메뉴 건너뛰기




Volumn , Issue , 2013, Pages 1-510

Applied Logistic Regression: Third Edition

Author keywords

[No Author keywords available]

Indexed keywords

APPLICATION PROGRAMS; BAYESIAN NETWORKS; HEALTH;

EID: 84977601395     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1002/9781118548387     Document Type: Book
Times cited : (8070)

References (392)
  • 5
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19, 716-723.
    • (1974) IEEE Transactions on Automatic Control , vol.19 , pp. 716-723
    • Akaike, H.1
  • 8
    • 0002662712 scopus 로고
    • On the existence of maximum likelihood estimates in logistic models
    • Albert, A., and Anderson, J. A. (1984). On the existence of maximum likelihood estimates in logistic models. Biometrika, 71, 1-10.
    • (1984) Biometrika , vol.71 , pp. 1-10
    • Albert, A.1    Anderson, J.A.2
  • 11
    • 0000517212 scopus 로고
    • Bayesian residual analysis for binary response regression models
    • Albert, J., and Chib, S. (1995). Bayesian residual analysis for binary response regression models. Biometrika, 82, 747-769.
    • (1995) Biometrika , vol.82 , pp. 747-769
    • Albert, J.1    Chib, S.2
  • 12
    • 0004093524 scopus 로고    scopus 로고
    • Sage Publications, Thousand Oaks, CA.
    • Allison, P. (2001). Missing Data, Sage Publications, Thousand Oaks, CA.
    • (2001) Missing Data
    • Allison, P.1
  • 13
    • 85017454162 scopus 로고    scopus 로고
    • Paper presented at the annual meeting of the SAS Users Group International, Philadelphia, PA.
    • Allison, P. (2005). Imputation of Categorical Variables with PROC MI, Paper presented at the annual meeting of the SAS Users Group International, Philadelphia, PA.
    • (2005) Imputation of Categorical Variables with PROC MI
    • Allison, P.1
  • 14
    • 0035643855 scopus 로고    scopus 로고
    • Fractional polynomial model selection procedures: Investigation of type I error rate
    • Ambler, G., and Royston, P. (2001). Fractional polynomial model selection procedures: Investigation of type I error rate. Journal of Statistical Computation and Simulation, 69, 89-108.
    • (2001) Journal of Statistical Computation and Simulation , vol.69 , pp. 89-108
    • Ambler, G.1    Royston, P.2
  • 15
    • 0031463463 scopus 로고    scopus 로고
    • Regression models for ordinal data: A review of methods and application
    • Ananth, C. V., and Kleinbaum, D. G. (1997). Regression models for ordinal data: A review of methods and application. International Journal of Epidemiology, 26, 1323-1333.
    • (1997) International Journal of Epidemiology , vol.26 , pp. 1323-1333
    • Ananth, C.V.1    Kleinbaum, D.G.2
  • 18
    • 12344301400 scopus 로고    scopus 로고
    • Model-checking techniques for stratified case-control studies
    • Arbogast, P. G., and Lin, D. Y. (2005). Model-checking techniques for stratified case-control studies. Statistics in Medicine, 24, 229-247.
    • (2005) Statistics in Medicine , vol.24 , pp. 229-247
    • Arbogast, P.G.1    Lin, D.Y.2
  • 20
    • 33646511794 scopus 로고    scopus 로고
    • Goodness of fit test for the logistic regression model fitted using sample survey data
    • Archer, K. J., and Lemeshow, S. (2006). Goodness of fit test for the logistic regression model fitted using sample survey data. Stata Journal, 6, 97-105.
    • (2006) Stata Journal , vol.6 , pp. 97-105
    • Archer, K.J.1    Lemeshow, S.2
  • 21
    • 34147115663 scopus 로고    scopus 로고
    • Goodness-of-fit tests for logistic regression models when data are collected using a complex sampling design
    • Archer, K. J., Lemeshow, S., and Hosmer, D. W. (2007). Goodness-of-fit tests for logistic regression models when data are collected using a complex sampling design. Computational Statistics and Data Analysis, 51, 4450-4464.
    • (2007) Computational Statistics and Data Analysis , vol.51 , pp. 4450-4464
    • Archer, K.J.1    Lemeshow, S.2    Hosmer, D.W.3
  • 22
    • 84986604770 scopus 로고    scopus 로고
    • Conditionally specified distributions: An introduction
    • Arnold, B., Castillo, E., and Sarabia, J. (2001). Conditionally specified distributions: An introduction. Statistical Science, 16, 249-274.
    • (2001) Statistical Science , vol.16 , pp. 249-274
    • Arnold, B.1    Castillo, E.2    Sarabia, J.3
  • 27
    • 44649173785 scopus 로고    scopus 로고
    • A critical appraisal of propensity-score matching in the medical literature between 1996 and 2003
    • Austin, P. C. (2008). A critical appraisal of propensity-score matching in the medical literature between 1996 and 2003. Statistics in Medicine, 27, 2037-2049.
    • (2008) Statistics in Medicine , vol.27 , pp. 2037-2049
    • Austin, P.C.1
  • 28
    • 33846842327 scopus 로고    scopus 로고
    • A comparison of the ability of different propensity score models to balance measured variables between treated and untreated subjects: A Monte Carlo study
    • Austin, P. C., Grootendorsi, P., and Anderson, G. M. (2007). A comparison of the ability of different propensity score models to balance measured variables between treated and untreated subjects: A Monte Carlo study. Statistics in Medicine, 26, 734-753.
    • (2007) Statistics in Medicine , vol.26 , pp. 734-753
    • Austin, P.C.1    Grootendorsi, P.2    Anderson, G.M.3
  • 29
    • 33745466638 scopus 로고    scopus 로고
    • A comparison of propensity score methods: A case-study estimating the effectiveness of post-AMI statin use
    • Austin, P. C., and Mamdani, M. M. (2006). A comparison of propensity score methods: A case-study estimating the effectiveness of post-AMI statin use. Statistics in Medicine, 25, 2084-2106.
    • (2006) Statistics in Medicine , vol.25 , pp. 2084-2106
    • Austin, P.C.1    Mamdani, M.M.2
  • 30
    • 0037222788 scopus 로고    scopus 로고
    • Comparing hierarchical modeling with traditional logistic regression analysis among patients hospitalized with acute myocardial infarction: Should we be analyzing cardiovascular outcomes data differently?
    • Austin, P. C., Tu, J. V., and Alter, D. A. (2003). Comparing hierarchical modeling with traditional logistic regression analysis among patients hospitalized with acute myocardial infarction: Should we be analyzing cardiovascular outcomes data differently? American Heart Journal, 145, 27-35.
    • (2003) American Heart Journal , vol.145 , pp. 27-35
    • Austin, P.C.1    Tu, J.V.2    Alter, D.A.3
  • 31
    • 0002671486 scopus 로고
    • Logistic regression for autocorrelated data with application to repeated measures
    • Azzalini, A. (1994). Logistic regression for autocorrelated data with application to repeated measures. Biometrika, 81, 767-775.
    • (1994) Biometrika , vol.81 , pp. 767-775
    • Azzalini, A.1
  • 32
    • 0023020183 scopus 로고
    • The moderator-mediator variable distinction in social psychological research: Conceptual, strategic and statistical considerations
    • Baron, R. M., and Kenny, D. A. (1986). The moderator-mediator variable distinction in social psychological research: Conceptual, strategic and statistical considerations. Journal of Personality and Social Psychology, 51, 1173-1182.
    • (1986) Journal of Personality and Social Psychology , vol.51 , pp. 1173-1182
    • Baron, R.M.1    Kenny, D.A.2
  • 33
    • 62949087988 scopus 로고
    • Calculation of polychotomous logistic regression parameters using individualized regressions
    • Begg, C. B., and Gray, R. (1984). Calculation of polychotomous logistic regression parameters using individualized regressions. Biometrika, 71, 11-18.
    • (1984) Biometrika , vol.71 , pp. 11-18
    • Begg, C.B.1    Gray, R.2
  • 36
    • 37049214786 scopus 로고
    • The method of probits-a correction
    • Bliss, C. I. (1934). The method of probits-a correction. Science, 79, 38-39.
    • (1934) Science , vol.79 , pp. 38-39
    • Bliss, C.I.1
  • 37
    • 37049203161 scopus 로고
    • The method of probits-a correction
    • Bliss, C.I.(1937). The method of probits-a correction. Science, 79, 409-410
    • (1937) Science , vol.79 , pp. 409-410
    • Bliss, C.I.1
  • 38
    • 33644688570 scopus 로고    scopus 로고
    • Parameter estimation and goodness of fit it in log binomial regression
    • Blizzard, L. and Hosmer, D.W. (2006) Parameter estimation and goodness of fit it in log binomial regression, Biometrical Journal, 48, 5-22.
    • (2006) Biometrical Journal , vol.48 , pp. 5-22
    • Blizzard, L.1    Hosmer, D.W.2
  • 39
    • 0025687852 scopus 로고
    • Assessing proportionality in the proportional odds model for ordinal logistic regression
    • Brant, R. (1990). Assessing proportionality in the proportional odds model for ordinal logistic regression. Biometrics, 46, 1171-1178.
    • (1990) Biometrics , vol.46 , pp. 1171-1178
    • Brant, R.1
  • 41
    • 15244359307 scopus 로고    scopus 로고
    • Whither PQL?
    • University of Washington Biostatistics Working Paper Series, 192
    • Breslow, N. (2003). Whither PQL? University of Washington Biostatistics Working Paper Series, 192, www.bepress.com/uwbiostat/paper192.
    • (2003)
    • Breslow, N.1
  • 42
    • 0002783074 scopus 로고
    • Logistic regression for two-stage case-control data
    • Breslow, N. E., and Cain, K. C. (1988). Logistic regression for two-stage case-control data. Biometrika, 75, 11-20.
    • (1988) Biometrika , vol.75 , pp. 11-20
    • Breslow, N.E.1    Cain, K.C.2
  • 45
    • 0023762214 scopus 로고
    • Logistic regression for stratified case-control studies
    • Breslow, N. E., and Zhao, L. P. (1988). Logistic regression for stratified case-control studies. Biometrics, 44, 891-899.
    • (1988) Biometrics , vol.44 , pp. 891-899
    • Breslow, N.E.1    Zhao, L.P.2
  • 47
    • 0034394761 scopus 로고    scopus 로고
    • Implementation and performance issues in the Bayesian fitting of multilevel models
    • Browne, W., and Draper, D. (2000). Implementation and performance issues in the Bayesian fitting of multilevel models. Computational Statistics, 15, 391-420.
    • (2000) Computational Statistics , vol.15 , pp. 391-420
    • Browne, W.1    Draper, D.2
  • 48
    • 0001461342 scopus 로고
    • The incidence of monotone likelihood in the Cox model
    • Bryson, M. C., and Johnson, M. E. (1981). The incidence of monotone likelihood in the Cox model. Technometrics, 23, 381-384.
    • (1981) Technometrics , vol.23 , pp. 381-384
    • Bryson, M.C.1    Johnson, M.E.2
  • 49
    • 33846805720 scopus 로고    scopus 로고
    • Confidence intervals for multinomial logistic regression in sparse data
    • Bull, S. B., Lewinger, J. P., and Lee, S. S. F. (2007). Confidence intervals for multinomial logistic regression in sparse data. Statistics in Medicine, 26, 903-918.
    • (2007) Statistics in Medicine , vol.26 , pp. 903-918
    • Bull, S.B.1    Lewinger, J.P.2    Lee, S.S.F.3
  • 54
    • 0001179856 scopus 로고
    • Bayesian residual analysis in the presence of censoring
    • Chaloner, K. (1991). Bayesian residual analysis in the presence of censoring. Biometrika, 78, 637-644.
    • (1991) Biometrika , vol.78 , pp. 637-644
    • Chaloner, K.1
  • 55
    • 0000499051 scopus 로고
    • A Bayesian approach to outlier detection and residual analysis
    • Chaloner, K., and Brant, R. (1988). A Bayesian approach to outlier detection and residual analysis. Biometrika, 75, 651-659.
    • (1988) Biometrika , vol.75 , pp. 651-659
    • Chaloner, K.1    Brant, R.2
  • 56
    • 0009862704 scopus 로고
    • Maximum likelihood methods for complex sample data: Logistic regression and discrete proportional hazards models
    • Chambless, L. E., and Boyle, K. E. (1985). Maximum likelihood methods for complex sample data: Logistic regression and discrete proportional hazards models. Communications in Statistics: Theory and Methods, 14, 1377-1392.
    • (1985) Communications in Statistics: Theory and Methods , vol.14 , pp. 1377-1392
    • Chambless, L.E.1    Boyle, K.E.2
  • 57
    • 0030901785 scopus 로고    scopus 로고
    • Effect of omitted confounders in the analysis of correlated binary data
    • Chao, W-H., Palta, M., and Young, T. (1997). Effect of omitted confounders in the analysis of correlated binary data. Biometrics, 53, 678-689.
    • (1997) Biometrics , vol.53 , pp. 678-689
    • Chao, W.-H.1    Palta, M.2    Young, T.3
  • 58
    • 0011425035 scopus 로고
    • Testing goodness of fit for a parametric family of link functions
    • Cheng, K., and Wu, J. (1994). Testing goodness of fit for a parametric family of link functions. Journal of the American Statistical Association, 89, 657-664.
    • (1994) Journal of the American Statistical Association , vol.89 , pp. 657-664
    • Cheng, K.1    Wu, J.2
  • 60
    • 32344446687 scopus 로고
    • Understanding the Metropolis-Hastings algorithm
    • Chib, S., and Greenberg, E. (1995). Understanding the Metropolis-Hastings algorithm. American Statistician, 49, 327-335.
    • (1995) American Statistician , vol.49 , pp. 327-335
    • Chib, S.1    Greenberg, E.2
  • 62
    • 0003485198 scopus 로고    scopus 로고
    • Second Edition, Chapman & Hall/CRC, London.
    • Collett, D. (2003). Modelling Binary Data, Second Edition, Chapman & Hall/CRC, London.
    • (2003) Modelling Binary Data
    • Collett, D.1
  • 67
    • 84952094529 scopus 로고
    • Detection of influential observations in linear regression
    • Cook, R. D. (1977). Detection of influential observations in linear regression. Technometrics, 19, 15-18.
    • (1977) Technometrics , vol.19 , pp. 15-18
    • Cook, R.D.1
  • 70
    • 0021004738 scopus 로고
    • Plotting p against x
    • Copas, J. B. (1983). Plotting p against x. Applied Statistics, 32, 25-31.
    • (1983) Applied Statistics , vol.32 , pp. 25-31
    • Copas, J.B.1
  • 71
    • 84873755208 scopus 로고
    • A method of estimating comparative rates from clinical data: Applications to cancer of the lung, breast and cervix
    • Cornfield, J. (1951). A method of estimating comparative rates from clinical data: Applications to cancer of the lung, breast and cervix. Journal of the National Cancer Institute, 11, 1269-1275.
    • (1951) Journal of the National Cancer Institute , vol.11 , pp. 1269-1275
    • Cornfield, J.1
  • 72
    • 73049170912 scopus 로고
    • Joint dependence of the risk of coronary heart disease on serum cholesterol and systolic blood pressure: A discriminant function analysis
    • Cornfield, J. (1962). Joint dependence of the risk of coronary heart disease on serum cholesterol and systolic blood pressure: A discriminant function analysis. Federation Proceedings, 21, 58-61.
    • (1962) Federation Proceedings , vol.21 , pp. 58-61
    • Cornfield, J.1
  • 74
    • 0034097493 scopus 로고    scopus 로고
    • Random effects modeling of multiple binomial responses using the multivariate binomial logit-normal distribution
    • Coull, B. A., and Agresti, A. (2000). Random effects modeling of multiple binomial responses using the multivariate binomial logit-normal distribution. Biometrics, 56, 73-80.
    • (2000) Biometrics , vol.56 , pp. 73-80
    • Coull, B.A.1    Agresti, A.2
  • 75
    • 0000149045 scopus 로고
    • Two further applications of a model for binary regression
    • Cox, D. R. (1958). Two further applications of a model for binary regression. Biometrika, 45, 562-565.
    • (1958) Biometrika , vol.45 , pp. 562-565
    • Cox, D.R.1
  • 79
    • 3543135271 scopus 로고    scopus 로고
    • Tutorial in Biostatistics: Propensity score methods for bias reduction in the comparison of a treatment to a non-randomized control group
    • D'Agostino, Jr., R. B. (1998). Tutorial in Biostatistics: Propensity score methods for bias reduction in the comparison of a treatment to a non-randomized control group. Statistics in Medicine, 17, 2265-2281.
    • (1998) Statistics in Medicine , vol.17 , pp. 2265-2281
    • D'Agostino, R.B.1
  • 80
  • 81
    • 0018655272 scopus 로고
    • Testing hypotheses in case-control studies - equivalence of Mantel-Haenszel statistics and logit score tests
    • Day, N. E., and Byar, D. P. (1979). Testing hypotheses in case-control studies - equivalence of Mantel-Haenszel statistics and logit score tests. Biometrics, 35, 623-630.
    • (1979) Biometrics , vol.35 , pp. 623-630
    • Day, N.E.1    Byar, D.P.2
  • 82
    • 0011335953 scopus 로고    scopus 로고
    • Bayesian variable selection using the Gibbs sampler
    • edited by D. Dey, S. Ghosh, and B. Mallick, Marcel Dekker, New York.
    • Dellaportas, P., Forster, J., and Ntzoufras, I. (2000). Bayesian variable selection using the Gibbs sampler. In Generalized Linear Models: A Bayesian Perspective, edited by D. Dey, S. Ghosh, and B. Mallick, Marcel Dekker, New York.
    • (2000) Generalized Linear Models: A Bayesian Perspective
    • Dellaportas, P.1    Forster, J.2    Ntzoufras, I.3
  • 84
    • 34547487948 scopus 로고    scopus 로고
    • Sample size for logistic regression revisited
    • Demidenko, E. (2007). Sample size for logistic regression revisited. Statistics in Medicine, 26, 3385-3397.
    • (2007) Statistics in Medicine , vol.26 , pp. 3385-3397
    • Demidenko, E.1
  • 85
    • 0033929727 scopus 로고    scopus 로고
    • Multilevel analysis in public health research
    • Diez-Roux, P. (2000). Multilevel analysis in public health research. Annual Reviews of Public Health, 21, 171-192.
    • (2000) Annual Reviews of Public Health , vol.21 , pp. 171-192
    • Diez-Roux, P.1
  • 88
    • 84886193637 scopus 로고
    • The efficiency of logistic regression compared to normal discriminant function analysis
    • Efron, B. (1975). The efficiency of logistic regression compared to normal discriminant function analysis. Journal of the American Statistical Association, 70, 892-898.
    • (1975) Journal of the American Statistical Association , vol.70 , pp. 892-898
    • Efron, B.1
  • 89
    • 85017467214 scopus 로고
    • Statistical Interaction Revisited, Research Report
    • Dept of Biostatistics University of Chapel Hill, Chapel Hill, N.C
    • Elandt-Johnson, R. (1984). Statistical Interaction Revisited, Research Report. Dept of Biostatistics University of Chapel Hill, Chapel Hill, N.C, http://www.stat.ncsu.edu/information/library/mimeo.archive/ISMS_1984_1457.pdf.
    • (1984)
    • Elandt-Johnson, R.1
  • 93
    • 16844380315 scopus 로고    scopus 로고
    • A comparison of goodness of fit tests for the logistic GEE model
    • Evans, S., and Li, L. (2005). A comparison of goodness of fit tests for the logistic GEE model. Statistics in Medicine, 24, 1245-1261.
    • (2005) Statistics in Medicine , vol.24 , pp. 1245-1261
    • Evans, S.1    Li, L.2
  • 95
    • 84869766314 scopus 로고    scopus 로고
    • A generalized Hosmer-Lemeshow goodness of fit test for multinomial logistic regression
    • Fagerland, M. W., and Hosmer, D. W. (2012a). A generalized Hosmer-Lemeshow goodness of fit test for multinomial logistic regression. Stata Journal, 12(3), 447-453.
    • (2012) Stata Journal , vol.12 , Issue.3 , pp. 447-453
    • Fagerland, M.W.1    Hosmer, D.W.2
  • 96
    • 84877604659 scopus 로고    scopus 로고
    • A goodness of fit test for the proportional odds regression model
    • Epub ahead of print
    • Fagerland, M. W., and Hosmer, D. W. (2012b). A goodness of fit test for the proportional odds regression model. Statistics in Medicine, Epub ahead of print, doi:10.1002/sim5645.
    • (2012) Statistics in Medicine
    • Fagerland, M.W.1    Hosmer, D.W.2
  • 97
    • 50849124756 scopus 로고    scopus 로고
    • Multinomial goodness-of-fit tests for logistic regression models
    • Fagerland, M. W., Hosmer, D. W., and Bofin, A. M. (2008). Multinomial goodness-of-fit tests for logistic regression models. Statistics in Medicine, 27, 4238-4253.
    • (2008) Statistics in Medicine , vol.27 , pp. 4238-4253
    • Fagerland, M.W.1    Hosmer, D.W.2    Bofin, A.M.3
  • 98
    • 0018383209 scopus 로고
    • Some results on the estimation of logistic models based on retrospective data
    • Farewell, V. T. (1979). Some results on the estimation of logistic models based on retrospective data. Biometrika, 66, 27-32.
    • (1979) Biometrika , vol.66 , pp. 27-32
    • Farewell, V.T.1
  • 99
    • 0001018909 scopus 로고    scopus 로고
    • On assessing goodness of fit of generalized linear models to sparse data
    • Farrington, C. P. (1996). On assessing goodness of fit of generalized linear models to sparse data. Journal of the Royal Statistical Society, Series B, 58, 344-366.
    • (1996) Journal of the Royal Statistical Society, Series B , vol.58 , pp. 344-366
    • Farrington, C.P.1
  • 100
    • 0023004824 scopus 로고
    • Logistic regression methods for retrospective casecontrol studies using complex sampling procedures
    • Fears, T. R., and Brown, C. C. (1986). Logistic regression methods for retrospective casecontrol studies using complex sampling procedures. Biometrics, 42, 955-960.
    • (1986) Biometrics , vol.42 , pp. 955-960
    • Fears, T.R.1    Brown, C.C.2
  • 101
    • 0002178053 scopus 로고
    • Bias reduction of maximum likelihood estimates
    • Firth, D. (1993). Bias reduction of maximum likelihood estimates. Biometrika, 80, 27-38.
    • (1993) Biometrika , vol.80 , pp. 27-38
    • Firth, D.1
  • 102
    • 84952499789 scopus 로고
    • Frequency of selecting noise variables in subset regression analysis: A simulation study
    • Flack, V. F., and Chang, P. C. (1987). Frequency of selecting noise variables in subset regression analysis: A simulation study. American Statistician, 41, 84-86.
    • (1987) American Statistician , vol.41 , pp. 84-86
    • Flack, V.F.1    Chang, P.C.2
  • 103
    • 0018688114 scopus 로고
    • Confidence intervals for the odds ratio in case-control studies: State of the art
    • Fleiss, J. (1979). Confidence intervals for the odds ratio in case-control studies: State of the art. Journal of Chronic Diseases, 32, 69-77.
    • (1979) Journal of Chronic Diseases , vol.32 , pp. 69-77
    • Fleiss, J.1
  • 105
    • 44749085524 scopus 로고    scopus 로고
    • Need or availability? Modeling aftercare decisions for psychiatrically hospitalized youth
    • Fontanella, C. A., Early, T., and Phillips, G. (2008). Need or availability? Modeling aftercare decisions for psychiatrically hospitalized youth. Children and Youth Services Review, 30, 758-773.
    • (2008) Children and Youth Services Review , vol.30 , pp. 758-773
    • Fontanella, C.A.1    Early, T.2    Phillips, G.3
  • 106
    • 0000999621 scopus 로고
    • Some diagnostics for binary regression via smoothing
    • Fowlkes, E. B. (1987). Some diagnostics for binary regression via smoothing. Biometrika, 74, 503-515.
    • (1987) Biometrika , vol.74 , pp. 503-515
    • Fowlkes, E.B.1
  • 107
    • 84905002632 scopus 로고
    • A note on screening regression equations
    • Freedman, D. A. (1983). A note on screening regression equations. American Statistician, 37, 152-155.
    • (1983) American Statistician , vol.37 , pp. 152-155
    • Freedman, D.A.1
  • 108
    • 0016128505 scopus 로고
    • Regression by leaps and bounds
    • Furnival, G. M., and Wilson, R. W. (1974). Regression by leaps and bounds. Technometrics, 16, 499-511.
    • (1974) Technometrics , vol.16 , pp. 499-511
    • Furnival, G.M.1    Wilson, R.W.2
  • 109
    • 61749087965 scopus 로고    scopus 로고
    • Fixed effects, random effects and GEE: What are the differences?
    • Gardiner, J. C., Luo, Z. H., and Roman, L. A. (2009). Fixed effects, random effects and GEE: What are the differences? Statistics in Medicine, 28, 221-239.
    • (2009) Statistics in Medicine , vol.28 , pp. 221-239
    • Gardiner, J.C.1    Luo, Z.H.2    Roman, L.A.3
  • 115
    • 84972492387 scopus 로고
    • Inference from iterative simulation using multiple sequences (with discussion)
    • Gelman, A., and Rubin, D. (1992). Inference from iterative simulation using multiple sequences (with discussion). Statistical Science, 7, 457-511.
    • (1992) Statistical Science , vol.7 , pp. 457-511
    • Gelman, A.1    Rubin, D.2
  • 118
    • 0001032163 scopus 로고
    • Evaluating the accuracy of sampling-based approaches to calculating posterior moments
    • Edited by J. Bernardo, J. Berger, A. David, and A. Smith, Clarendon Press, Oxford.
    • Geweke, J. (1992). Evaluating the accuracy of sampling-based approaches to calculating posterior moments. In Bayesian Statistics 4, Edited by J. Bernardo, J. Berger, A. David, and A. Smith, Clarendon Press, Oxford.
    • (1992) Bayesian Statistics , vol.4
    • Geweke, J.1
  • 120
    • 0038312668 scopus 로고
    • Adaptive rejection Metropolis sampling
    • Gilks, W., Best, N., and Tan, K. (1995). Adaptive rejection Metropolis sampling. Applied Statistics, 44, 455-472.
    • (1995) Applied Statistics , vol.44 , pp. 455-472
    • Gilks, W.1    Best, N.2    Tan, K.3
  • 121
    • 0001178202 scopus 로고
    • A language and program for complex Bayesian modelling
    • Gilks, W., Thomas, A., and Spiegelhalter, D. (1994). A language and program for complex Bayesian modelling. The Statistician, 43, 169-177.
    • (1994) The Statistician , vol.43 , pp. 169-177
    • Gilks, W.1    Thomas, A.2    Spiegelhalter, D.3
  • 122
    • 0000324169 scopus 로고
    • Adaptive rejection sampling for Gibbs sampling
    • Gilks, W., and Wild, D. (1992). Adaptive rejection sampling for Gibbs sampling. Applied Statistics, 41, 337-348.
    • (1992) Applied Statistics , vol.41 , pp. 337-348
    • Gilks, W.1    Wild, D.2
  • 123
    • 0028289766 scopus 로고
    • Comparison of alternative regression models for paired binary data
    • Glynn, R. J., and Rosner, B. (1994). Comparison of alternative regression models for paired binary data. Statistics in Medicine, 13, 1023-1036.
    • (1994) Statistics in Medicine , vol.13 , pp. 1023-1036
    • Glynn, R.J.1    Rosner, B.2
  • 124
    • 33845486516 scopus 로고    scopus 로고
    • A goodness-of-fit test for multinomial logistic regression
    • Goeman, J. J., and le Cessie, S. (2006). A goodness-of-fit test for multinomial logistic regression. Biometrics, 62, 980-985.
    • (2006) Biometrics , vol.62 , pp. 980-985
    • Goeman, J.J.1    le Cessie, S.2
  • 125
    • 77956891017 scopus 로고
    • Nonlinear multilevel models, with an application to discrete response data
    • Goldstein, H. (1991). Nonlinear multilevel models, with an application to discrete response data. Biometrika, 78, 45-51.
    • (1991) Biometrika , vol.78 , pp. 45-51
    • Goldstein, H.1
  • 130
    • 77956889087 scopus 로고
    • Reversible jump Markov Chain Monte Carlo computation and Bayesian model determination
    • Green, P. (1995). Reversible jump Markov Chain Monte Carlo computation and Bayesian model determination. Biometrika, 82, 711-732.
    • (1995) Biometrika , vol.82 , pp. 711-732
    • Green, P.1
  • 131
    • 0020963636 scopus 로고
    • Tests for interaction in epidemiologic studies: a review and a study of power
    • Greenland, S. (1983). Tests for interaction in epidemiologic studies: a review and a study of power. Statistics in Medicine, 2, 243-251.
    • (1983) Statistics in Medicine , vol.2 , pp. 243-251
    • Greenland, S.1
  • 132
    • 0024503860 scopus 로고
    • Modelling variable selection in epidemiologic analysis
    • Greenland, S. (1989). Modelling variable selection in epidemiologic analysis. American Journal of Public Health, 79, 340-349.
    • (1989) American Journal of Public Health , vol.79 , pp. 340-349
    • Greenland, S.1
  • 133
    • 0027407588 scopus 로고
    • Additive risk versus additive relative risk models
    • Greenland, S. (1993). Additive risk versus additive relative risk models. Epidemiology, 4, 32-36.
    • (1993) Epidemiology , vol.4 , pp. 32-36
    • Greenland, S.1
  • 134
    • 0028129341 scopus 로고
    • Alternative models for ordinal logistic regression
    • Greenland, S. (1994). Alternative models for ordinal logistic regression. Statistics in Medicine, 13, 1665-1677.
    • (1994) Statistics in Medicine , vol.13 , pp. 1665-1677
    • Greenland, S.1
  • 135
    • 34447343362 scopus 로고    scopus 로고
    • Bayesian perspectives for epidemiological research II. Regression analysis
    • Greenland, S. (2007). Bayesian perspectives for epidemiological research II. Regression analysis. International Journal of Epidemiology, 36, 195-202.
    • (2007) International Journal of Epidemiology , vol.36 , pp. 195-202
    • Greenland, S.1
  • 137
    • 0014578060 scopus 로고
    • Analysis of categorical data by linear models
    • Grizzle, J., Starmer, F., and Koch, G. (1969). Analysis of categorical data by linear models. Biometrics, 25, 489-504.
    • (1969) Biometrics , vol.25 , pp. 489-504
    • Grizzle, J.1    Starmer, F.2    Koch, G.3
  • 139
    • 17244383340 scopus 로고    scopus 로고
    • Multilevel modeling for binary data
    • Guo, G., and Zhao, H. (2000). Multilevel modeling for binary data. Annual Review of Sociology, 26, 441-462.
    • (2000) Annual Review of Sociology , vol.26 , pp. 441-462
    • Guo, G.1    Zhao, H.2
  • 140
    • 70849134693 scopus 로고    scopus 로고
    • Proportion explained: A causal interpretation for standard measures of indirect effects
    • Hafeman, D. M. (2009). Proportion explained: A causal interpretation for standard measures of indirect effects. American Journal of Epidemiology, 170, 1443-1448.
    • (2009) American Journal of Epidemiology , vol.170 , pp. 1443-1448
    • Hafeman, D.M.1
  • 141
    • 66749103867 scopus 로고    scopus 로고
    • Opening the Black Box: a motivation for the assessment of mediation
    • Hafeman, D. M., and Schwartz, S. (2009). Opening the Black Box: a motivation for the assessment of mediation. International Journal of Epidemiology, 38, 838-845.
    • (2009) International Journal of Epidemiology , vol.38 , pp. 838-845
    • Hafeman, D.M.1    Schwartz, S.2
  • 143
    • 0015094008 scopus 로고
    • Estimation of the multivariate logistic risk function: A comparison of the discriminant function and maximum likelihood approaches
    • Halpern, M., Blackwelder, W. C., and Verter, J. I. (1971). Estimation of the multivariate logistic risk function: A comparison of the discriminant function and maximum likelihood approaches. Journal of Chronic Disease, 24, 125-158.
    • (1971) Journal of Chronic Disease , vol.24 , pp. 125-158
    • Halpern, M.1    Blackwelder, W.C.2    Verter, J.I.3
  • 144
    • 0442312140 scopus 로고    scopus 로고
    • Markov Chain Monte Carlo methods for computing Bayes Factors: A comparative review
    • Han, C., and Carlin, B. (2001). Markov Chain Monte Carlo methods for computing Bayes Factors: A comparative review. Journal of the American Statistical Association, 96, 1122-1132.
    • (2001) Journal of the American Statistical Association , vol.96 , pp. 1122-1132
    • Han, C.1    Carlin, B.2
  • 145
    • 34250686456 scopus 로고    scopus 로고
    • Multiple imputation: Review of theory, implementation and software
    • Harle, O., and Zhou, X-H. (2007). Multiple imputation: Review of theory, implementation and software. Statistics in Medicine, 26, 3057-3077.
    • (2007) Statistics in Medicine , vol.26 , pp. 3057-3077
    • Harle, O.1    Zhou, X.-H.2
  • 147
    • 0030069896 scopus 로고    scopus 로고
    • Tutorial in biostatistics: Multivariable prognostic models: Issues in developing models, evaluating assumptions and measuring and reducing errors
    • Harrell, F. E., Lee, K. L., and Mark, D. B. (1996). Tutorial in biostatistics: Multivariable prognostic models: Issues in developing models, evaluating assumptions and measuring and reducing errors. Statistics in Medicine, 15, 361-387.
    • (1996) Statistics in Medicine , vol.15 , pp. 361-387
    • Harrell, F.E.1    Lee, K.L.2    Mark, D.B.3
  • 148
    • 0016703288 scopus 로고
    • Selection of the experimental unit in teratology studies
    • Haseman, J. K., and Hogan, M. D. (1975). Selection of the experimental unit in teratology studies. Teratology, 12, 165-172.
    • (1975) Teratology , vol.12 , pp. 165-172
    • Haseman, J.K.1    Hogan, M.D.2
  • 149
    • 0018348314 scopus 로고
    • Analysis of dichotomous response data from certain toxicological experiments
    • Haseman, J. J., and Kupper, L. L. (1979). Analysis of dichotomous response data from certain toxicological experiments. Biometrics, 35, 281-293.
    • (1979) Biometrics , vol.35 , pp. 281-293
    • Haseman, J.J.1    Kupper, L.L.2
  • 150
    • 77956890234 scopus 로고
    • Monte Carlo sampling methods using Markov chains and their applications
    • Hastings, W. (1970). Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57, 97-109.
    • (1970) Biometrika , vol.57 , pp. 97-109
    • Hastings, W.1
  • 153
    • 0018999251 scopus 로고
    • A spectral method for confidence interval generation and run length control in simulations
    • Heidelberger, P., and Welch, P. (1981). A spectral method for confidence interval generation and run length control in simulations. Communications of the ACM, 24, 233-245.
    • (1981) Communications of the ACM , vol.24 , pp. 233-245
    • Heidelberger, P.1    Welch, P.2
  • 154
    • 0020850136 scopus 로고
    • Simulation run length control in the presence of an initial transient
    • Heidelberger, P., and Welch, P. (1983). Simulation run length control in the presence of an initial transient. Operations Research, 31, 1109-1144.
    • (1983) Operations Research , vol.31 , pp. 1109-1144
    • Heidelberger, P.1    Welch, P.2
  • 155
    • 33845900763 scopus 로고    scopus 로고
    • A comparative investigation of methods for logistic regression with separated or nearly separated data
    • Heinze, G. (2006). A comparative investigation of methods for logistic regression with separated or nearly separated data. Statistics in Medicine, 25, 4216-4226.
    • (2006) Statistics in Medicine , vol.25 , pp. 4216-4226
    • Heinze, G.1
  • 156
    • 0037199788 scopus 로고    scopus 로고
    • A solution to the problem of separation in logistic regression
    • Heinze, G., and Schemper, M. (2002). A solution to the problem of separation in logistic regression. Statistics in Medicine, 21, 2409-2419.
    • (2002) Statistics in Medicine , vol.21 , pp. 2409-2419
    • Heinze, G.1    Schemper, M.2
  • 157
    • 15544362262 scopus 로고    scopus 로고
    • Comparison of statistical methods for the analysis of binary observations
    • Heo, M., and Leon, A. (2005). Comparison of statistical methods for the analysis of binary observations. Statistics in Medicine, 24, 911-923.
    • (2005) Statistics in Medicine , vol.24 , pp. 911-923
    • Heo, M.1    Leon, A.2
  • 158
    • 44649182793 scopus 로고    scopus 로고
    • Discussion of research using propensity score matching: Comments on "A critical appraisal of propensity score matching in the medical literature between 1996 and 2003"
    • Hill, J. (2008). Discussion of research using propensity score matching: Comments on "A critical appraisal of propensity score matching in the medical literature between 1996 and 2003". Statistics in Medicine, 27, 2055-2061.
    • (2008) Statistics in Medicine , vol.27 , pp. 2055-2061
    • Hill, J.1
  • 161
    • 0023726130 scopus 로고
    • Exact inference for matched case-control studies
    • Hirji, K. F., Mehta, C. R., and Patel, N. R. (1988). Exact inference for matched case-control studies. Biometrics, 44, 803-814.
    • (1988) Biometrics , vol.44 , pp. 803-814
    • Hirji, K.F.1    Mehta, C.R.2    Patel, N.R.3
  • 164
    • 84950934848 scopus 로고    scopus 로고
    • Statistical Research Report, Department of Mathematics, University of Oslo, Oslo.
    • Hjort, N. L. (1999). Estimation in moderately misspecified models. Statistical Research Report, Department of Mathematics, University of Oslo, Oslo.
    • (1999) Estimation in moderately misspecified models
    • Hjort, N.L.1
  • 167
    • 23044525261 scopus 로고    scopus 로고
    • Multiple imputation in practice: Comparison of software packages for regression models with missing values
    • Horton, N., and Lipsitz, S. (2001). Multiple imputation in practice: Comparison of software packages for regression models with missing values. The American Statistician, 55, 244-254.
    • (2001) The American Statistician , vol.55 , pp. 244-254
    • Horton, N.1    Lipsitz, S.2
  • 168
    • 0242710940 scopus 로고    scopus 로고
    • A potential for bias when rounding in multiple imputation
    • Horton, N., Lipsitz, S., and Parzen, M. (2003). A potential for bias when rounding in multiple imputation. The American Statistician, 57, 229-232.
    • (2003) The American Statistician , vol.57 , pp. 229-232
    • Horton, N.1    Lipsitz, S.2    Parzen, M.3
  • 169
    • 84886647860 scopus 로고
    • A comparison of the maximum likelihood and discriminant function estimators of the coefficients of the logistic regression model for mixed continuous and discrete variables
    • Hosmer, T., Hosmer, D. W., and Fisher, L. L. (1983). A comparison of the maximum likelihood and discriminant function estimators of the coefficients of the logistic regression model for mixed continuous and discrete variables. Communications in Statistics, B12, 577-593.
    • (1983) Communications in Statistics , vol.B12 , pp. 577-593
    • Hosmer, T.1    Hosmer, D.W.2    Fisher, L.L.3
  • 170
    • 0031006441 scopus 로고    scopus 로고
    • A comparison of goodness-of-fit tests for the logistic regression model
    • Hosmer, D. W., Hosmer, T., Le Cessie, S., and Lemeshow, S. (1997). A comparison of goodness-of-fit tests for the logistic regression model. Statistics in Medicine, 16, 965-980.
    • (1997) Statistics in Medicine , vol.16 , pp. 965-980
    • Hosmer, D.W.1    Hosmer, T.2    Le Cessie, S.3    Lemeshow, S.4
  • 171
    • 0024934975 scopus 로고
    • Best subsets logistic regression
    • Hosmer, D. W., Jovanovic, B., and Lemeshow, S. (1989). Best subsets logistic regression. Biometrics, 45, 1265-1270.
    • (1989) Biometrics , vol.45 , pp. 1265-1270
    • Hosmer, D.W.1    Jovanovic, B.2    Lemeshow, S.3
  • 172
    • 84872170445 scopus 로고
    • A goodness-of-fit test for the multiple logistic regression model
    • Hosmer, D. W., and Lemeshow, S. (1980). A goodness-of-fit test for the multiple logistic regression model. Communications in Statistics, A10, 1043-1069.
    • (1980) Communications in Statistics , vol.A10 , pp. 1043-1069
    • Hosmer, D.W.1    Lemeshow, S.2
  • 173
    • 0026702157 scopus 로고
    • Confidence interval estimation of interaction
    • Hosmer, D. W., and Lemeshow, S. (1992). Confidence interval estimation of interaction. Epidemiology, 3, 452-456.
    • (1992) Epidemiology , vol.3 , pp. 452-456
    • Hosmer, D.W.1    Lemeshow, S.2
  • 175
    • 84981976271 scopus 로고
    • Goodness-of-fit testing for multiple logistic regression analysis when the estimated probabilities are small
    • Hosmer, D. W., Lemeshow, S., and Klar, J. (1988). Goodness-of-fit testing for multiple logistic regression analysis when the estimated probabilities are small. Biometrical Journal, 30, 911-924.
    • (1988) Biometrical Journal , vol.30 , pp. 911-924
    • Hosmer, D.W.1    Lemeshow, S.2    Klar, J.3
  • 177
    • 0024374956 scopus 로고
    • Sample size tables for logistic regression
    • Hsieh, F. Y. (1989). Sample size tables for logistic regression. Statistics in Medicne, 8, 795-802.
    • (1989) Statistics in Medicne , vol.8 , pp. 795-802
    • Hsieh, F.Y.1
  • 178
    • 0032581454 scopus 로고    scopus 로고
    • A simple method of sample size calculation for linear and logistic regression
    • Hsieh, F. Y., Bloch, D. A., and Larsen, M. (1998). A simple method of sample size calculation for linear and logistic regression. Statistics in Medicine, 17, 1623-1634.
    • (1998) Statistics in Medicine , vol.17 , pp. 1623-1634
    • Hsieh, F.Y.1    Bloch, D.A.2    Larsen, M.3
  • 179
  • 180
    • 84973815909 scopus 로고
    • Process analysis: estimating mediation in treatment evaluations
    • Judd, C. M., and Kenny, D. A. (1981). Process analysis: estimating mediation in treatment evaluations. Evaluation Review, 5, 602-619.
    • (1981) Evaluation Review , vol.5 , pp. 602-619
    • Judd, C.M.1    Kenny, D.A.2
  • 182
    • 0032382838 scopus 로고    scopus 로고
    • Markov Chain Monte Carlo in practice: a roundtable discussion
    • Kass, R., Carlin, B., Gelman, A., and Neal, R. (1998). Markov Chain Monte Carlo in practice: a roundtable discussion. The American Statistician, 52, 93-100.
    • (1998) The American Statistician , vol.52 , pp. 93-100
    • Kass, R.1    Carlin, B.2    Gelman, A.3    Neal, R.4
  • 184
    • 0002916899 scopus 로고
    • Assessing the fit of the logistic model: A case study of children with haemalytic uraemic syndrome
    • Kay, R., and Little, S. (1986). Assessing the fit of the logistic model: A case study of children with haemalytic uraemic syndrome. Applied Statistics, 35, 16-30.
    • (1986) Applied Statistics , vol.35 , pp. 16-30
    • Kay, R.1    Little, S.2
  • 189
    • 0000875732 scopus 로고
    • Simultaneous testing of regression coefficients with complex survey data: Use of Bonferroni t statistics
    • Korn, E. L., and Graubard, B. I. (1990). Simultaneous testing of regression coefficients with complex survey data: Use of Bonferroni t statistics. American Statistician, 44, 270-276.
    • (1990) American Statistician , vol.44 , pp. 270-276
    • Korn, E.L.1    Graubard, B.I.2
  • 192
    • 0037203108 scopus 로고    scopus 로고
    • Global goodness of fit testing in logistic regression with sparse data
    • Kuss, O. (2002). Global goodness of fit testing in logistic regression with sparse data. Statistics in Medicine, 21, 3789-3801.
    • (2002) Statistics in Medicine , vol.21 , pp. 3789-3801
    • Kuss, O.1
  • 195
    • 0000212230 scopus 로고
    • Assessing normality in random effects models
    • Lange, N., and Ryan, L. (1989). Assessing normality in random effects models. The Annals of Statistics, 17, 624-642.
    • (1989) The Annals of Statistics , vol.17 , pp. 624-642
    • Lange, N.1    Ryan, L.2
  • 197
    • 11144221188 scopus 로고    scopus 로고
    • Appropriate assessment of neighborhood effects on individual health: integrating random and fixed effects in multilevel logistic regression
    • Larsen, K., and Merlo, J. (2005). Appropriate assessment of neighborhood effects on individual health: integrating random and fixed effects in multilevel logistic regression. American Journal of Epidemiology, 161, 81-88.
    • (2005) American Journal of Epidemiology , vol.161 , pp. 81-88
    • Larsen, K.1    Merlo, J.2
  • 198
    • 0033850918 scopus 로고    scopus 로고
    • Interpreting parameters in the logistic regression model with random effects
    • Larsen, K., Petersen, J., Budtz-Jorgensen, E., and Endahl, L. (2000). Interpreting parameters in the logistic regression model with random effects. Biometrics, 56, 909-914.
    • (2000) Biometrics , vol.56 , pp. 909-914
    • Larsen, K.1    Petersen, J.2    Budtz-Jorgensen, E.3    Endahl, L.4
  • 199
    • 0018195038 scopus 로고
    • Efficient screening of non-normal regression models
    • Lawless, J. F., and Singhal, K. (1978). Efficient screening of non-normal regression models. Biometrics, 34, 318-327.
    • (1978) Biometrics , vol.34 , pp. 318-327
    • Lawless, J.F.1    Singhal, K.2
  • 200
    • 0023330099 scopus 로고
    • ISMOD: An all subsets regression program for generalized linear models I. Statistical and computational background
    • Lawless, J. F., and Singhal, K. (1987a). ISMOD: An all subsets regression program for generalized linear models I. Statistical and computational background. Computer Methods and Programs in Biomedicine, 24, 117-124.
    • (1987) Computer Methods and Programs in Biomedicine , vol.24 , pp. 117-124
    • Lawless, J.F.1    Singhal, K.2
  • 201
    • 0023328584 scopus 로고
    • ISMOD: An all subsets regression program for generalized linear models II. Program guide and examples
    • Lawless, J. F., and Singhal, K. (1987b). ISMOD: An all subsets regression program for generalized linear models II. Program guide and examples. Computer Methods and Programs in Biomedicine, 24, 125-134.
    • (1987) Computer Methods and Programs in Biomedicine , vol.24 , pp. 125-134
    • Lawless, J.F.1    Singhal, K.2
  • 202
    • 0026317260 scopus 로고
    • A goodness-of-fit test for binary data based on smoothing residuals
    • Le Cessie, S., and van Houwelingen, J. C. (1991). A goodness-of-fit test for binary data based on smoothing residuals. Biometrics, 47, 1267-1282.
    • (1991) Biometrics , vol.47 , pp. 1267-1282
    • Le Cessie, S.1    van Houwelingen, J.C.2
  • 203
    • 0029127521 scopus 로고
    • Testing the fit of a regression model via score tests in random effects models
    • Le Cessie, S., and van Houwelingen, J. C. (1995). Testing the fit of a regression model via score tests in random effects models. Biometrics, 51, 600-614.
    • (1995) Biometrics , vol.51 , pp. 600-614
    • Le Cessie, S.1    van Houwelingen, J.C.2
  • 204
    • 77249147857 scopus 로고    scopus 로고
    • Multiple imputation for missing data: Fully conditional specification versus multivariate normal imputation
    • Lee, K., and Carlin, J. (2010). Multiple imputation for missing data: Fully conditional specification versus multivariate normal imputation. American Journal of Epidemiology, 171, 624-632.
    • (2010) American Journal of Epidemiology , vol.171 , pp. 624-632
    • Lee, K.1    Carlin, J.2
  • 205
    • 0031338759 scopus 로고    scopus 로고
    • Determination of the best significance level in forward stepwise logistic regression
    • Lee, K., and Koval, J. J. (1997). Determination of the best significance level in forward stepwise logistic regression. Communication in Statistics B, 26, 559-575.
    • (1997) Communication in Statistics B , vol.26 , pp. 559-575
    • Lee, K.1    Koval, J.J.2
  • 206
    • 0031507509 scopus 로고    scopus 로고
    • Latent variable models for teratogenesis using multiple binary outcomes
    • Legler, J. M., and Ryan, L. M. (1997). Latent variable models for teratogenesis using multiple binary outcomes. Journal of the American Statistical Association, 92, 13-20.
    • (1997) Journal of the American Statistical Association , vol.92 , pp. 13-20
    • Legler, J.M.1    Ryan, L.M.2
  • 207
    • 0020063002 scopus 로고
    • The use of goodness-of-fit statistics in the development of logistic regression models
    • Lemeshow, S., and Hosmer, D. W. (1982). The use of goodness-of-fit statistics in the development of logistic regression models. American Journal of Epidemiology, 115, 92-106.
    • (1982) American Journal of Epidemiology , vol.115 , pp. 92-106
    • Lemeshow, S.1    Hosmer, D.W.2
  • 208
    • 84942383855 scopus 로고
    • Modeling the severity of illness of ICU patients: A system update
    • Lemeshow, S., and Le Gall, J. (1994). Modeling the severity of illness of ICU patients: A system update. Journal of the American Medical Association, 272, 1049-1055.
    • (1994) Journal of the American Medical Association , vol.272 , pp. 1049-1055
    • Lemeshow, S.1    Le Gall, J.2
  • 212
    • 0005424888 scopus 로고
    • Multiple-group logistic regression diagnostics
    • Lesaffre, E., and Albert, A. (1989). Multiple-group logistic regression diagnostics. Applied Statistics, 38, 425-440.
    • (1989) Applied Statistics , vol.38 , pp. 425-440
    • Lesaffre, E.1    Albert, A.2
  • 213
    • 0035648391 scopus 로고    scopus 로고
    • On the effect of the number of quadrature points in a logistic random effects model; an example
    • Lesaffre, E., and Spiessens, B. (2001). On the effect of the number of quadrature points in a logistic random effects model; an example. Applied Statistics, 50, 325-335.
    • (2001) Applied Statistics , vol.50 , pp. 325-335
    • Lesaffre, E.1    Spiessens, B.2
  • 214
    • 42549085874 scopus 로고    scopus 로고
    • PSMATCH2: Stats module to perform full Mahalanobis and propensity score matching
    • common support graphing and covariate imbalance testing., version 4.0.5 18apr2012.
    • Leuven, E., and Sianesi, B. (2003). PSMATCH2: Stats module to perform full Mahalanobis and propensity score matching, common support graphing and covariate imbalance testing. http://ideas.repec.org/c/boc/bocode/s432001.html, version 4.0.5 18apr2012.
    • (2003)
    • Leuven, E.1    Sianesi, B.2
  • 215
    • 0031514994 scopus 로고    scopus 로고
    • Estimating Bayes Factors via posterior simulation with the Laplace-Metropolis estimator
    • Lewis, S., and Raftery, A. (1997). Estimating Bayes Factors via posterior simulation with the Laplace-Metropolis estimator. Journal of the American Statistical Association, 92, 648-655.
    • (1997) Journal of the American Statistical Association , vol.92 , pp. 648-655
    • Lewis, S.1    Raftery, A.2
  • 216
    • 77649173768 scopus 로고
    • Longitudinal data analysis using generalized linear models
    • Liang, K. Y., and Zeger, S. L. (1986). Longitudinal data analysis using generalized linear models. Biometika, 73, 13-22.
    • (1986) Biometika , vol.73 , pp. 13-22
    • Liang, K.Y.1    Zeger, S.L.2
  • 218
    • 0031661402 scopus 로고    scopus 로고
    • Assessing the sensitivity of regression results to unmeasured confounders in observational studies
    • Lin, D. Y., Pstay, B. M., and Kronmal, R. A. (1998). Assessing the sensitivity of regression results to unmeasured confounders in observational studies. Biometrics, 54, 948-963.
    • (1998) Biometrics , vol.54 , pp. 948-963
    • Lin, D.Y.1    Pstay, B.M.2    Kronmal, R.A.3
  • 219
    • 78751617400 scopus 로고    scopus 로고
    • Variable selection in linear regression
    • Lindsey, C., and Sheather, S. (2010). Variable selection in linear regression. The Stata Journal, 10, 650-669.
    • (2010) The Stata Journal , vol.10 , pp. 650-669
    • Lindsey, C.1    Sheather, S.2
  • 220
    • 0032574330 scopus 로고    scopus 로고
    • On the appropriateness of marginal models for repeated measurements in clinical trials
    • Lindsey, J., and Lambert, P. (1998). On the appropriateness of marginal models for repeated measurements in clinical trials. Statistics in Medicine, 17, 447-469.
    • (1998) Statistics in Medicine , vol.17 , pp. 447-469
    • Lindsey, J.1    Lambert, P.2
  • 221
    • 0041049219 scopus 로고    scopus 로고
    • Goodness-of-fit tests for ordinal response regression models
    • Lipsitz, S. R., Fitzmaurice, G. M., and Molenberghs, G. (1996). Goodness-of-fit tests for ordinal response regression models. Applied Statistics, 45, 175-190.
    • (1996) Applied Statistics , vol.45 , pp. 175-190
    • Lipsitz, S.R.1    Fitzmaurice, G.M.2    Molenberghs, G.3
  • 224
    • 0030279333 scopus 로고    scopus 로고
    • A SAS program calculating three measures of interaction with confidence intervals
    • Lundberg, M., Fredlund, P., Hallqvist, J., and Diderichsen, F. (1996). A SAS program calculating three measures of interaction with confidence intervals. Epidemiology, 7, 655-656.
    • (1996) Epidemiology , vol.7 , pp. 655-656
    • Lundberg, M.1    Fredlund, P.2    Hallqvist, J.3    Diderichsen, F.4
  • 225
    • 70449411807 scopus 로고    scopus 로고
    • The BUGS project: evolution, critique and future directions (with discussion)
    • Lunn, D., Spiegelhalter, D., Thomas, A., and Best, N. (2009). The BUGS project: evolution, critique and future directions (with discussion). Statistics in Medicine, 28, 3049-3067.
    • (2009) Statistics in Medicine , vol.28 , pp. 3049-3067
    • Lunn, D.1    Spiegelhalter, D.2    Thomas, A.3    Best, N.4
  • 226
    • 70450064690 scopus 로고    scopus 로고
    • A fresh look at the discriminant function approach for estimating crude or adjusted odds ratios
    • Lyles, L. H., Guo, Y., and Hill, A. N. (2009). A fresh look at the discriminant function approach for estimating crude or adjusted odds ratios. American Statistician, 63, 320-327.
    • (2009) American Statistician , vol.63 , pp. 320-327
    • Lyles, L.H.1    Guo, Y.2    Hill, A.N.3
  • 227
    • 0026632712 scopus 로고
    • When does it pay to break the matches for an analysis of a matched-pairs design
    • Lynn, H. S., and McCulloch, C. E. (1992). When does it pay to break the matches for an analysis of a matched-pairs design. Biometrics, 48, 397-409.
    • (1992) Biometrics , vol.48 , pp. 397-409
    • Lynn, H.S.1    McCulloch, C.E.2
  • 229
    • 0027324646 scopus 로고
    • Interpreting model coefficients when the true model form is unknown
    • Maldonado, G., and Greenland, S. (1993). Interpreting model coefficients when the true model form is unknown. Epidemiology, 4, 310-318.
    • (1993) Epidemiology , vol.4 , pp. 310-318
    • Maldonado, G.1    Greenland, S.2
  • 230
    • 84915425007 scopus 로고
    • Some comments on Cp
    • Mallows, C. L. (1973). Some comments on Cp. Technometrics, 15, 661-676.
    • (1973) Technometrics , vol.15 , pp. 661-676
    • Mallows, C.L.1
  • 231
    • 70350140033 scopus 로고    scopus 로고
    • On the asymptotic distribution of Cook's distance in logistic regression models
    • Martin, N., and Pardo, L. (2009). On the asymptotic distribution of Cook's distance in logistic regression models. Journal of Applied Statistics, 36, 1119-1146.
    • (2009) Journal of Applied Statistics , vol.36 , pp. 1119-1146
    • Martin, N.1    Pardo, L.2
  • 232
    • 73449136091 scopus 로고    scopus 로고
    • A simulation study to assess statistical methods for binary repeated measures data
    • Masaoud, E., and Stryhn, H. (2010). A simulation study to assess statistical methods for binary repeated measures data. Preventive Veterinary Medicine, 93, 81-97.
    • (2010) Preventive Veterinary Medicine , vol.93 , pp. 81-97
    • Masaoud, E.1    Stryhn, H.2
  • 233
    • 85017474093 scopus 로고    scopus 로고
    • Design Sciences, Inc., Long Beach, CA.
    • Mathematical Equation Editor. (2008). Math Type 6.0, Design Sciences, Inc., Long Beach, CA.
    • (2008) Math Type 6.0
  • 234
    • 0002652504 scopus 로고
    • On the asymptotic distribution of Pearson's statistics in linear exponential family models
    • McCullagh, P. (1985a). On the asymptotic distribution of Pearson's statistics in linear exponential family models. International Statistical Review, 53, 61-67.
    • (1985) International Statistical Review , vol.53 , pp. 61-67
    • McCullagh, P.1
  • 236
    • 0001610053 scopus 로고
    • The conditional distribution of goodness-of-fit statistics for discrete data
    • McCullagh, P. (1986). The conditional distribution of goodness-of-fit statistics for discrete data. Journal of the American Statistical Association, 81, 104-107.
    • (1986) Journal of the American Statistical Association , vol.81 , pp. 104-107
    • McCullagh, P.1
  • 239
    • 0002297105 scopus 로고
    • Conditional logit analysis of qualitative choice behavior
    • edited by P. Zarembka, Academic Press, New York.
    • McFadden, D. (1974). Conditional logit analysis of qualitative choice behavior. In Frontiers in Econometrics, edited by P. Zarembka, Academic Press, New York.
    • (1974) Frontiers in Econometrics
    • McFadden, D.1
  • 240
    • 0029022967 scopus 로고
    • Exact logistic regression: Theory and examples
    • Mehta, C. R., and Patel, N. R. (1995). Exact logistic regression: Theory and examples. Statistics in Medicine, 14, 2143-2160.
    • (1995) Statistics in Medicine , vol.14 , pp. 2143-2160
    • Mehta, C.R.1    Patel, N.R.2
  • 243
    • 0024592074 scopus 로고
    • A study of the impact of confounder-selection criteria on effect estimation
    • Mickey, J., and Greenland, S. (1989). A study of the impact of confounder-selection criteria on effect estimation. American Journal of Epidemiology, 129, 125-137.
    • (1989) American Journal of Epidemiology , vol.129 , pp. 125-137
    • Mickey, J.1    Greenland, S.2
  • 244
    • 0040813288 scopus 로고    scopus 로고
    • Word Processing Program for the Apple® Macintosh™, Microsoft Corporation, Bellevue.
    • Microsoft Corporation. (1998). Microsoft® Word 98, Word Processing Program for the Apple® Macintosh™, Microsoft Corporation, Bellevue.
    • (1998) Microsoft® Word 98
  • 245
    • 0017046714 scopus 로고
    • Stratification by multivariate confounder score
    • Miettinen, O. S. (1976). Stratification by multivariate confounder score. American Journal of Epidemiology, 104, 609-620.
    • (1976) American Journal of Epidemiology , vol.104 , pp. 609-620
    • Miettinen, O.S.1
  • 246
    • 0025766123 scopus 로고
    • Validation Techniques for logistic regression models
    • Miller, M. E., Hui, S. L., and Tierney, W. M. (1991). Validation Techniques for logistic regression models. Statistics in Medicine, 10, 1213-1226.
    • (1991) Statistics in Medicine , vol.10 , pp. 1213-1226
    • Miller, M.E.1    Hui, S.L.2    Tierney, W.M.3
  • 247
    • 0029743285 scopus 로고    scopus 로고
    • Explained variation for logistic regression
    • Mittlböck, M., and Schemper, M. (1996). Explained variation for logistic regression. Statistics in Medicine, 15, 1987-1997.
    • (1996) Statistics in Medicine , vol.15 , pp. 1987-1997
    • Mittlböck, M.1    Schemper, M.2
  • 248
    • 0036013105 scopus 로고    scopus 로고
    • Explained variation for logistic regression - Small sample adjustments, confidence intervals and predictive precision
    • Mittlböck, M., and Schemper, M. (2002). Explained variation for logistic regression - Small sample adjustments, confidence intervals and predictive precision. Biometrical Journal, 44, 263-272.
    • (2002) Biometrical Journal , vol.44 , pp. 263-272
    • Mittlböck, M.1    Schemper, M.2
  • 250
    • 0022376390 scopus 로고
    • Assessing the adequacy of the logistic regression model for matched case-control studies
    • Moolgavkar, S., Lustbader, E., and Venzon, D. J. (1985). Assessing the adequacy of the logistic regression model for matched case-control studies. Statistics in Medicine, 4, 425-435.
    • (1985) Statistics in Medicine , vol.4 , pp. 425-435
    • Moolgavkar, S.1    Lustbader, E.2    Venzon, D.J.3
  • 251
    • 0000683069 scopus 로고
    • A chi-square test with random cell boundaries
    • Moore, D. S. (1971). A chi-square test with random cell boundaries. Annals of Mathematical Statistics, 42, 147-156.
    • (1971) Annals of Mathematical Statistics , vol.42 , pp. 147-156
    • Moore, D.S.1
  • 252
    • 0000685721 scopus 로고
    • Unified large-sample theory of general chi-square statistics for tests of fit
    • Moore, D. S., and Spruill, M. C. (1975). Unified large-sample theory of general chi-square statistics for tests of fit. Annals of Statistics, 3, 599-616.
    • (1975) Annals of Statistics , vol.3 , pp. 599-616
    • Moore, D.S.1    Spruill, M.C.2
  • 254
    • 11344291376 scopus 로고    scopus 로고
    • Testing goodness of fit of the logistic regression model in case-control studies using sample reweighting
    • Nagelkerke, N., Smits, J., le Cessie, S., and van Houlwelingen, H. (2005). Testing goodness of fit of the logistic regression model in case-control studies using sample reweighting. Statistics in Medicine, 24, 121-130.
    • (2005) Statistics in Medicine , vol.24 , pp. 121-130
    • Nagelkerke, N.1    Smits, J.2    le Cessie, S.3    van Houlwelingen, H.4
  • 255
    • 0026958173 scopus 로고
    • Statistical methods for longitudinal and clustered designs with binary data
    • Neuhaus, J. M. (1992). Statistical methods for longitudinal and clustered designs with binary data. Statistical Methods in Medical Research, 1, 249-273.
    • (1992) Statistical Methods in Medical Research , vol.1 , pp. 249-273
    • Neuhaus, J.M.1
  • 256
    • 0002512643 scopus 로고
    • A comparison of clusterspecific and population-average approaches for analyzing correlated binary data
    • Neuhaus, J. M., Kalbfleisch, J. D., and Hauck, W. W. (1991). A comparison of clusterspecific and population-average approaches for analyzing correlated binary data. International Statistical Review, 59, 25-35.
    • (1991) International Statistical Review , vol.59 , pp. 25-35
    • Neuhaus, J.M.1    Kalbfleisch, J.D.2    Hauck, W.W.3
  • 257
    • 0000785485 scopus 로고
    • A geometric approach to assess bias due to omitted covariates in generalized linear models
    • Neuhaus, J. M., and Jewell, N. P. (1993). A geometric approach to assess bias due to omitted covariates in generalized linear models. Biometrika, 80, 807-815.
    • (1993) Biometrika , vol.80 , pp. 807-815
    • Neuhaus, J.M.1    Jewell, N.P.2
  • 258
    • 0027327176 scopus 로고
    • Design effects for binary regression models fitted to dependent data
    • Neuhaus, J. M., and Segal, M. R. (1993). Design effects for binary regression models fitted to dependent data. Statistics in Medicine, 12, 1259-1268.
    • (1993) Statistics in Medicine , vol.12 , pp. 1259-1268
    • Neuhaus, J.M.1    Segal, M.R.2
  • 259
    • 33645757341 scopus 로고    scopus 로고
    • Estimation in generalized linear mixed models with binary outcomes by simulated maximum likelihood
    • Ng, E., Carpenter, J., Goldstein, H., and Rasbash, J. (2006). Estimation in generalized linear mixed models with binary outcomes by simulated maximum likelihood. Statistical Modeling, 6, 23-42.
    • (2006) Statistical Modeling , vol.6 , pp. 23-42
    • Ng, E.1    Carpenter, J.2    Goldstein, H.3    Rasbash, J.4
  • 260
    • 85017469860 scopus 로고    scopus 로고
    • Centers for Disease Control and Prevention (CDC). National Center for Health Statistics (NCHS). National Health and Nutrition Examination Survey Data. U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, Hyattsville, MD
    • NHANES III Reference Manuals and Reports. (2012). Centers for Disease Control and Prevention (CDC). National Center for Health Statistics (NCHS). National Health and Nutrition Examination Survey Data. U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, Hyattsville, MD, http://www.cdc.gov/nchs/nhanes/nhanes2011-2012/nhanes11_12.htm.
    • (2012)
  • 262
    • 69249241606 scopus 로고    scopus 로고
    • Baysian Modeling using WinBUGS
    • Wiley, Hoboken
    • Ntzoufras, I. (2009). Baysian Modeling using WinBUGS, Wiley, Hoboken
    • (2009)
    • Ntzoufras, I.1
  • 264
    • 21144478401 scopus 로고
    • Normal goodness-of-fit tests for multinomial models with large degrees-of-freedom
    • Osius, G., and Rojek, D. (1992). Normal goodness-of-fit tests for multinomial models with large degrees-of-freedom. Journal of the American Statistical Association, 87, 1145-1152.
    • (1992) Journal of the American Statistical Association , vol.87 , pp. 1145-1152
    • Osius, G.1    Rojek, D.2
  • 265
    • 77949469672 scopus 로고    scopus 로고
    • Simplified estimates of the probability of death after burn injuries: extending and updating the baux score
    • Osler, T., Glance, L. G., and Hosmer, D. W. (2010). Simplified estimates of the probability of death after burn injuries: extending and updating the baux score. The Journal of Trauma, 68, 690-697.
    • (2010) The Journal of Trauma , vol.68 , pp. 690-697
    • Osler, T.1    Glance, L.G.2    Hosmer, D.W.3
  • 266
    • 0035102570 scopus 로고    scopus 로고
    • Akaike's information criterion in generalized estimating equations
    • Pan, W. (2001). Akaike's information criterion in generalized estimating equations. Biometrics, 57, 120-125.
    • (2001) Biometrics , vol.57 , pp. 120-125
    • Pan, W.1
  • 267
    • 0036005421 scopus 로고    scopus 로고
    • Goodness of fit tests for GEE with correlated binary data
    • Pan, W. (2002). Goodness of fit tests for GEE with correlated binary data. Scandinavian Journal of Statistics, 29, 101-110.
    • (2002) Scandinavian Journal of Statistics , vol.29 , pp. 101-110
    • Pan, W.1
  • 268
    • 85017470393 scopus 로고    scopus 로고
    • Number Cruncher Statistical Software, Kaysville, UT.
    • PASS Users Guide. (2012). PASS 11.0: Power and Sample Size for Windows. Number Cruncher Statistical Software, Kaysville, UT.
    • (2012) PASS 11.0: Power and Sample Size for Windows
  • 269
    • 84870908613 scopus 로고    scopus 로고
    • Standardizing the power of the Hosmer- Lemeshow goodness of fit test in large data sets
    • Paul, P., Pennell, M. L., and Lemeshow, S. (2013) Standardizing the power of the Hosmer- Lemeshow goodness of fit test in large data sets. Stat Med. 32(1), 67-80.
    • (2013) Stat Med , vol.32 , Issue.1 , pp. 67-80
    • Paul, P.1    Pennell, M.L.2    Lemeshow, S.3
  • 272
    • 0033475934 scopus 로고    scopus 로고
    • An improved goodness of fit test for probability predication models
    • Pigeon, J. G., and Heyse, J. F. (1999a). An improved goodness of fit test for probability predication models. Biometrical Journal, 41, 71-82.
    • (1999) Biometrical Journal , vol.41 , pp. 71-82
    • Pigeon, J.G.1    Heyse, J.F.2
  • 273
    • 0001939037 scopus 로고    scopus 로고
    • A cautionary note on assessing fit of logistic regression models
    • Pigeon, J. G., and Heyse, J. F. (1999b). A cautionary note on assessing fit of logistic regression models. Journal of Applied Statistics, 26, 847-853.
    • (1999) Journal of Applied Statistics , vol.26 , pp. 847-853
    • Pigeon, J.G.1    Heyse, J.F.2
  • 274
    • 84946045727 scopus 로고
    • Approximations to the log-likelihood function in the non-linear mixed-effects model
    • Pinheiro, J., and Bates, D. (1995). Approximations to the log-likelihood function in the non-linear mixed-effects model. Journal of Computational and Graphical Statistics, 4, 12-35.
    • (1995) Journal of Computational and Graphical Statistics , vol.4 , pp. 12-35
    • Pinheiro, J.1    Bates, D.2
  • 275
    • 67650521193 scopus 로고    scopus 로고
    • JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling
    • Plummer, M. (2003). JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling. Available at http://mcmc-jags.sourceforge.net/.
    • (2003)
    • Plummer, M.1
  • 276
    • 85017434160 scopus 로고    scopus 로고
    • Package 'rjags'
    • Plummer, M. (2012). Package 'rjags'. Available from http://cran.r-project.org/web/packages/rjags/rjags.pdf.
    • (2012)
    • Plummer, M.1
  • 277
    • 41149087694 scopus 로고    scopus 로고
    • CODA: Convergence Diagnosis and Output Analysis for MCMC
    • Plummer, M., Best, N., Cowles, K., and Vines, K. (2006). CODA: Convergence Diagnosis and Output Analysis for MCMC. R News, 6, 7-11.
    • (2006) R News , vol.6 , pp. 7-11
    • Plummer, M.1    Best, N.2    Cowles, K.3    Vines, K.4
  • 279
    • 0000350475 scopus 로고
    • Logistic regression diagnostics
    • Pregibon, D. (1981). Logistic regression diagnostics. Annals of Statistics, 9, 705-724.
    • (1981) Annals of Statistics , vol.9 , pp. 705-724
    • Pregibon, D.1
  • 280
    • 0021495997 scopus 로고
    • Data analytic methods for matched case-control studies
    • Pregibon, D. (1984). Data analytic methods for matched case-control studies. Biometrics, 40, 639-651.
    • (1984) Biometrics , vol.40 , pp. 639-651
    • Pregibon, D.1
  • 281
    • 0001141715 scopus 로고    scopus 로고
    • Deletion diagnostics for Generalized Estimating Equations
    • Preisser, J., and Qaqish, B. (1996). Deletion diagnostics for Generalized Estimating Equations. Biometrika, 83, 551-562.
    • (1996) Biometrika , vol.83 , pp. 551-562
    • Preisser, J.1    Qaqish, B.2
  • 282
    • 33748092597 scopus 로고
    • A case-cohort design for epidemiologic cohort studies and disease prevention trials
    • Prentice, R. L. (1986). A case-cohort design for epidemiologic cohort studies and disease prevention trials. Biometrika, 73, 1-11.
    • (1986) Biometrika , vol.73 , pp. 1-11
    • Prentice, R.L.1
  • 283
    • 0018671320 scopus 로고
    • Logistic disease incidence models and case-control studies
    • Prentice, R. L., and Pyke, R. (1979). Logistic disease incidence models and case-control studies. Biometrika, 66, 403-411.
    • (1979) Biometrika , vol.66 , pp. 403-411
    • Prentice, R.L.1    Pyke, R.2
  • 284
    • 0037080662 scopus 로고    scopus 로고
    • Two goodness-of-fit tests for logistic regression models with continuous covariates
    • Pulkstenis, E., and Robinson, T. J. (2002). Two goodness-of-fit tests for logistic regression models with continuous covariates. Statistics in Medicine 21, 79-93.
    • (2002) Statistics in Medicine , vol.21 , pp. 79-93
    • Pulkstenis, E.1    Robinson, T.J.2
  • 285
    • 1542610478 scopus 로고    scopus 로고
    • Goodness-of-fit test for ordinal response regression models
    • Pulkstenis, E., and Robinson, T. J. (2004). Goodness-of-fit test for ordinal response regression models. Statistics in Medicine, 23, 999-1014.
    • (2004) Statistics in Medicine , vol.23 , pp. 999-1014
    • Pulkstenis, E.1    Robinson, T.J.2
  • 286
    • 79951480123 scopus 로고    scopus 로고
    • R Foundation for Statistical Computing, Vienna, Austria.
    • R Development Core Team. (2010). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
    • (2010) R: A Language and Environment for Statistical Computing
  • 288
    • 0013105470 scopus 로고    scopus 로고
    • Reliable estimation of generalized linear mixed models using adaptive quadrature
    • Rabe-Hesketh, S., Skrondal, A., and Pickles, A. (2002). Reliable estimation of generalized linear mixed models using adaptive quadrature. The Stata Journal, 2, 1-21.
    • (2002) The Stata Journal , vol.2 , pp. 1-21
    • Rabe-Hesketh, S.1    Skrondal, A.2    Pickles, A.3
  • 289
    • 24144482731 scopus 로고    scopus 로고
    • Maximum likelihood estimation of limited and discrete dependent variable models with nested random effects
    • Rabe-Hesketh, S., Skrondal, A., and Pickles, A. (2005). Maximum likelihood estimation of limited and discrete dependent variable models with nested random effects. Journal of Econometrics, 128, 301-323.
    • (2005) Journal of Econometrics , vol.128 , pp. 301-323
    • Rabe-Hesketh, S.1    Skrondal, A.2    Pickles, A.3
  • 290
    • 84972518066 scopus 로고
    • One long run with diagnostics: implementation strategies for Markov Chain Monte Carlo
    • Raftery, A., and Lewis, S. (1992). One long run with diagnostics: implementation strategies for Markov Chain Monte Carlo. Statistical Science, 7, 493-497.
    • (1992) Statistical Science , vol.7 , pp. 493-497
    • Raftery, A.1    Lewis, S.2
  • 291
    • 84988524441 scopus 로고    scopus 로고
    • The number of iterations
    • In Markov Chain Monte Carlo in Practice, edited by W. Gilks, D. Spiegelhalter, and S. Richardson, Chapman and Hall, London.
    • Raftery, A., and Lewis, S. (1996). The number of iterations, convergence diagnostics and generic Metropolis algorithms. In Markov Chain Monte Carlo in Practice, edited by W. Gilks, D. Spiegelhalter, and S. Richardson, Chapman and Hall, London.
    • (1996) convergence diagnostics and generic Metropolis algorithms
    • Raftery, A.1    Lewis, S.2
  • 292
    • 0002344593 scopus 로고    scopus 로고
    • A multivariate technique for multiply imputing missing values using a sequence of regression models
    • Raghunathan, T., Lepkowski, J., Van Hoewyk, J., and Solenberger, P. (2001). A multivariate technique for multiply imputing missing values using a sequence of regression models. Survey Methodology, 27, 85-95.
    • (2001) Survey Methodology , vol.27 , pp. 85-95
    • Raghunathan, T.1    Lepkowski, J.2    Van Hoewyk, J.3    Solenberger, P.4
  • 295
    • 61449175880 scopus 로고    scopus 로고
    • Estimation of the relative excess risk due to interaction and associated confidence bounds
    • Richardson, D. B., and Kaufman, J. S. (2009). Estimation of the relative excess risk due to interaction and associated confidence bounds. American Journal of Epidemiology, 169, 756-760.
    • (2009) American Journal of Epidemiology , vol.169 , pp. 756-760
    • Richardson, D.B.1    Kaufman, J.S.2
  • 296
    • 0002992452 scopus 로고
    • Logistic regression analysis of sample survey data
    • Roberts, G., Rao, J. N. K., and Kumar, S. (1987). Logistic regression analysis of sample survey data. Biometrika, 74, 1-12.
    • (1987) Biometrika , vol.74 , pp. 1-12
    • Roberts, G.1    Rao, J.N.K.2    Kumar, S.3
  • 297
    • 0028207014 scopus 로고
    • Some statistical considerations in the analysis of case-control studies when the exposure variables are continuous measurements
    • Robertson, C., Boyle, P., Hsieh, C. C., Macfarlane, G. J., and Maisonneuve, P. (1994). Some statistical considerations in the analysis of case-control studies when the exposure variables are continuous measurements. Epidemiology, 5, 164-170.
    • (1994) Epidemiology , vol.5 , pp. 164-170
    • Robertson, C.1    Boyle, P.2    Hsieh, C.C.3    Macfarlane, G.J.4    Maisonneuve, P.5
  • 298
    • 0026556155 scopus 로고
    • Identifiability and exchangeability for direct and indirect effects
    • Robins, J. M., and Greenland, S. (1992). Identifiability and exchangeability for direct and indirect effects. Epidemiology, 3, 143-155.
    • (1992) Epidemiology , vol.3 , pp. 143-155
    • Robins, J.M.1    Greenland, S.2
  • 299
    • 4243757425 scopus 로고
    • An assessment of estimation procedures for multilevel models with binary responses
    • Rodriguez, G., and Goldman, N. (1995). An assessment of estimation procedures for multilevel models with binary responses. Journal of the Royal Statistical Society, Series A, 158, 73-90.
    • (1995) Journal of the Royal Statistical Society, Series A , vol.158 , pp. 73-90
    • Rodriguez, G.1    Goldman, N.2
  • 300
  • 301
    • 77951622706 scopus 로고
    • The central role of the propensity score in observational studies
    • Rosenbaum, P. R., and Rubin, D. B. (1983). The central role of the propensity score in observational studies. Biometrika, 70, 41-55.
    • (1983) Biometrika , vol.70 , pp. 41-55
    • Rosenbaum, P.R.1    Rubin, D.B.2
  • 302
    • 84949193513 scopus 로고
    • Reducing bias in observational studies using subclassification on the propensity score
    • Rosenbaum, P. R., and Rubin, D. B. (1984). Reducing bias in observational studies using subclassification on the propensity score. Journal of the American Statistical Association, 79, 516-524.
    • (1984) Journal of the American Statistical Association , vol.79 , pp. 516-524
    • Rosenbaum, P.R.1    Rubin, D.B.2
  • 303
    • 0021725142 scopus 로고
    • Multivariate methods in ophthalmology with application to other paireddata situations
    • Rosner, B. (1984). Multivariate methods in ophthalmology with application to other paireddata situations. Biometrics, 40, 1025-1035.
    • (1984) Biometrics , vol.40 , pp. 1025-1035
    • Rosner, B.1
  • 306
    • 0000426001 scopus 로고
    • Hypothesis testing of regression parameters in semiparametric generalized linear models for cluster correlated data
    • Rotnitzky, A., and Jewell, N. (1990). Hypothesis testing of regression parameters in semiparametric generalized linear models for cluster correlated data. Biometrika, 77, 485-497.
    • (1990) Biometrika , vol.77 , pp. 485-497
    • Rotnitzky, A.1    Jewell, N.2
  • 307
    • 20344370565 scopus 로고    scopus 로고
    • Multiple imputation of missing values
    • Royston, P. (2004). Multiple imputation of missing values. The Stata Journal, 4, 227-241.
    • (2004) The Stata Journal , vol.4 , pp. 227-241
    • Royston, P.1
  • 308
    • 32444450470 scopus 로고    scopus 로고
    • Multiple imputation of missing values: Update
    • Royston, P. (2005a). Multiple imputation of missing values: Update. The Stata Journal, 5, 188-201.
    • (2005) The Stata Journal , vol.5 , pp. 188-201
    • Royston, P.1
  • 309
    • 33646501982 scopus 로고    scopus 로고
    • Multiple imputation of missing values: Update of ice
    • Royston, P. (2005b). Multiple imputation of missing values: Update of ice. The Stata Journal, 5, 527-536.
    • (2005) The Stata Journal , vol.5 , pp. 527-536
    • Royston, P.1
  • 310
    • 36849053930 scopus 로고    scopus 로고
    • Profile likelihood estimation and confidence intervals
    • Royston, P. (2007). Profile likelihood estimation and confidence intervals. The Stata Journal, 7, 376-387.
    • (2007) The Stata Journal , vol.7 , pp. 376-387
    • Royston, P.1
  • 311
    • 70349590221 scopus 로고    scopus 로고
    • Multiple imputation of missing values: Further update of ice with an emphasis on categorical variables
    • Royston, P. (2009). Multiple imputation of missing values: Further update of ice with an emphasis on categorical variables. The Stata Journal, 9, 466-477.
    • (2009) The Stata Journal , vol.9 , pp. 466-477
    • Royston, P.1
  • 312
    • 0004509186 scopus 로고
    • Regression using fractional polynomials of continuous covariates: Parsimonious parametric modelling (with discussion)
    • Royston, P., and Altman, D. G. (1994). Regression using fractional polynomials of continuous covariates: Parsimonious parametric modelling (with discussion). Applied Statistics, 43, 429-467.
    • (1994) Applied Statistics , vol.43 , pp. 429-467
    • Royston, P.1    Altman, D.G.2
  • 313
    • 77958482572 scopus 로고    scopus 로고
    • Visualizing and assessing discrimination in the logistic regression model
    • Royston, P., and Altman, D. G. (2010). Visualizing and assessing discrimination in the logistic regression model. Statistics in Medicine, 29, 2508-2520.
    • (2010) Statistics in Medicine , vol.29 , pp. 2508-2520
    • Royston, P.1    Altman, D.G.2
  • 314
    • 31344435149 scopus 로고    scopus 로고
    • Dichotomizing continuous predictors in multiple regression: A bad idea
    • Royston, P., Altman, D. G., and Sauerbrei, W. (2006). Dichotomizing continuous predictors in multiple regression: A bad idea. Statistics in Medicine, 25, 127-141.
    • (2006) Statistics in Medicine , vol.25 , pp. 127-141
    • Royston, P.1    Altman, D.G.2    Sauerbrei, W.3
  • 315
    • 0001913548 scopus 로고    scopus 로고
    • Multivariable fractional polynomials
    • STB-43
    • Royston, P., and Ambler, G. (1998). Multivariable fractional polynomials. Stata Technical Bulletin, STB-43, 24-32.
    • (1998) Stata Technical Bulletin , pp. 24-32
    • Royston, P.1    Ambler, G.2
  • 316
    • 0002335046 scopus 로고    scopus 로고
    • Multivariable fractional polynomials: update
    • STB-49.
    • Royston, P., and Ambler, G. (1999). Multivariable fractional polynomials: update. Stata Technical Bulletin, STB-49, 17-22.
    • (1999) Stata Technical Bulletin , pp. 17-22
    • Royston, P.1    Ambler, G.2
  • 317
    • 0032717032 scopus 로고    scopus 로고
    • The use of fractional polynomials to model continuous risk variables in epidemiology
    • Royston, P., Ambler, G., and Sauerbrei, W. (1999). The use of fractional polynomials to model continuous risk variables in epidemiology. International Journal of Epidemiology, 28, 964-974.
    • (1999) International Journal of Epidemiology , vol.28 , pp. 964-974
    • Royston, P.1    Ambler, G.2    Sauerbrei, W.3
  • 319
    • 0017133178 scopus 로고
    • Inference and missing data
    • Rubin, D. (1976). Inference and missing data. Biometrika, 63, 581-592.
    • (1976) Biometrika , vol.63 , pp. 581-592
    • Rubin, D.1
  • 321
    • 0026548104 scopus 로고
    • Quantitative risk assessment for developmental toxicity
    • Ryan, L. M. (1992). Quantitative risk assessment for developmental toxicity. Biometrics, 48, 163-174.
    • (1992) Biometrics , vol.48 , pp. 163-174
    • Ryan, L.M.1
  • 323
    • 0001431651 scopus 로고
    • A note on A. Albert's and J. A. Anderson's conditions for the existence of maximum likelihood estimates in logistic regression models
    • Santner, T. J., and Duffy, D. E. (1986). A note on A. Albert's and J. A. Anderson's conditions for the existence of maximum likelihood estimates in logistic regression models. Biometrika, 73, 755-758.
    • (1986) Biometrika , vol.73 , pp. 755-758
    • Santner, T.J.1    Duffy, D.E.2
  • 324
    • 0003412832 scopus 로고    scopus 로고
    • Version 9.2, SAS Institute Inc., Cary, NC.
    • SAS Institute Inc. (2009). SAS Guide for Personal Computers, Version 9.2, SAS Institute Inc., Cary, NC.
    • (2009) SAS Guide for Personal Computers
  • 325
    • 0033426505 scopus 로고    scopus 로고
    • The use of resampling methods to simplify regression models in medical statistics
    • Sauerbrei, W. (1999). The use of resampling methods to simplify regression models in medical statistics. Applied Statistics, 48, 313-329.
    • (1999) Applied Statistics , vol.48 , pp. 313-329
    • Sauerbrei, W.1
  • 326
    • 33646921786 scopus 로고    scopus 로고
    • Multivariable regression model building by using fractional polynomials: Description of SAS, STATA and R programs
    • Sauerbrei, W., Meier-Hirmer, A., Benner, C., and Royston, P. (2006). Multivariable regression model building by using fractional polynomials: Description of SAS, STATA and R programs. Computational Statistics and Data Analysis, 50, 3464-3485.
    • (2006) Computational Statistics and Data Analysis , vol.50 , pp. 3464-3485
    • Sauerbrei, W.1    Meier-Hirmer, A.2    Benner, C.3    Royston, P.4
  • 327
    • 0033474286 scopus 로고    scopus 로고
    • Building multivariable prognostic and diagnostic models: Transformations of the predictors using fractional polynomials
    • Sauerbrei, W., and Royston, P. (1999). Building multivariable prognostic and diagnostic models: Transformations of the predictors using fractional polynomials. Journal of the Royal Statistical Society, Series A, 162, 71-94.
    • (1999) Journal of the Royal Statistical Society, Series A , vol.162 , pp. 71-94
    • Sauerbrei, W.1    Royston, P.2
  • 328
    • 0020623772 scopus 로고
    • Bias correction in maximum likelihood regression
    • Schaefer, R. L. (1983). Bias correction in maximum likelihood regression. Statistics in Medicine, 2, 71-78.
    • (1983) Statistics in Medicine , vol.2 , pp. 71-78
    • Schaefer, R.L.1
  • 329
    • 0001794725 scopus 로고
    • Alternative estimators in logistic regression when the data are collinear
    • Schaefer, R. L. (1986). Alternative estimators in logistic regression when the data are collinear. Journal of Statistical Computation and Simulation, 25, 75-91.
    • (1986) Journal of Statistical Computation and Simulation , vol.25 , pp. 75-91
    • Schaefer, R.L.1
  • 332
    • 85047673373 scopus 로고    scopus 로고
    • Missing data: Our view of the state of the art
    • Schafer, J., and Graham, J. (2002). Missing data: Our view of the state of the art. Psychological Methods, 7, 147-177.
    • (2002) Psychological Methods , vol.7 , pp. 147-177
    • Schafer, J.1    Graham, J.2
  • 334
    • 0002308457 scopus 로고
    • Contribution to the problem of approximation of equidistant data by analytic functions. Part A - On the problem of smoothing or graduation. A first class of approximation formulae
    • Schoenberg, I. J. (1946). Contribution to the problem of approximation of equidistant data by analytic functions. Part A - On the problem of smoothing or graduation. A first class of approximation formulae. Quarterly Journal of Applied Mathematics, 4, 45-99.
    • (1946) Quarterly Journal of Applied Mathematics , vol.4 , pp. 45-99
    • Schoenberg, I.J.1
  • 335
    • 85017441991 scopus 로고    scopus 로고
    • Committee on Assessing Interactions Among Social, Behavioral, and Genetic Factors in Health. "Appendix E Modern Epidemiologic Approaches to Interaction: Applications to the Study of Genetic Interactions." Genes, Behavior, and the Social Environment: Moving Beyond the Nature/Nurture Debate, The National Academies Press, Washington, D.C.
    • Schwartz, S. (2006). Committee on Assessing Interactions Among Social, Behavioral, and Genetic Factors in Health. "Appendix E Modern Epidemiologic Approaches to Interaction: Applications to the Study of Genetic Interactions." Genes, Behavior, and the Social Environment: Moving Beyond the Nature/Nurture Debate, The National Academies Press, Washington, D.C.
    • (2006)
    • Schwartz, S.1
  • 337
    • 84907319426 scopus 로고
    • Asymptotic properties of maximum likelihood estimators and likelihood ratio tests under nonstandard conditions
    • Self, S., and Liang, K. (1987). Asymptotic properties of maximum likelihood estimators and likelihood ratio tests under nonstandard conditions. Journal of the American Statistical Association, 82, 605-610.
    • (1987) Journal of the American Statistical Association , vol.82 , pp. 605-610
    • Self, S.1    Liang, K.2
  • 338
    • 0038129111 scopus 로고    scopus 로고
    • Release 8.0.1. Research Triangle Institute, Research Triangle Park, NC.
    • Shah, B. V., Barnwell, B. G., and Bieler, G. S. (2002). SUDAAN User's Manual, Release 8.0.1. Research Triangle Institute, Research Triangle Park, NC.
    • (2002) SUDAAN User's Manual
    • Shah, B.V.1    Barnwell, B.G.2    Bieler, G.S.3
  • 339
    • 4544319727 scopus 로고    scopus 로고
    • Sample size calculation for logistic and Poisson regression
    • Sheih, G. (2001). Sample size calculation for logistic and Poisson regression. Biometrika, 88, 1193-1199.
    • (2001) Biometrika , vol.88 , pp. 1193-1199
    • Sheih, G.1
  • 341
    • 0042628127 scopus 로고    scopus 로고
    • Interaction as departure from additivity in case-control studies: A cautionary note
    • Skrondal, A. (2003). Interaction as departure from additivity in case-control studies: A cautionary note. American Journal of Epidemiology, 158, 251-258.
    • (2003) American Journal of Epidemiology , vol.158 , pp. 251-258
    • Skrondal, A.1
  • 345
    • 24144458327 scopus 로고    scopus 로고
    • Easy SAS calculation for risk or prevalence ratios and differences
    • Spiegelman, D., and Hertzmark, E. (2005). Easy SAS calculation for risk or prevalence ratios and differences. American Journal of Epidemiology, 162, 199-200.
    • (2005) American Journal of Epidemiology , vol.162 , pp. 199-200
    • Spiegelman, D.1    Hertzmark, E.2
  • 346
    • 85017440837 scopus 로고    scopus 로고
    • SPSS Inc., Chicago.
    • SPSS for Windows, Release 20.0. (2012). SPSS Inc., Chicago.
    • (2012)
  • 347
    • 63049087948 scopus 로고    scopus 로고
    • Simple tests for the external validation of mortality prediction scores
    • Stallard, N. (2009). Simple tests for the external validation of mortality prediction scores. Statistics in Medicine, 28, 377-388.
    • (2009) Statistics in Medicine , vol.28 , pp. 377-388
    • Stallard, N.1
  • 348
    • 84858433083 scopus 로고    scopus 로고
    • Statistical Software Stata Corporation, College Station, TX.
    • StataCorp. (2011). Stata: Release 12. Statistical Software Stata Corporation, College Station, TX.
    • (2011) Stata: Release 12
  • 349
    • 0021730579 scopus 로고
    • Random-effects models for serial observations with binary response
    • Stiratelli, R., Laird, N., and Ware, J. (1984). Random-effects models for serial observations with binary response. Biometrics, 40, 961-971.
    • (1984) Biometrics , vol.40 , pp. 961-971
    • Stiratelli, R.1    Laird, N.2    Ware, J.3
  • 352
    • 33947652190 scopus 로고    scopus 로고
    • A smoothed residual based goodness-of-fit statistic for logistic hierarchical regression models
    • Sturdivant, R. X., and Hosmer, D. W. (2007). A smoothed residual based goodness-of-fit statistic for logistic hierarchical regression models. Computational Statistics and Data Analysis, 51, 3898-3912.
    • (2007) Computational Statistics and Data Analysis , vol.51 , pp. 3898-3912
    • Sturdivant, R.X.1    Hosmer, D.W.2
  • 353
    • 34547473570 scopus 로고    scopus 로고
    • A smoothed residual based goodness-of-fit statistic for nest survival models
    • Sturdivant, R. X., Rotella, J. J., and Russell, R. E. (2007). A smoothed residual based goodness-of-fit statistic for nest survival models. Studies in Avian Biology, 34, 45-54.
    • (2007) Studies in Avian Biology , vol.34 , pp. 45-54
    • Sturdivant, R.X.1    Rotella, J.J.2    Russell, R.E.3
  • 354
    • 0000853114 scopus 로고
    • A lack-of-fit test for the mean function in a generalized linear model
    • Su, J. Q., and Wei, L. J. (1991). A lack-of-fit test for the mean function in a generalized linear model. Journal of the American Statistical Association, 86, 420-426.
    • (1991) Journal of the American Statistical Association , vol.86 , pp. 420-426
    • Su, J.Q.1    Wei, L.J.2
  • 355
    • 0004210779 scopus 로고
    • Smoking and Health
    • Report on the Advisory Committee to the Surgeon General of the Public Heath Service, U.S. Department of Health, Education and Welfare, Washington, DC.
    • Surgeon General (1964). Smoking and Health. Report on the Advisory Committee to the Surgeon General of the Public Heath Service, U.S. Department of Health, Education and Welfare, Washington, DC.
    • (1964)
  • 356
    • 0002580610 scopus 로고
    • On heterogeneity tests based on efficient scores
    • Tarone, R. E. (1985). On heterogeneity tests based on efficient scores. Biometrika, 72, 91-95.
    • (1985) Biometrika , vol.72 , pp. 91-95
    • Tarone, R.E.1
  • 357
    • 0347089309 scopus 로고    scopus 로고
    • Deviations from the population-averaged versus cluster-specific relationship for clustered binary data
    • TenHave, T., and Ratcliffe, S. (2004). Deviations from the population-averaged versus cluster-specific relationship for clustered binary data. Statistical Methods in Medical Research, 13, 3-16.
    • (2004) Statistical Methods in Medical Research , vol.13 , pp. 3-16
    • TenHave, T.1    Ratcliffe, S.2
  • 358
    • 34248200493 scopus 로고    scopus 로고
    • BRugs User Manual
    • Thomas, A. (2004). BRugs User Manual. Available from http://www.openbugs.info/w/UserContributedCode.
    • (2004)
    • Thomas, A.1
  • 359
    • 0000422892 scopus 로고
    • Small-sample comparisons of level and power for simple goodness-of-fit statistics under cluster sampling
    • Thomas, D. R., and Rao, J. N. K. (1987). Small-sample comparisons of level and power for simple goodness-of-fit statistics under cluster sampling. Journal of the American Statistical Association, 82, 630-636.
    • (1987) Journal of the American Statistical Association , vol.82 , pp. 630-636
    • Thomas, D.R.1    Rao, J.N.K.2
  • 360
    • 70449894526 scopus 로고    scopus 로고
    • Coefficients of determination in logistic regression models - A new proposal: The coefficient of discrimination
    • Tjur, T. (2009). Coefficients of determination in logistic regression models - A new proposal: The coefficient of discrimination. American Statistician, 63, 366-372.
    • (2009) American Statistician , vol.63 , pp. 366-372
    • Tjur, T.1
  • 362
    • 0014105023 scopus 로고
    • A multivariate analysis of the risk of coronary heart disease in Framingham
    • Truett, J., Cornfield, J., and Kannel, W. (1967). A multivariate analysis of the risk of coronary heart disease in Framingham. Journal of Chronic Diseases, 20, 511-524.
    • (1967) Journal of Chronic Diseases , vol.20 , pp. 511-524
    • Truett, J.1    Cornfield, J.2    Kannel, W.3
  • 363
    • 0018869041 scopus 로고
    • A note on a goodness-of-fit test for the logistic regression model
    • Tsiatis, A. A. (1980). A note on a goodness-of-fit test for the logistic regression model. Biometrika, 67, 250-251.
    • (1980) Biometrika , vol.67 , pp. 250-251
    • Tsiatis, A.A.1
  • 365
    • 67349266632 scopus 로고    scopus 로고
    • Sufficient cause interactions and statistical interactions
    • VanderWeele, T. J. (2009). Sufficient cause interactions and statistical interactions. Epidemiology, 20, 6-13.
    • (2009) Epidemiology , vol.20 , pp. 6-13
    • VanderWeele, T.J.1
  • 366
    • 79952117042 scopus 로고    scopus 로고
    • Odds ratios for mediation analysis for a dichotomous outcome
    • VanderWeele, T. J., and Vansteelandt, S. (2010). Odds ratios for mediation analysis for a dichotomous outcome. American Journal of Epidemiology, 172, 1339-1348.
    • (2010) American Journal of Epidemiology , vol.172 , pp. 1339-1348
    • VanderWeele, T.J.1    Vansteelandt, S.2
  • 367
    • 0023868890 scopus 로고
    • A method for computing profile-likelihood based confidence intervals
    • Venzon, D. J., and Moolgavkar, S. H. (1988). A method for computing profile-likelihood based confidence intervals. Applied Statistics, 37, 87-94.
    • (1988) Applied Statistics , vol.37 , pp. 87-94
    • Venzon, D.J.1    Moolgavkar, S.H.2
  • 369
    • 33847382959 scopus 로고    scopus 로고
    • Relaxing the rule of ten events per variable in logistic and Cox regression
    • Vittinghof, E., and McCulloch, C. E. (2006). Relaxing the rule of ten events per variable in logistic and Cox regression. American Journal of Epidemiology, 165, 710-718.
    • (2006) American Journal of Epidemiology , vol.165 , pp. 710-718
    • Vittinghof, E.1    McCulloch, C.E.2
  • 370
    • 0029887528 scopus 로고    scopus 로고
    • Goodness-of-fit in generalized nonlinear mixed-effects models
    • Vonesh, E., Chinchilli, V., and Pu, K. (1996). Goodness-of-fit in generalized nonlinear mixed-effects models. Biometrics, 52, 572-587.
    • (1996) Biometrics , vol.52 , pp. 572-587
    • Vonesh, E.1    Chinchilli, V.2    Pu, K.3
  • 371
    • 85017474650 scopus 로고    scopus 로고
    • Windmeijer's goodness-of-fit test for logistic regression
    • STB-44.
    • Weesie, J. (1998). Windmeijer's goodness-of-fit test for logistic regression. Stata Technical Bulletin, STB-44, 22-27.
    • (1998) Stata Technical Bulletin , pp. 22-27
    • Weesie, J.1
  • 372
    • 84972515302 scopus 로고
    • Discussion of paper by S. Chatterjee and A. S. Hadi
    • Welsch, R. (1986). Discussion of paper by S. Chatterjee and A. S. Hadi. Statistical Science, 1, 403-405.
    • (1986) Statistical Science , vol.1 , pp. 403-405
    • Welsch, R.1
  • 373
    • 0002644952 scopus 로고
    • Maximum likelihood estimation of misspecified models
    • White, H. (1982). Maximum likelihood estimation of misspecified models. Econometrika, 50, 1-25.
    • (1982) Econometrika , vol.50 , pp. 1-25
    • White, H.1
  • 375
    • 78651256743 scopus 로고    scopus 로고
    • Multiple imputation using chained equations: Issues and guidance for practice
    • White, I., Royston, P., and Wood, A. (2011). Multiple imputation using chained equations: Issues and guidance for practice. Statistics in Medicine, 30, 377-399.
    • (2011) Statistics in Medicine , vol.30 , pp. 377-399
    • White, I.1    Royston, P.2    Wood, A.3
  • 376
    • 84912790583 scopus 로고
    • Sample size for logistic regression with small response probability
    • Whitemore, A. S. (1981). Sample size for logistic regression with small response probability. Journal of the American Statistical Association, 76, 27-32.
    • (1981) Journal of the American Statistical Association , vol.76 , pp. 27-32
    • Whitemore, A.S.1
  • 377
    • 0016677811 scopus 로고
    • The analysis of binary responses from toxicological experiments involving reproduction and teratogenicity
    • Williams, D. (1975). The analysis of binary responses from toxicological experiments involving reproduction and teratogenicity. Biometrics, 31, 949-952.
    • (1975) Biometrics , vol.31 , pp. 949-952
    • Williams, D.1
  • 379
    • 84889661702 scopus 로고
    • The asymptotic distribution of the sum of weighted squared residuals in binary choice models
    • Windmeijer, F. A. G. (1990). The asymptotic distribution of the sum of weighted squared residuals in binary choice models. Statistica Neerlandica, 44, 69-78.
    • (1990) Statistica Neerlandica , vol.44 , pp. 69-78
    • Windmeijer, F.A.G.1
  • 380
    • 84875240815 scopus 로고    scopus 로고
    • Continuation-ratio models for ordinal response data
    • STB-44.
    • Wolfe, R. (1998). Continuation-ratio models for ordinal response data. Stata Technical Bulletin, STB-44, 18-21.
    • (1998) Stata Technical Bulletin , pp. 18-21
    • Wolfe, R.1
  • 382
    • 84886598817 scopus 로고
    • The hierarchical logistic regression model for multilevel analysis
    • Wong, G., and Mason, W. (1985). The hierarchical logistic regression model for multilevel analysis. Journal of the American Statistical Association, 80, 513-524.
    • (1985) Journal of the American Statistical Association , vol.80 , pp. 513-524
    • Wong, G.1    Mason, W.2
  • 383
    • 48249126832 scopus 로고    scopus 로고
    • How should variable selection be performed with multiply imputed data
    • Wood, A., White, I. and Royston, P. (2008). How should variable selection be performed with multiply imputed data. Statistics in Medicine, 27, 3227-3246.
    • (2008) Statistics in Medicine , vol.27 , pp. 3227-3246
    • Wood, A.1    White, I.2    Royston, P.3
  • 384
    • 85017456461 scopus 로고    scopus 로고
    • Unpublished Masters Thesis, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA.
    • Xu, H. (1996). Extensions of the Hosmer-Lemeshow goodness-of-fit test. Unpublished Masters Thesis, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA.
    • (1996) Extensions of the Hosmer-Lemeshow goodness-of-fit test
    • Xu, H.1
  • 385
    • 0027293124 scopus 로고
    • Initial cross-sectional results from the Orinda Longitudinal Study of Myopia
    • Zadnik, K., Mutti, D. O., Friedman, N. E., and Adams, A. J. (1993). Initial cross-sectional results from the Orinda Longitudinal Study of Myopia. Optometry and Vision Science, 70, 750-758.
    • (1993) Optometry and Vision Science , vol.70 , pp. 750-758
    • Zadnik, K.1    Mutti, D.O.2    Friedman, N.E.3    Adams, A.J.4
  • 387
    • 0022673130 scopus 로고
    • Longitudinal data analysis for discrete and continuous outcomes
    • Zeger, S., and Liang, K. (1986). Longitudinal data analysis for discrete and continuous outcomes. Biometrics, 42, 121-130.
    • (1986) Biometrics , vol.42 , pp. 121-130
    • Zeger, S.1    Liang, K.2
  • 388
    • 0024205301 scopus 로고
    • Models for longitudinal data: A generalized estimating equation approach
    • Zeger, S. L., Liang, K-Y., and Albert, P. A. (1988). Models for longitudinal data: A generalized estimating equation approach. Biometrics, 44, 1049-1060.
    • (1988) Biometrics , vol.44 , pp. 1049-1060
    • Zeger, S.L.1    Liang, K.-Y.2    Albert, P.A.3
  • 389
    • 3042550703 scopus 로고    scopus 로고
    • A chi-squared goodness-of-fit for logistic regression models based on case-control data
    • Zhang, B. (1999). A chi-squared goodness-of-fit for logistic regression models based on case-control data. Biometrika, 86, 531-539.
    • (1999) Biometrika , vol.86 , pp. 531-539
    • Zhang, B.1
  • 390
    • 80051792409 scopus 로고    scopus 로고
    • On fitting generalized linear mixed-effects models for binary responses using different statistical packages
    • Zhang, H., Lu, N., Feng, C., Thurston, S., Yinglin, X., Zhu, L., and Tu, X. (2011). On fitting generalized linear mixed-effects models for binary responses using different statistical packages. Statistics in Medicine, 30, 2562-2572.
    • (2011) Statistics in Medicine , vol.30 , pp. 2562-2572
    • Zhang, H.1    Lu, N.2    Feng, C.3    Thurston, S.4    Yinglin, X.5    Zhu, L.6    Tu, X.7
  • 392
    • 1642420994 scopus 로고    scopus 로고
    • A modified Poisson regression approach to prospective studies with binary data
    • Zou, G. (2004). A modified Poisson regression approach to prospective studies with binary data. American Journal of Epidemiology, 154, 702-706.
    • (2004) American Journal of Epidemiology , vol.154 , pp. 702-706
    • Zou, G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.