메뉴 건너뛰기




Volumn 16, Issue 4, 2006, Pages 339-354

DRAM: Efficient adaptive MCMC

Author keywords

Adaptive Markov chain Monte Carlo; Adaptive Metropolis Hastings; Delayed rejection; Efficiency ordering

Indexed keywords


EID: 33750082644     PISSN: 09603174     EISSN: None     Source Type: Journal    
DOI: 10.1007/s11222-006-9438-0     Document Type: Article
Times cited : (1395)

References (18)
  • 2
    • 33750054419 scopus 로고    scopus 로고
    • On the ergodicity properties of some adaptive MCMC algorithms
    • To appear in
    • Andrieu C. and Moulines E. 2002. On the ergodicity properties of some adaptive MCMC algorithms. To appear in Annals of Applied Probability.
    • (2002) Annals of Applied Probability
    • Andrieu, C.1    Moulines, E.2
  • 3
    • 33747062507 scopus 로고    scopus 로고
    • On adaptive Markov chain Monte carlo algorithms
    • Atchade Y.F. and Rosenthal J.S. 2005. On adaptive Markov chain Monte carlo algorithms. Bernoulli 11(5): 815-282.
    • (2005) Bernoulli , vol.11 , Issue.5 , pp. 815-1282
    • Atchade, Y.F.1    Rosenthal, J.S.2
  • 4
    • 0003451744 scopus 로고
    • Rates, constants, and kinetic formulations in surface water modeling
    • U.S. Environmental Agency, ORD, Athens, GA, ERL
    • Bowie G.L., Mills W.B., et al. 1985. Rates, constants, and kinetic formulations in surface water modeling. Technical Report EPA/600/3-85/040, U.S. Environmental Agency, ORD, Athens, GA, ERL.
    • (1985) Technical Report , vol.EPA-600-3-85-040
    • Bowie, G.L.1    Mills, W.B.2
  • 5
    • 0000954353 scopus 로고    scopus 로고
    • Efficient Metropolis jumping rules
    • Bernardo J.M., Berger J.O., David A.F., and Smith A.F.M. (Eds.) Oxford University Press
    • Gelman A.G., Roberts G.O., and Gilks W.R. 1996. Efficient Metropolis jumping rules. In: Bernardo J.M., Berger J.O., David A.F., and Smith A.F.M. (Eds.), Bayesian Statistics V. Oxford University Press, pp. 599-608.
    • (1996) Bayesian Statistics V , pp. 599-608
    • Gelman, A.G.1    Roberts, G.O.2    Gilks, W.R.3
  • 6
    • 0042908796 scopus 로고    scopus 로고
    • Delayed rejection in reversible jump Metropolis-Hastings
    • Green, P.J. and Mira, A. 2001 Delayed rejection in reversible jump Metropolis-Hastings. Biometrika 88: 1035-1053.
    • (2001) Biometrika , vol.88 , pp. 1035-1053
    • Green, P.J.1    Mira, A.2
  • 8
    • 0033436531 scopus 로고    scopus 로고
    • Adaptive proposal distribution for random walk Metropolis algorithm
    • Haario H., Saksman E., and Tamminen J. 1999. Adaptive proposal distribution for random walk Metropolis algorithm. Comp. Stat. 14: 375-395.
    • (1999) Comp. Stat. , vol.14 , pp. 375-395
    • Haario, H.1    Saksman, E.2    Tamminen, J.3
  • 9
    • 0038563932 scopus 로고    scopus 로고
    • An adaptive Metropolis algorithm
    • Haario H., Saksman E., and Tamminen J. 2001. An adaptive Metropolis algorithm. Bernoulli 7: 223-242.
    • (2001) Bernoulli , vol.7 , pp. 223-242
    • Haario, H.1    Saksman, E.2    Tamminen, J.3
  • 10
    • 33746082065 scopus 로고    scopus 로고
    • Componentwise adaptation for high dimensional MCMC
    • Haario H., Saksman E., and Tamminen J. 2005. Componentwise adaptation for high dimensional MCMC. Computational Statistics 20(2): 265-274.
    • (2005) Computational Statistics , vol.20 , Issue.2 , pp. 265-274
    • Haario, H.1    Saksman, E.2    Tamminen, J.3
  • 12
    • 84891435216 scopus 로고    scopus 로고
    • On Metropolis-Hastings algorithms with delayed rejection
    • Mira A. 2001. On Metropolis-Hastings algorithms with delayed rejection. Metron, Vol. LIX, (3-4): 231-241.
    • (2001) Metron , vol.59 , Issue.3-4 , pp. 231-241
    • Mira, A.1
  • 13
    • 0042193001 scopus 로고    scopus 로고
    • Ordering and improving the performance of Monte Carlo Markov Chains
    • Mira A. 2002. Ordering and improving the performance of Monte Carlo Markov Chains. Statistical Science 16: 340-350.
    • (2002) Statistical Science , vol.16 , pp. 340-350
    • Mira, A.1
  • 14
    • 0015730787 scopus 로고
    • Optimum Monte Carlo sampling using markov chains
    • Peskun P.H. 1973. Optimum Monte Carlo sampling using markov chains. Biometrika 60: 607-612.
    • (1973) Biometrika , vol.60 , pp. 607-612
    • Peskun, P.H.1
  • 16
    • 0000576595 scopus 로고
    • Markov chains for exploring posterior distributions
    • Tierney L. 1994. Markov chains for exploring posterior distributions. Annals of Statistics 22: 1701-1762.
    • (1994) Annals of Statistics , vol.22 , pp. 1701-1762
    • Tierney, L.1
  • 17
    • 0032382065 scopus 로고    scopus 로고
    • A note on Metropolis-Hastings kernels for general state spaces
    • Tierney L. 1998. A note on Metropolis-Hastings kernels for general state spaces. Annals of Applied Probability 8: 1-9.
    • (1998) Annals of Applied Probability , vol.8 , pp. 1-9
    • Tierney, L.1
  • 18
    • 0033619197 scopus 로고    scopus 로고
    • Some adaptive Monte Carlo methods for bayesian inference
    • Tierney L. and Mira A. 1999. Some adaptive Monte Carlo methods for bayesian inference. Statistics in Medicine 18:2507-2515.
    • (1999) Statistics in Medicine , vol.18 , pp. 2507-2515
    • Tierney, L.1    Mira, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.