메뉴 건너뛰기




Volumn 12, Issue 7, 2016, Pages

Inference for Stochastic Chemical Kinetics Using Moment Equations and System Size Expansion

Author keywords

[No Author keywords available]

Indexed keywords

BIOLOGICAL SYSTEMS; POPULATION STATISTICS; RANDOM PROCESSES; STOCHASTIC MODELS; STOCHASTIC SYSTEMS;

EID: 84979993777     PISSN: 1553734X     EISSN: 15537358     Source Type: Journal    
DOI: 10.1371/journal.pcbi.1005030     Document Type: Article
Times cited : (77)

References (97)
  • 1
    • 0037119587 scopus 로고    scopus 로고
    • Stochastic gene expression in a single cell
    • 12183631, .;;():–
    • Elowitz MB, Levine AJ, Siggia ED, Swain PS, Stochastic gene expression in a single cell. Science; 2002;297(5584):1183–1186. doi: 10.1126/science.107091912183631
    • (2002) Science , vol.297 , Issue.5584 , pp. 1183-1186
    • Elowitz, M.B.1    Levine, A.J.2    Siggia, E.D.3    Swain, P.S.4
  • 2
    • 15544371346 scopus 로고    scopus 로고
    • Gene regulation at the single-cell level
    • 15790856, .;;():–
    • Rosenfeld N, Young JW, Alon U, Swain PS, Elowitz MB, Gene regulation at the single-cell level. Science; 2005;307(5717):1962–1965. doi: 10.1126/science.110691415790856
    • (2005) Science , vol.307 , Issue.5717 , pp. 1962-1965
    • Rosenfeld, N.1    Young, J.W.2    Alon, U.3    Swain, P.S.4    Elowitz, M.B.5
  • 3
    • 53549123008 scopus 로고    scopus 로고
    • Nature, nurture, or chance: Stochastic gene expression and its consequences
    • 18957198, .;;():–
    • Raj A, van Oudenaarden A, Nature, nurture, or chance: Stochastic gene expression and its consequences. Cell; 2008;135(2):216–226. doi: 10.1016/j.cell.2008.09.05018957198
    • (2008) Cell , vol.135 , Issue.2 , pp. 216-226
    • Raj, A.1    van Oudenaarden, A.2
  • 4
    • 34347260600 scopus 로고    scopus 로고
    • Living with noisy genes: how cells function reliably with inherent variability in gene expression
    • 17477840, .;;:–
    • Maheshri N, O’Shea EK, Living with noisy genes: how cells function reliably with inherent variability in gene expression. Annu Rev Biophys Biomol Struct; 2007;36:413–434. doi: 10.1146/annurev.biophys.36.040306.13270517477840
    • (2007) Annu Rev Biophys Biomol Struct , vol.36 , pp. 413-434
    • Maheshri, N.1    O’Shea, E.K.2
  • 5
    • 44049109914 scopus 로고
    • A rigorous derivation of the chemical master equation
    • .;;():–
    • Gillespie DT, A rigorous derivation of the chemical master equation. Physica A; 1992;188(1):404–425. doi: 10.1016/0378-4371(92)90283-V
    • (1992) Physica A , vol.188 , Issue.1 , pp. 404-425
    • Gillespie, D.T.1
  • 7
    • 75249088572 scopus 로고    scopus 로고
    • Simulation-based model selection for dynamical systems in systems and population biology
    • .;;():–
    • Toni T, Stumpf MPH, Simulation-based model selection for dynamical systems in systems and population biology. Bioinf; 2010;26(1):104–110. doi: 10.1093/bioinformatics/btp619
    • (2010) Bioinf , vol.26 , Issue.1 , pp. 104-110
    • Toni, T.1    Stumpf, M.P.H.2
  • 10
    • 84872601837 scopus 로고    scopus 로고
    • Moment closure based parameter inference of stochastic kinetic models
    • .;;():–
    • Milner P, Gillespie CS, Wilkinson DJ, Moment closure based parameter inference of stochastic kinetic models. Stat Comp; 2013;23(2):287–295. doi: 10.1007/s11222-011-9310-8
    • (2013) Stat Comp , vol.23 , Issue.2 , pp. 287-295
    • Milner, P.1    Gillespie, C.S.2    Wilkinson, D.J.3
  • 11
    • 84895072562 scopus 로고    scopus 로고
    • Scalable inference of heterogeneous reaction kinetics from pooled single-cell recordings
    • .;;:–
    • Zechner C, Unger M, Pelet S, Peter M, Koeppl H, Scalable inference of heterogeneous reaction kinetics from pooled single-cell recordings. Nat Meth; 2014;11:197–202. doi: 10.1038/nmeth.2794
    • (2014) Nat Meth , vol.11 , pp. 197-202
    • Zechner, C.1    Unger, M.2    Pelet, S.3    Peter, M.4    Koeppl, H.5
  • 12
    • 84897420039 scopus 로고    scopus 로고
    • Direct solution of the Chemical Master Equation using quantized tensor trains
    • 24626049, .;;():
    • Kazeev V, Khammash M, Nip M, Schwab C, Direct solution of the Chemical Master Equation using quantized tensor trains. PLoS Comput Biol; 2014;10(3):e1003359. doi: 10.1371/journal.pcbi.100335924626049
    • (2014) PLoS Comput Biol , vol.10 , Issue.3 , pp. e1003359
    • Kazeev, V.1    Khammash, M.2    Nip, M.3    Schwab, C.4
  • 14
    • 78149453584 scopus 로고    scopus 로고
    • Identification from stochastic cell-to-cell variation: a genetic switch case study
    • 21073235, .;;():–
    • Munsky B, Khammash M, Identification from stochastic cell-to-cell variation: a genetic switch case study. IET Syst Biol; 2010;4(6):356–366. doi: 10.1049/iet-syb.2010.001321073235
    • (2010) IET Syst Biol , vol.4 , Issue.6 , pp. 356-366
    • Munsky, B.1    Khammash, M.2
  • 15
    • 84979996042 scopus 로고    scopus 로고
    • Nüesch T. Finite state projection-based parameter estimation algorithms for stochastic chemical kinetics [Master Thesis]. Swiss Federal Institute of Technology, Zürich; 2010.
    • (2010)
    • Nüesch, T.1
  • 16
    • 84979980160 scopus 로고    scopus 로고
    • Hasenauer J, Radde N, Doszczak M, Scheurich P, Allgöwer F. Parameter estimation for the CME from noisy binned snapshot data: Formulation as maximum likelihood problem; 2011. Extended abstract at., Monte Verita, Switzerland
    • Hasenauer J, Radde N, Doszczak M, Scheurich P, Allgöwer F. Parameter estimation for the CME from noisy binned snapshot data: Formulation as maximum likelihood problem; 2011. Extended abstract at Conf. of Stoch. Syst. Biol., Monte Verita, Switzerland.
  • 17
    • 84861443923 scopus 로고    scopus 로고
    • Moment-based inference predicts bimodality in transient gene expression
    • 22566653, .;;():–
    • Zechner C, Ruess J, Krenn P, Pelet S, Peter M, Lygeros J, et al. Moment-based inference predicts bimodality in transient gene expression. Proc Natl Acad Sci U S A; 2012;109(21):8340–8345. doi: 10.1073/pnas.120016110922566653
    • (2012) Proc Natl Acad Sci U S A , vol.109 , Issue.21 , pp. 8340-8345
    • Zechner, C.1    Ruess, J.2    Krenn, P.3    Pelet, S.4    Peter, M.5    Lygeros, J.6
  • 19
    • 84883481038 scopus 로고    scopus 로고
    • The signal within the noise: efficient inference of stochastic gene regulation models using fluorescence histograms and stochastic simulations
    • .;;():–
    • Lillacci G, Khammash M, The signal within the noise: efficient inference of stochastic gene regulation models using fluorescence histograms and stochastic simulations. Bioinf; 2013;29(18):2311–2319. doi: 10.1093/bioinformatics/btt380
    • (2013) Bioinf , vol.29 , Issue.18 , pp. 2311-2319
    • Lillacci, G.1    Khammash, M.2
  • 20
    • 84873801555 scopus 로고    scopus 로고
    • Systematic identification of signal-activated stochastic gene regulation
    • 23372015, .;;():–
    • Neuert G, Munsky B, Tan RZ, Teytelman L, Khammash M, van Oudenaarden A, Systematic identification of signal-activated stochastic gene regulation. Science; 2013;339(6119):584–587. doi: 10.1126/science.123145623372015
    • (2013) Science , vol.339 , Issue.6119 , pp. 584-587
    • Neuert, G.1    Munsky, B.2    Tan, R.Z.3    Teytelman, L.4    Khammash, M.5    van Oudenaarden, A.6
  • 21
    • 33645429016 scopus 로고
    • Exact stochastic simulation of coupled chemical reactions
    • .;;():–
    • Gillespie DT, Exact stochastic simulation of coupled chemical reactions. J Phys Chem; 1977;81(25):2340–2361. doi: 10.1021/j100540a008
    • (1977) J Phys Chem , vol.81 , Issue.25 , pp. 2340-2361
    • Gillespie, D.T.1
  • 22
    • 33751347484 scopus 로고    scopus 로고
    • The finite state projection algorithm for the solution of the chemical master equation
    • 16460146, .;;():
    • Munsky B, Khammash M, The finite state projection algorithm for the solution of the chemical master equation. J Chem Phys; 2006;124(4):044104. doi: 10.1063/1.214588216460146
    • (2006) J Chem Phys , vol.124 , Issue.4 , pp. 044104
    • Munsky, B.1    Khammash, M.2
  • 23
    • 84860114415 scopus 로고    scopus 로고
    • A study of the accuracy of moment-closure approximations for stochastic chemical kinetics
    • 22519313, .;;():
    • Grima R, A study of the accuracy of moment-closure approximations for stochastic chemical kinetics. J Chem Phys; 2012;136(15):154105. doi: 10.1063/1.370284822519313
    • (2012) J Chem Phys , vol.136 , Issue.15 , pp. 154105
    • Grima, R.1
  • 25
    • 0036964474 scopus 로고    scopus 로고
    • Approximate Bayesian Computation in population genetics
    • 12524368, .;;():–
    • Beaumont MA, Zhang W, Balding DJ, Approximate Bayesian Computation in population genetics. Genetics; 2002;162(4):2025–2035. 12524368
    • (2002) Genetics , vol.162 , Issue.4 , pp. 2025-2035
    • Beaumont, M.A.1    Zhang, W.2    Balding, D.J.3
  • 26
    • 80053069153 scopus 로고    scopus 로고
    • Lack of confidence in Approximate Bayesian Computation model choice
    • 21876135, .;;():–
    • Robert CP, Cornuet JM, Marin JM, Pillai NS, Lack of confidence in Approximate Bayesian Computation model choice. Proc Natl Acad Sci U S A; 2011;108(37):15112–15117. doi: 10.1073/pnas.110290010821876135
    • (2011) Proc Natl Acad Sci U S A , vol.108 , Issue.37 , pp. 15112-15117
    • Robert, C.P.1    Cornuet, J.M.2    Marin, J.M.3    Pillai, N.S.4
  • 27
    • 78149446037 scopus 로고    scopus 로고
    • Fast adaptive uniformisation of the chemical master equation
    • 21073242, .;;():–
    • Mateescu M, Wolf V, Didier F, Henzinger TA, Fast adaptive uniformisation of the chemical master equation. IET Syst Biol; 2010;4(6):441–452. doi: 10.1049/iet-syb.2010.000521073242
    • (2010) IET Syst Biol , vol.4 , Issue.6 , pp. 441-452
    • Mateescu, M.1    Wolf, V.2    Didier, F.3    Henzinger, T.A.4
  • 28
    • 78650270357 scopus 로고    scopus 로고
    • An optimal Finite State Projection method
    • .;;():–
    • Sunkara V, Hegland M, An optimal Finite State Projection method. Procedia Computer Science; 2010;1(1):1579–1586. doi: 10.1016/j.procs.2010.04.177
    • (2010) Procedia Computer Science , vol.1 , Issue.1 , pp. 1579-1586
    • Sunkara, V.1    Hegland, M.2
  • 29
    • 33748962544 scopus 로고    scopus 로고
    • Computing the moments of high dimensional solutions of the master equation
    • .;;:–
    • Engblom S, Computing the moments of high dimensional solutions of the master equation. Appl Math Comp; 2006;180:498–515. doi: 10.1016/j.amc.2005.12.032
    • (2006) Appl Math Comp , vol.180 , pp. 498-515
    • Engblom, S.1
  • 30
    • 64549159754 scopus 로고    scopus 로고
    • A moment closure method for stochastic reaction networks
    • 19355717, .;;():
    • Lee CH, Kim KH, Kim P, A moment closure method for stochastic reaction networks. J Chem Phys; 2009;130(13):134107. doi: 10.1063/1.310326419355717
    • (2009) J Chem Phys , vol.130 , Issue.13 , pp. 134107
    • Lee, C.H.1    Kim, K.H.2    Kim, P.3
  • 31
    • 58849107628 scopus 로고    scopus 로고
    • Moment-closure approximations for mass-action models
    • 19154084, .;;():–
    • Gillespie CS, Moment-closure approximations for mass-action models. IET Syst Biol; 2009;3(1):52–58. doi: 10.1049/iet-syb:2007003119154084
    • (2009) IET Syst Biol , vol.3 , Issue.1 , pp. 52-58
    • Gillespie, C.S.1
  • 32
    • 84877766748 scopus 로고    scopus 로고
    • A general moment expansion method for stochastic kinetic models
    • 23656108, .;;():
    • Ale A, Kirk P, Stumpf MPH, A general moment expansion method for stochastic kinetic models. J Chem Phys; 2013;138(17):174101. doi: 10.1063/1.480247523656108
    • (2013) J Chem Phys , vol.138 , Issue.17 , pp. 174101
    • Ale, A.1    Kirk, P.2    Stumpf, M.P.H.3
  • 33
    • 84947465897 scopus 로고    scopus 로고
    • Comparison of different moment-closure approximations for stochastic chemical kinetics
    • 26567686, .;;()
    • Schnoerr D, Sanguinetti G, Grima R, Comparison of different moment-closure approximations for stochastic chemical kinetics. The Journal of Chemical Physics; 2015;143(18). doi: 10.1063/1.493499026567686
    • (2015) The Journal of Chemical Physics , vol.143 , Issue.18
    • Schnoerr, D.1    Sanguinetti, G.2    Grima, R.3
  • 34
    • 0001637131 scopus 로고
    • On the use of the normal approximation in the treatment of stochastic processes
    • .;;():–
    • Whittle P, On the use of the normal approximation in the treatment of stochastic processes. J R Stat Soc B; 1957;19(2):268–281.
    • (1957) J R Stat Soc B , vol.19 , Issue.2 , pp. 268-281
    • Whittle, P.1
  • 36
    • 77956247381 scopus 로고    scopus 로고
    • An effective rate equation approach to reaction kinetics in small volumes: Theory and application to biochemical reactions in nonequilibrium steady-state conditions
    • 035101
    • Grima R, An effective rate equation approach to reaction kinetics in small volumes: Theory and application to biochemical reactions in nonequilibrium steady-state conditions. J Chem Phys; 2010;133(035101).
    • (2010) J Chem Phys , vol.133
    • Grima, R.1
  • 37
    • 83255181695 scopus 로고    scopus 로고
    • Construction and accuracy of partial differential equation approximations to the chemical master equation
    • .;;():
    • Grima R, Construction and accuracy of partial differential equation approximations to the chemical master equation. Physical Review E; 2011;84(5 Pt 2):056109. doi: 10.1103/PhysRevE.84.056109
    • (2011) Physical Review E , vol.84 , Issue.5 , pp. 056109
    • Grima, R.1
  • 38
    • 84906861074 scopus 로고    scopus 로고
    • Validity conditions for moment closure approximations in stochastic chemical kinetics
    • 25173001, .;;():
    • Schnoerr D, Sanguinetti G, Grima R, Validity conditions for moment closure approximations in stochastic chemical kinetics. J Chem Phys; 2014;141(8):084103. doi: 10.1063/1.489283825173001
    • (2014) J Chem Phys , vol.141 , Issue.8 , pp. 084103
    • Schnoerr, D.1    Sanguinetti, G.2    Grima, R.3
  • 39
    • 73149105740 scopus 로고    scopus 로고
    • Listening to the noise: random fluctuations reveal gene network parameters
    • 19888213, .;;()
    • Munsky B, Trinh B, Khammash M, Listening to the noise: random fluctuations reveal gene network parameters. Mol Syst Biol; 2009;5(318). doi: 10.1038/msb.2009.7519888213
    • (2009) Mol Syst Biol , vol.5 , Issue.318
    • Munsky, B.1    Trinh, B.2    Khammash, M.3
  • 40
    • 79957743805 scopus 로고    scopus 로고
    • Sensitivity, robustness, and identifiability in stochastic chemical kinetics models
    • 21551095, .;;():–
    • Komorowski M, Costa MJ, Rand DA, Stumpf MPH, Sensitivity, robustness, and identifiability in stochastic chemical kinetics models. Proc Natl Acad Sci U S A; 2011;108(21):8645–8650. doi: 10.1073/pnas.101581410821551095
    • (2011) Proc Natl Acad Sci U S A , vol.108 , Issue.21 , pp. 8645-8650
    • Komorowski, M.1    Costa, M.J.2    Rand, D.A.3    Stumpf, M.P.H.4
  • 41
    • 81555207959 scopus 로고    scopus 로고
    • Structural identifiability of systems biology models: A critical comparison of methods
    • 22132135, .;;():
    • Chis OT, Banga JR, Balsa-Canto E, Structural identifiability of systems biology models: A critical comparison of methods. PLoS ONE; 2011;6(11):e27755. doi: 10.1371/journal.pone.002775522132135
    • (2011) PLoS ONE , vol.6 , Issue.11 , pp. e27755
    • Chis, O.T.1    Banga, J.R.2    Balsa-Canto, E.3
  • 42
    • 84884755942 scopus 로고    scopus 로고
    • Lessons learned from quantitative dynamical modeling in systems biology
    • 24098642, .;;():
    • Raue A, Schilling M, Bachmann J, Matteson A, Schelke M, Kaschek D, et al. Lessons learned from quantitative dynamical modeling in systems biology. PLoS ONE; 2013;8(9):e74335. doi: 10.1371/journal.pone.007433524098642
    • (2013) PLoS ONE , vol.8 , Issue.9 , pp. e74335
    • Raue, A.1    Schilling, M.2    Bachmann, J.3    Matteson, A.4    Schelke, M.5    Kaschek, D.6
  • 43
    • 84944809923 scopus 로고    scopus 로고
    • Linear-noise approximation and the chemical master equation agree up to second-order moments for a class of chemical systems
    • .;;:
    • Grima R, Linear-noise approximation and the chemical master equation agree up to second-order moments for a class of chemical systems. Phys Rev E; 2015;92:042124. doi: 10.1103/PhysRevE.92.042124
    • (2015) Phys Rev E , vol.92 , pp. 042124
    • Grima, R.1
  • 44
    • 84860127314 scopus 로고    scopus 로고
    • Discreteness-induced concentration inversion in mesoscopic chemical systems
    • .;;()
    • Ramaswamy R, González-Segredo N, Sbalzarini I, Grima R, Discreteness-induced concentration inversion in mesoscopic chemical systems. Nat Comm; 2012;3(779).
    • (2012) Nat Comm , vol.3 , Issue.779
    • Ramaswamy, R.1    González-Segredo, N.2    Sbalzarini, I.3    Grima, R.4
  • 45
    • 84903854349 scopus 로고    scopus 로고
    • How reliable is the linear noise approximation of gene regulatory networks?
    • 24266939, ;;()()
    • Thomas P, Matuschek H, Grima R, How reliable is the linear noise approximation of gene regulatory networks?BMC Genomics; 2013;14(Suppl 4)(S5). doi: 10.1186/1471-2164-14-S4-S524266939
    • (2013) BMC Genomics , vol.14 , pp. S5
    • Thomas, P.1    Matuschek, H.2    Grima, R.3
  • 46
    • 84988516464 scopus 로고    scopus 로고
    • CERENA: ChEmical REaction Network Analyzer—A Toolbox for the Simulation and Analysis of Stochastic Chemical Kinetics
    • 26807911, .;;():
    • Kazeroonian A, Fröhlich F, Raue A, Theis FJ, Hasenauer J, CERENA: ChEmical REaction Network Analyzer—A Toolbox for the Simulation and Analysis of Stochastic Chemical Kinetics. PLoS ONE; 2016;11(1):e0146732. doi: 10.1371/journal.pone.014673226807911
    • (2016) PLoS ONE , vol.11 , Issue.1 , pp. e0146732
    • Kazeroonian, A.1    Fröhlich, F.2    Raue, A.3    Theis, F.J.4    Hasenauer, J.5
  • 47
    • 0242490781 scopus 로고    scopus 로고
    • Fast evaluation of fluctuations in biochemical networks with the linear noise approximation
    • 14597656, .;;:–
    • Elf J, Ehrenberg M, Fast evaluation of fluctuations in biochemical networks with the linear noise approximation. Genome Res; 2003;13:2475–2484. doi: 10.1101/gr.119650314597656
    • (2003) Genome Res , vol.13 , pp. 2475-2484
    • Elf, J.1    Ehrenberg, M.2
  • 48
    • 84923668303 scopus 로고    scopus 로고
    • Moment-based methods for parameter inference and experiment design for stochastic biochemical reaction networks
    • .;;():
    • Ruess J, Lygeros J, Moment-based methods for parameter inference and experiment design for stochastic biochemical reaction networks. ACM Transactions on Modeling and Computer Simulation (TOMACS); 2015;25(2):8. doi: 10.1145/2688906
    • (2015) ACM Transactions on Modeling and Computer Simulation (TOMACS) , vol.25 , Issue.2 , pp. 8
    • Ruess, J.1    Lygeros, J.2
  • 49
    • 84979974499 scopus 로고
    • On the convergence of reflective Newton Methods for large-scale nonlinear minimization subject to bounds
    • .;;p.–
    • Coleman TF, Li Y, On the convergence of reflective Newton Methods for large-scale nonlinear minimization subject to bounds. Math Prog; 1992;p. 1–36.
    • (1992) Math Prog , pp. 1-36
    • Coleman, T.F.1    Li, Y.2
  • 50
    • 0030303844 scopus 로고    scopus 로고
    • An interior trust region approach for nonlinear minimization subject to bounds
    • .;;:–
    • Coleman TF, Li Y, An interior trust region approach for nonlinear minimization subject to bounds. SIAM J Optim; 1996;6:418–445. doi: 10.1137/0806023
    • (1996) SIAM J Optim , vol.6 , pp. 418-445
    • Coleman, T.F.1    Li, Y.2
  • 51
    • 33745217791 scopus 로고    scopus 로고
    • SUNDIALS: Suite of Nonlinear and Differential/Algebraic Equation Solvers
    • .;;():–
    • Hindmarsh AC, Brown PN, Grant KE, Lee SL, Serban R, Shumaker DE, et al. SUNDIALS: Suite of Nonlinear and Differential/Algebraic Equation Solvers. ACM T Math Software; 2005;31(3):363–396. doi: 10.1145/1089014.1089020
    • (2005) ACM T Math Software , vol.31 , Issue.3 , pp. 363-396
    • Hindmarsh, A.C.1    Brown, P.N.2    Grant, K.E.3    Lee, S.L.4    Serban, R.5    Shumaker, D.E.6
  • 52
    • 0001362410 scopus 로고
    • The Levenberg-Marquardt algorithm: Implementation and theory
    • .;;:–
    • More JJ, The Levenberg-Marquardt algorithm: Implementation and theory. Lecture Notes in Mathematics; 1978;630:105–116. doi: 10.1007/BFb0067700
    • (1978) Lecture Notes in Mathematics , vol.630 , pp. 105-116
    • More, J.J.1
  • 53
    • 67650760503 scopus 로고    scopus 로고
    • Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood
    • .;;():–
    • Raue A, Kreutz C, Maiwald T, Bachmann J, Schilling M, Klingmüller U, et al. Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood. Bioinf; 2009;25(25):1923–1929. doi: 10.1093/bioinformatics/btp358
    • (2009) Bioinf , vol.25 , Issue.25 , pp. 1923-1929
    • Raue, A.1    Kreutz, C.2    Maiwald, T.3    Bachmann, J.4    Schilling, M.5    Klingmüller, U.6
  • 54
    • 1542637245 scopus 로고    scopus 로고
    • On profile likelihood
    • .;;():–
    • Murphy SA, van der Vaart AW, On profile likelihood. J Am Stat Assoc; 2000;95(450):449–485. doi: 10.1080/01621459.2000.10474219
    • (2000) J Am Stat Assoc , vol.95 , Issue.450 , pp. 449-485
    • Murphy, S.A.1    van der Vaart, A.W.2
  • 55
    • 84874150433 scopus 로고    scopus 로고
    • Joining forces of Bayesian and frequentist methodology: A study for inference in the presence of non-identifiability
    • .;;()
    • Raue A, Kreutz C, Theis FJ, Timmer J, Joining forces of Bayesian and frequentist methodology: A study for inference in the presence of non-identifiability. Phil Trans Royal Soc A; 2013;371 (1984).
    • (2013) Phil Trans Royal Soc A , vol.371 , Issue.1984
    • Raue, A.1    Kreutz, C.2    Theis, F.J.3    Timmer, J.4
  • 56
    • 34250658998 scopus 로고    scopus 로고
    • Bayesian methods in bioinformatics and computational systems biology
    • .;;():–
    • Wilkinson DJ, Bayesian methods in bioinformatics and computational systems biology. Briefings in Bioinf; 2007;8(2):109–116. doi: 10.1093/bib/bbm007
    • (2007) Briefings in Bioinf , vol.8 , Issue.2 , pp. 109-116
    • Wilkinson, D.J.1
  • 57
    • 79952295497 scopus 로고    scopus 로고
    • Riemann manifold Langevin and Hamiltonian Monte Carlo methods
    • .;;():–
    • Girolami M, Calderhead B, Riemann manifold Langevin and Hamiltonian Monte Carlo methods. J R Statist Soc B; 2011;73(2):123–214. doi: 10.1111/j.1467-9868.2010.00765.x
    • (2011) J R Statist Soc B , vol.73 , Issue.2 , pp. 123-214
    • Girolami, M.1    Calderhead, B.2
  • 58
    • 0023868890 scopus 로고
    • A Method for Computing Profile-Likelihood Based Confidence Intervals
    • .;;():–
    • Venzon D, Moolgavkar S, A Method for Computing Profile-Likelihood Based Confidence Intervals. Applied Statistics; 1988;37(1):87–94. doi: 10.2307/2347496
    • (1988) Applied Statistics , vol.37 , Issue.1 , pp. 87-94
    • Venzon, D.1    Moolgavkar, S.2
  • 60
    • 33750082644 scopus 로고    scopus 로고
    • DRAM: Efficient adaptive MCMC
    • .;;():–
    • Haario H, Laine M, Mira A, Saksman E, DRAM: Efficient adaptive MCMC. Stat Comp; 2006;16(4):339–354. doi: 10.1007/s11222-006-9438-0
    • (2006) Stat Comp , vol.16 , Issue.4 , pp. 339-354
    • Haario, H.1    Laine, M.2    Mira, A.3    Saksman, E.4
  • 61
    • 0042817453 scopus 로고
    • On the likelihood of a time series model
    • .;;():–
    • Akaike H, On the likelihood of a time series model. The Statistician; 1978;27(3/4):217–235. doi: 10.2307/2988185
    • (1978) The Statistician , vol.27 , Issue.3-4 , pp. 217-235
    • Akaike, H.1
  • 62
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • .;;():–
    • Schwarz G, Estimating the dimension of a model. Ann Statist; 1978;6(2):461–464. doi: 10.1214/aos/1176344136
    • (1978) Ann Statist , vol.6 , Issue.2 , pp. 461-464
    • Schwarz, G.1
  • 64
    • 33750374139 scopus 로고    scopus 로고
    • Linking data to models: Data regression
    • 17006434, .;;:–
    • Jaqaman K, Danuser G, Linking data to models: Data regression. Nature Reviews Molecular Cell Biology; 2006;7:813–819. doi: 10.1038/nrm203017006434
    • (2006) Nature Reviews Molecular Cell Biology , vol.7 , pp. 813-819
    • Jaqaman, K.1    Danuser, G.2
  • 67
    • 0037417886 scopus 로고    scopus 로고
    • Identification of nucleocytoplasmic cycling as a remote sensor in cellular signaling by databased modeling
    • 12552139, .;;():–
    • Swameye I, Müller TG, Timmer J, Sandra O, Klingmüller U, Identification of nucleocytoplasmic cycling as a remote sensor in cellular signaling by databased modeling. Proc Natl Acad Sci U S A; 2003;100(3):1028–1033. doi: 10.1073/pnas.023733310012552139
    • (2003) Proc Natl Acad Sci U S A , vol.100 , Issue.3 , pp. 1028-1033
    • Swameye, I.1    Müller, T.G.2    Timmer, J.3    Sandra, O.4    Klingmüller, U.5
  • 68
    • 2342445635 scopus 로고    scopus 로고
    • The JAK/STAT signaling pathway
    • 15020666, .;;():–
    • Rawlings JS, Rosler KM, Harrison DA, The JAK/STAT signaling pathway. J Cell Sci; 2004;117(Pt 8):1281–1283. doi: 10.1242/jcs.0096315020666
    • (2004) J Cell Sci , vol.117 , pp. 1281-1283
    • Rawlings, J.S.1    Rosler, K.M.2    Harrison, D.A.3
  • 69
    • 73349121307 scopus 로고    scopus 로고
    • Anemia management in oncology and hematology
    • 19762516, .;;():–
    • Spivak JL, Gascón P, Ludwig H, Anemia management in oncology and hematology. Oncologist; 2009;14 (Suppl 1):43–56. doi: 10.1634/theoncologist.2009-S1-4319762516
    • (2009) Oncologist , vol.14 , pp. 43-56
    • Spivak, J.L.1    Gascón, P.2    Ludwig, H.3
  • 70
    • 80053508260 scopus 로고    scopus 로고
    • Recombinant human erythropoietin in combination with chemotherapy increases breast cancer metastasis in preclinical mouse models
    • 21856770, .;;():–
    • Hedley BD, Chu JE, Ormond DG, Beausoleil MS, Boasie A, Allan AL, et al. Recombinant human erythropoietin in combination with chemotherapy increases breast cancer metastasis in preclinical mouse models. Clin Cancer Res; 2011;17(19):6151–6162. doi: 10.1158/1078-0432.CCR-10-329821856770
    • (2011) Clin Cancer Res , vol.17 , Issue.19 , pp. 6151-6162
    • Hedley, B.D.1    Chu, J.E.2    Ormond, D.G.3    Beausoleil, M.S.4    Boasie, A.5    Allan, A.L.6
  • 71
    • 79960594395 scopus 로고    scopus 로고
    • Division of labor by dual feedback regulators controls JAK2/STAT5 signaling over broad ligand range
    • .;;()
    • Bachmann J, Raue A, Schilling M, Böhm ME, Kreutz C, Kaschek D, et al. Division of labor by dual feedback regulators controls JAK2/STAT5 signaling over broad ligand range. Mol Syst Biol; 2011;516(7).
    • (2011) Mol Syst Biol , vol.516 , Issue.7
    • Bachmann, J.1    Raue, A.2    Schilling, M.3    Böhm, M.E.4    Kreutz, C.5    Kaschek, D.6
  • 72
    • 84936742767 scopus 로고    scopus 로고
    • Tensor methods for parameter estimation and bifurcation analysis of stochastic reaction networks
    • .;;()
    • Liao S, Vejchodský T, Erban R, Tensor methods for parameter estimation and bifurcation analysis of stochastic reaction networks. Journal of The Royal Society Interface; 2015;12(108). doi: 10.1098/rsif.2015.0233
    • (2015) Journal of The Royal Society Interface , vol.12 , Issue.108
    • Liao, S.1    Vejchodský, T.2    Erban, R.3
  • 73
    • 84864988006 scopus 로고    scopus 로고
    • Moment fitting for parameter inference in repeatedly and partially observed stochastic biological models
    • 22900079, .;;():
    • Kügler P, Moment fitting for parameter inference in repeatedly and partially observed stochastic biological models. PloS one; 2012;7(8):e43001. doi: 10.1371/journal.pone.004300122900079
    • (2012) PloS one , vol.7 , Issue.8 , pp. e43001
    • Kügler, P.1
  • 74
    • 0027452754 scopus 로고
    • Regulation of heat shock factor trimer formation: role of a conserved leucine zipper
    • 8421783, .;;():–
    • Rabindran S, Haroun R, Clos J, Wisniewski J, Wu C, Regulation of heat shock factor trimer formation: role of a conserved leucine zipper. Science; 1993;259(5092):230–234. doi: 10.1126/science.84217838421783
    • (1993) Science , vol.259 , Issue.5092 , pp. 230-234
    • Rabindran, S.1    Haroun, R.2    Clos, J.3    Wisniewski, J.4    Wu, C.5
  • 75
    • 0030200438 scopus 로고    scopus 로고
    • Heteromultimerization and NMDA Receptor-Clustering Activity of Chapsyn-110, a Member of the PSD-95 Family of Proteins
    • 8755482, .;;():–
    • Kim E, Cho KO, Rothschild A, Sheng M, Heteromultimerization and NMDA Receptor-Clustering Activity of Chapsyn-110, a Member of the PSD-95 Family of Proteins. Neuron; 1996;17(1):103–113. doi: 10.1016/S0896-6273(00)80284-68755482
    • (1996) Neuron , vol.17 , Issue.1 , pp. 103-113
    • Kim, E.1    Cho, K.O.2    Rothschild, A.3    Sheng, M.4
  • 76
    • 28944434119 scopus 로고    scopus 로고
    • Real-time kinetics of gene activity in individual bacteria
    • 16360033, .;;():–
    • Golding I, Paulsson J, Zawilski SM, Cox EC, Real-time kinetics of gene activity in individual bacteria. Cell; 2005;123(6):1025–1036. doi: 10.1016/j.cell.2005.09.03116360033
    • (2005) Cell , vol.123 , Issue.6 , pp. 1025-1036
    • Golding, I.1    Paulsson, J.2    Zawilski, S.M.3    Cox, E.C.4
  • 78
    • 0000111447 scopus 로고
    • Markovian modelling of gene product synthesis
    • .;;():–
    • Peccoud J, Ycart B, Markovian modelling of gene product synthesis. Theor Popul Biol; 1995;48(2):222–234. doi: 10.1006/tpbi.1995.1027
    • (1995) Theor Popul Biol , vol.48 , Issue.2 , pp. 222-234
    • Peccoud, J.1    Ycart, B.2
  • 79
    • 33750247101 scopus 로고    scopus 로고
    • Linking stochastic dynamics to population distribution: an analytical framework of gene expression
    • 17155441, .;;():
    • Friedman N, Cai L, Xie XS, Linking stochastic dynamics to population distribution: an analytical framework of gene expression. Phys Rev Lett; 2006;97(16):168302. doi: 10.1103/PhysRevLett.97.16830217155441
    • (2006) Phys Rev Lett , vol.97 , Issue.16 , pp. 168302
    • Friedman, N.1    Cai, L.2    Xie, X.S.3
  • 80
    • 56249130793 scopus 로고    scopus 로고
    • Analytical distributions for stochastic gene expression
    • 18988743, .;;():–
    • Shahrezaei V, Swain PS, Analytical distributions for stochastic gene expression. Proc Natl Acad Sci U S A; 2008;105(45):17256–17261. doi: 10.1073/pnas.080385010518988743
    • (2008) Proc Natl Acad Sci U S A , vol.105 , Issue.45 , pp. 17256-17261
    • Shahrezaei, V.1    Swain, P.S.2
  • 81
    • 84949115417 scopus 로고    scopus 로고
    • Computational and experimental single cell biology techniques for the definition of cell type heterogeneity, interplay and intracellular dynamics
    • 25461506, .;;:–
    • De Vargas Roditi L, Claassen M, Computational and experimental single cell biology techniques for the definition of cell type heterogeneity, interplay and intracellular dynamics. Curr Opin Biotechnol; 2015;34:9–15. doi: 10.1016/j.copbio.2014.10.01025461506
    • (2015) Curr Opin Biotechnol , vol.34 , pp. 9-15
    • De Vargas Roditi, L.1    Claassen, M.2
  • 82
    • 57749195712 scopus 로고    scopus 로고
    • RNA-Seq: a revolutionary tool for transcriptomics
    • .;;():–
    • Wang Z, Gerstein M, Snyder M, RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Gen; 2009;10(1):57–63. doi: 10.1038/nrg2484
    • (2009) Nat Rev Gen , vol.10 , Issue.1 , pp. 57-63
    • Wang, Z.1    Gerstein, M.2    Snyder, M.3
  • 83
    • 84856769427 scopus 로고    scopus 로고
    • Getting the whole picture: combining throughput with content in microscopy
    • 22124141, .;;():–
    • Rimon N, Schuldiner M, Getting the whole picture: combining throughput with content in microscopy. J Cell Sci; 2011;124(22):3743–3751. doi: 10.1242/jcs.08748622124141
    • (2011) J Cell Sci , vol.124 , Issue.22 , pp. 3743-3751
    • Rimon, N.1    Schuldiner, M.2
  • 84
    • 84866096861 scopus 로고    scopus 로고
    • Multiplexed mass cytometry profiling of cellular states perturbed by small-molecule regulators
    • 22902532, .;;():–
    • Bodenmiller B, Zunder ER, Finck R, Chen TJ, Savig ES, Bruggner RV, et al. Multiplexed mass cytometry profiling of cellular states perturbed by small-molecule regulators. Nat Biotechnol; 2012;30(9):858–867. doi: 10.1038/nbt.231722902532
    • (2012) Nat Biotechnol , vol.30 , Issue.9 , pp. 858-867
    • Bodenmiller, B.1    Zunder, E.R.2    Finck, R.3    Chen, T.J.4    Savig, E.S.5    Bruggner, R.V.6
  • 85
    • 84937020006 scopus 로고    scopus 로고
    • Approximate distributions of the Master equation
    • 012120
    • Thomas P, Grima R, Approximate distributions of the Master equation. Physical Review E; 2015;92:012120.
    • (2015) Physical Review E , vol.92
    • Thomas, P.1    Grima, R.2
  • 86
    • 84888027235 scopus 로고    scopus 로고
    • High-dimensional Bayesian parameter estimation: Case study for a model of JAK2/STAT5 signaling
    • 23602931, .;;():–
    • Hug S, Raue A, Hasenauer J, Bachmann J, Klingmüller U, Timmer J, et al. High-dimensional Bayesian parameter estimation: Case study for a model of JAK2/STAT5 signaling. Math Biosci; 2013;246(2):293–304. doi: 10.1016/j.mbs.2013.04.00223602931
    • (2013) Math Biosci , vol.246 , Issue.2 , pp. 293-304
    • Hug, S.1    Raue, A.2    Hasenauer, J.3    Bachmann, J.4    Klingmüller, U.5    Timmer, J.6
  • 87
    • 84865676947 scopus 로고    scopus 로고
    • Dynamical optimization using reduced order models: A method to guarantee performance
    • .;;():–
    • Hasenauer J, Löhning M, Khammash M, Allgöwer F, Dynamical optimization using reduced order models: A method to guarantee performance. Journal of Process Control; 2012;22(8):1490–1501. doi: 10.1016/j.jprocont.2012.01.017
    • (2012) Journal of Process Control , vol.22 , Issue.8 , pp. 1490-1501
    • Hasenauer, J.1    Löhning, M.2    Khammash, M.3    Allgöwer, F.4
  • 90
    • 84980045264 scopus 로고    scopus 로고
    • Chkrebtii OA, Campbell DA, Girolami MA, Calderhead B. Bayesian uncertainty quantification for differential equations. arXiv:13062365 [statME]; 2014;
    • Chkrebtii OA, Campbell DA, Girolami MA, Calderhead B. Bayesian uncertainty quantification for differential equations. arXiv:13062365 [statME]; 2014;.
  • 92
    • 84900519810 scopus 로고    scopus 로고
    • Phenotypic switching in gene regulatory networks
    • 24782538, .;;():–
    • Thomas P, Popovic N, Grima R, Phenotypic switching in gene regulatory networks. Proc Natl Acad Sci U S A; 2014;111(19):6994–6999. doi: 10.1073/pnas.140004911124782538
    • (2014) Proc Natl Acad Sci U S A , vol.111 , Issue.19 , pp. 6994-6999
    • Thomas, P.1    Popovic, N.2    Grima, R.3
  • 93
    • 84905460441 scopus 로고    scopus 로고
    • ODE constrained mixture modelling: A method for unraveling subpopulation structures and dynamics
    • 24992156, .;;():
    • Hasenauer J, Hasenauer C, Hucho T, Theis FJ, ODE constrained mixture modelling: A method for unraveling subpopulation structures and dynamics. PLoS Comput Biol; 2014;10(7):e1003686. doi: 10.1371/journal.pcbi.100368624992156
    • (2014) PLoS Comput Biol , vol.10 , Issue.7 , pp. e1003686
    • Hasenauer, J.1    Hasenauer, C.2    Hucho, T.3    Theis, F.J.4
  • 94
    • 79953280811 scopus 로고    scopus 로고
    • Long-term single-cell imaging of mammalian stem cells
    • .;;():–
    • Schroeder T, Long-term single-cell imaging of mammalian stem cells. Nat Methods; 2011;8(4):30–35. doi: 10.1038/nmeth.1577
    • (2011) Nat Methods , vol.8 , Issue.4 , pp. 30-35
    • Schroeder, T.1
  • 95
    • 67649586670 scopus 로고    scopus 로고
    • Quantitative analysis of gene expression in a single cell by qPCR
    • 19525960, .;;():–
    • Taniguchi K, Kajiyama T, Kambara H, Quantitative analysis of gene expression in a single cell by qPCR. Nature Methods; 2009;6(7):503–506. doi: 10.1038/nmeth.133819525960
    • (2009) Nature Methods , vol.6 , Issue.7 , pp. 503-506
    • Taniguchi, K.1    Kajiyama, T.2    Kambara, H.3
  • 96
    • 84860171972 scopus 로고    scopus 로고
    • Using cell-to-cell variability–A new era in molecular biology
    • .;;():–
    • Pelkmans L, Using cell-to-cell variability–A new era in molecular biology. Science; 2012;336(6080):425–426.
    • (2012) Science , vol.336 , Issue.6080 , pp. 425-426
    • Pelkmans, L.1
  • 97
    • 84859641038 scopus 로고    scopus 로고
    • Using gene expression noise to understand gene regulation
    • 22499939, .;;():–
    • Munsky B, Neuert G, von Oudenaarden A, Using gene expression noise to understand gene regulation. Science; 2012;336(6078):183–187. doi: 10.1126/science.121637922499939
    • (2012) Science , vol.336 , Issue.6078 , pp. 183-187
    • Munsky, B.1    Neuert, G.2    von Oudenaarden, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.