol.142
, pp. 3307-3320
-
-
Fleury, M.1
Eliades, A.2
Carlsson, P.3
Lacaud, G.4
Kouskoff, V.5
-
98
-
-
84947592549
-
Bioengineering Hematopoietic Stem Cell Niche toward Regenerative Medicine
-
Sugimura R. Bioengineering Hematopoietic Stem Cell Niche toward Regenerative Medicine. Adv Drug Deliv Rev 2016; 99:212–20. PMID:26527127; http://dx.doi.org/10.1016/j.addr.2015.10.010
-
(2016)
Adv Drug Deliv Rev
-
-
-
99
-
-
84925217766
-
A systems biology approach for defining the molecular framework of the hematopoietic stem cell niche
-
PMID:25042701
-
P.Charbord, C.Pouget, H.Binder, F.Dumont, G.Stik, P.Levy, F.Allain, C.Marchal, J.Richter, B.Uzan, et al. A systems biology approach for defining the molecular framework of the hematopoietic stem cell niche. Cell Stem Cell 2014; 15:376-91; PMID:25042701; http://dx.doi.org/10.1016/j.stem.2014.06.005
-
(2014)
Cell Stem Cell
, vol.15
, pp. 376-391
-
-
Charbord, P.1
Pouget, C.2
Binder, H.3
Dumont, F.4
Stik, G.5
Levy, P.6
Allain, F.7
Marchal, C.8
Richter, J.9
Uzan, B.10
-
100
-
-
84859550605
-
The stem cell niche in regenerative medicine
-
22482502
-
A.J.Wagers. The stem cell niche in regenerative medicine. Cell Stem Cell 2012; 10:362-9; PMID:22482502; http://dx.doi.org/10.1016/j.stem.2012.02.018
-
(2012)
Cell Stem Cell
, vol.10
, pp. 362-369
-
-
Wagers, A.J.1
-
101
-
-
38349179230
-
Of lineage and legacy: the development of mammalian hematopoietic stem cells
-
18204427
-
E.A.Dzierzak, N.A.Speck. Of lineage and legacy:the development of mammalian hematopoietic stem cells. Nat Immunol 2008; 9:129-36; PMID:18204427; http://dx.doi.org/10.1038/ni1560
-
(2008)
Nat Immunol
, vol.9
, pp. 129-136
-
-
Dzierzak, E.A.1
Speck, N.A.2
-
102
-
-
33746520121
-
An unexpected role for IL-3 in the embryonic development of hematopoietic stem cells
-
16890157
-
C.Robin, K.Ottersbach, C.Durand, C.Durand, M.Peeters, L.Vanes, V.Tybulewicz, E.A.Dzierzak. An unexpected role for IL-3 in the embryonic development of hematopoietic stem cells. Dev Cell 2006; 11:171-80; PMID:16890157; http://dx.doi.org/10.1016/j.devcel.2006.07.002
-
(2006)
Dev Cell
, vol.11
, pp. 171-180
-
-
Robin, C.1
Ottersbach, K.2
Durand, C.3
Durand, C.4
Peeters, M.5
Vanes, L.6
Tybulewicz, V.7
Dzierzak, E.A.8
-
103
-
-
84867353401
-
Signaling from the Sympathetic Nervous System Regulates Hematopoietic Stem Cell Emergence during Embryogenesis
-
S.R.Fitch, G.M.Kimber, N.Wilson, A.Parker, B.Mirshekar-Syahkal, B.Göttgens, A.J.Medvinsky, E.A.Dzierzak, K.Ottersbach. Signaling from the Sympathetic Nervous System Regulates Hematopoietic Stem Cell Emergence during Embryogenesis. Stem Cell 2012; 11:554-66
-
(2012)
Stem Cell
, vol.11
, pp. 554-566
-
-
Fitch, S.R.1
Kimber, G.M.2
Wilson, N.3
Parker, A.4
Mirshekar-Syahkal, B.5
Göttgens, B.6
Medvinsky, A.J.7
Dzierzak, E.A.8
Ottersbach, K.9
-
104
-
-
44449152487
-
The stepwise specification of embryonic stem cells to hematopoietic fate is driven by sequential exposure to Bmp4, activin A, bFGF and VEGF
-
18339678
-
S.Pearson, P.Sroczynska, G.Lacaud, V.Kouskoff. The stepwise specification of embryonic stem cells to hematopoietic fate is driven by sequential exposure to Bmp4, activin A, bFGF and VEGF. Development 2008; 135:1525-35; PMID:18339678; http://dx.doi.org/10.1242/dev.011767
-
(2008)
Development
, vol.135
, pp. 1525-1535
-
-
Pearson, S.1
Sroczynska, P.2
Lacaud, G.3
Kouskoff, V.4
-
105
-
-
58049215218
-
A developmentally regulated heparan sulfate epitope defines a subpopulation with increased blood potential during mesodermal differentiation
-
18787209
-
R.J.Baldwin, G.B.ten Dam, T.van KuppeveltTHxs, G.Lacaud, J.T.Gallagher, V.Kouskoff, C.L.Merry. A developmentally regulated heparan sulfate epitope defines a subpopulation with increased blood potential during mesodermal differentiation. Stem Cells 2008; 26:3108-18; PMID:18787209; http://dx.doi.org/10.1634/stemcells.2008-0311
-
(2008)
Stem Cells
, vol.26
, pp. 3108-3118
-
-
Baldwin, R.J.1
ten Dam, G.B.2
van Kuppevelt, T.3
Lacaud, G.4
Gallagher, J.T.5
Kouskoff, V.6
Merry, C.L.7
-
106
-
-
79953199422
-
Influencing hematopoietic differentiation of mouse embryonic stem cells using soluble heparin and heparan sulfate saccharides
-
21148566
-
R.J.Holley, C.E.Pickford, G.Rushton, G.Lacaud, J.T.Gallagher, V.Kouskoff, C.L.Merry. Influencing hematopoietic differentiation of mouse embryonic stem cells using soluble heparin and heparan sulfate saccharides. J Biol Chem 2011; 286:6241-52; PMID:21148566; http://dx.doi.org/10.1074/jbc.M110.178483
-
(2011)
J Biol Chem
, vol.286
, pp. 6241-6252
-
-
Holley, R.J.1
Pickford, C.E.2
Rushton, G.3
Lacaud, G.4
Gallagher, J.T.5
Kouskoff, V.6
Merry, C.L.7
-
107
-
-
84973100749
-
Graphene oxide promotes embryonic stem cell differentiation to hematopoietic lineage
-
27197878
-
E.Garcia-Alegria, M.Iluit, M.Stefanska, C.Silva, S.Heeg, S.J.Kimber, V.Kouskoff, G.Lacaud, A.Vijayaraghavan, K.Batta. Graphene oxide promotes embryonic stem cell differentiation to hematopoietic lineage. Sci Rep 2016; 6:25917-12; PMID:27197878; http://dx.doi.org/10.1038/srep25917
-
(2016)
Sci Rep
, vol.6
, pp. 25912-25917
-
-
Garcia-Alegria, E.1
Iluit, M.2
Stefanska, M.3
Silva, C.4
Heeg, S.5
Kimber, S.J.6
Kouskoff, V.7
Lacaud, G.8
Vijayaraghavan, A.9
Batta, K.10
|