메뉴 건너뛰기




Volumn 14, Issue , 2013, Pages 3365-3383

PC algorithm for nonparanormal graphical models

Author keywords

Gaussian copula; Graphical model; Model selection; Multivariate normal distribution; Nonparanormal distribution

Indexed keywords

GAUSSIAN COPULA; GRAPHICAL MODEL; MODEL SELECTION; MULTI-VARIATE NORMAL DISTRIBUTIONS; NONPARANORMAL DISTRIBUTION;

EID: 84890100281     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (145)

References (28)
  • 2
    • 0031531764 scopus 로고    scopus 로고
    • A characterization of markov equivalence classes for acyclic digraphs
    • Steen A. Andersson, David Madigan, and Michael D. Perlman. A characterization of Markov equivalence classes for acyclic digraphs. Ann. Statist., 25(2):505-541, 1997.
    • (1997) Ann. Statist , vol.25 , Issue.2 , pp. 505-541
    • Andersson, S.A.1    Madigan, D.2    Perlman, M.D.3
  • 4
    • 50949108781 scopus 로고    scopus 로고
    • Extended bayesian information criterion for model selection with large model sp ace
    • Jiahua Chen and Zehua Chen. Extended Bayesian information criterion for model selection with large model sp ace. Biometrika, 95:759-771, 2008.
    • (2008) Biometrika , vol.95 , pp. 759-771
    • Chen, J.1    Chen, Z.2
  • 5
    • 0042496103 scopus 로고    scopus 로고
    • Learning equivalence classes of bayesian-network structures
    • David Maxwell Chickering. Learning equivalence classes of Bayesian-network structures. J. Mach. Learn. Res., 2(3):445-498, 2002.
    • (2002) J. Mach. Learn. Res , vol.2 , Issue.3 , pp. 445-498
    • Maxwell Chickering, D.1
  • 6
    • 33746035297 scopus 로고    scopus 로고
    • Fast algorithms for the calculation of kendall's τ
    • David Christensen. Fast algorithms for the calculation of Kendall's τ. Comput. Statist., 20(1):51-62, 2005.
    • (2005) Comput. Statist , vol.20 , Issue.1 , pp. 51-62
    • Christensen, D.1
  • 7
    • 84867677322 scopus 로고    scopus 로고
    • Learning high-dimensional directed acyclic graphs with latent and selection variables
    • Diego Colombo, Marloes H. Maathuis, Markus Kalisch, and Thomas S. Richardson. Learning high-dimensional directed acyclic graphs with latent and selection variables. Ann. Statist., 40(1): 294-321, 2012.
    • (2012) Ann. Statist , vol.40 , Issue.1 , pp. 294-321
    • Colombo, D.1    Maathuis, M.H.2    Kalisch, M.3    Richardson, T.S.4
  • 9
    • 85162049728 scopus 로고    scopus 로고
    • Extended bayesian information criteria for gaussian graphical models
    • Rina Foygel and Mathias Drton. Extended Bayesian information criteria for Gaussian graphical models. Adv. Neural Inf. Process. Syst., 23:2020-2028, 2010.
    • (2010) Adv. Neural Inf. Process. Syst , vol.23 , pp. 2020-2028
    • Foygel, R.1    Drton, M.2
  • 10
    • 0004151494 scopus 로고
    • Cambridge University Press, Cambridge, Corrected reprint of the 1985 original
    • Roger A. Horn and Charles R. Johnson. Matrix Analysis. Cambridge University Press, Cambridge, 1990. Corrected reprint of the 1985 original.
    • (1990) Matrix Analysis
    • Horn, R.A.1    Johnson, C.R.2
  • 11
    • 33947524259 scopus 로고    scopus 로고
    • Estimating high-dimensional directed acyclic graphs with the PC-algorithm
    • Markus Kalisch and Peter Bühlmann. Estimating high-dimensional directed acyclic graphs with the PC-algorithm. J. Mach. Learn. Res., 8:613-636, May 2007. (Pubitemid 46473523)
    • (2007) Journal of Machine Learning Research , vol.8 , pp. 613-636
    • Kalisch, M.1    Buhlmann, P.2
  • 12
    • 64249106690 scopus 로고    scopus 로고
    • Robustification of the pc-algorithm for directed acyclic graphs
    • Markus Kalisch and Peter Bühlmann. Robustification of the PC-algorithm for directed acyclic graphs. J. Comput. Graph. Statist., 17(4):773-789, 2008.
    • (2008) J. Comput. Graph. Statist , vol.17 , Issue.4 , pp. 773-789
    • Kalisch, M.1    Bühlmann, P.2
  • 15
    • 84875145131 scopus 로고    scopus 로고
    • Inferring microrna-mrna causal regulatory relationships from expression data
    • Thuc Duy Le, Lin Liu, Anna Tsykin, Gregory J. Goodall, Bing Liu, Bing-Yu Sun, and Jiuyong Li. Inferring microRNA-mRNA causal regulatory relationships from expression data. Bioinformatics, 29(6):765-771, 2013.
    • (2013) Bioinformatics , vol.29 , Issue.6 , pp. 765-771
    • Duy Le, T.1    Liu, L.2    Tsykin, A.3    Goodall, G.J.4    Liu, B.5    Sun, B.6    Li, J.7
  • 16
    • 70450277253 scopus 로고    scopus 로고
    • The nonparanormal: Semiparametric estimation of high dimensional undirected graphs
    • Han Liu, John Lafferty, and Larry Wasserman. The nonparanormal: semiparametric estimation of high dimensional undirected graphs. J. Mach. Learn. Res., 10:2295-2328, 2009.
    • (2009) J. Mach. Learn. Res , vol.10 , pp. 2295-2328
    • Liu, H.1    Lafferty, J.2    Wasserman, L.3
  • 17
    • 84875151494 scopus 로고    scopus 로고
    • High-dimensional semiparametric gaussian copula graphical models
    • Han Liu, Fang Han, Ming Yuan, John Lafferty, and LarryWasserman. High-dimensional semiparametric Gaussian copula graphical models. Ann. Statist., 40(4):2293-2326, 2012a.
    • (2012) Ann. Statist , vol.40 , Issue.4 , pp. 2293-2326
    • Liu, H.1    Han, F.2    Yuan, M.3    Lafferty, J.4    Wasserman, L.5
  • 19
    • 77951641247 scopus 로고    scopus 로고
    • Predicting causal effects in large-scale systems from observational data
    • Marloes H. Maathuis, Diego Colombo, Markus Kalisch, and Peter Bühlmann. Predicting causal effects in large-scale systems from observational data. Nature Methods, 7(4):247-248, 2010.
    • (2010) Nature Methods , vol.7 , Issue.4 , pp. 247-248
    • Maathuis, M.H.1    Colombo, D.2    Kalisch, M.3    Bühlmann, P.4
  • 20
    • 70349349170 scopus 로고    scopus 로고
    • Cambridge University Press, Cambridge, second edition, Models, reasoning, and inference
    • Judea Pearl. Causality. Cambridge University Press, Cambridge, second edition, 2009. Models, reasoning, and inference.
    • (2009) Causality
    • Pearl, J.1
  • 21
    • 84883220520 scopus 로고    scopus 로고
    • Graphical markov models with mixed graphs in r
    • December
    • Kayvan Sadeghi and Giovanni M. Marchetti. Graphical Markov models with mixed graphs in R. The R Journal, 4(2):65-73, December 2012.
    • (2012) The R Journal , vol.4 , Issue.2 , pp. 65-73
    • Sadeghi, K.1    Marchetti, G.M.2
  • 22
    • 79952963743 scopus 로고    scopus 로고
    • Conceptual aspects of large metaanalyses with publicly available microarray data: A case study in oncology
    • Markus Schmidberger, Sabine Lennert, and Ulrich Mansmann. Conceptual aspects of large metaanalyses with publicly available microarray data: A case study in oncology. Bioinformatics and Biology Insights, 5:13-39, 2011.
    • (2011) Bioinformatics and Biology Insights , vol.5 , pp. 13-39
    • Schmidberger, M.1    Lennert, S.2    Mansmann, U.3
  • 23
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Gideon Schwarz. Estimating the dimension of a model. Ann. Statist., 6(2):461-464, 1978.
    • (1978) Ann. Statist , vol.6 , Issue.2 , pp. 461-464
    • Schwarz, G.1
  • 24
    • 0003614273 scopus 로고    scopus 로고
    • MIT Press, Cambridge, MA, second edition, With additional material by David Heckerman, Christopher Meek, Gregory F. Cooper and Thomas Richardson, A Bradford Book
    • Peter Spirtes, Clark Glymour, and Richard Scheines. Causation, Prediction, and Search. Adaptive Computation and Machine Learning. MIT Press, Cambridge, MA, second edition, 2000. With additional material by David Heckerman, Christopher Meek, Gregory F. Cooper and Thomas Richardson, A Bradford Book.
    • (2000) Causation, Prediction, and Search. Adaptive Computation and Machine Learning
    • Spirtes, P.1    Glymour, C.2    Scheines, R.3
  • 25
    • 84871641450 scopus 로고    scopus 로고
    • Robust gaussian graphical modeling via l1 penalization
    • Hokeun Sun and Hongzhe Li. Robust Gaussian graphical modeling via l1 penalization. Biometrics, 68:1197-1206, 2012.
    • (2012) Biometrics , vol.68 , pp. 1197-1206
    • Sun, H.1    Li, H.2
  • 26
    • 84879127873 scopus 로고    scopus 로고
    • Geometry of faithfulness assumption in causal inference
    • Caroline Uhler, Garvesh Raskutti, Bin Yu, and Peter Bühlmann. Geometry of faithfulness assumption in causal inference. Ann. Statist., 41(2):436-463, 2013.
    • (2013) Ann. Statist , vol.41 , Issue.2 , pp. 436-463
    • Uhler, C.1    Raskutti, G.2    Yu, B.3    Bühlmann, P.4
  • 28
    • 33747648584 scopus 로고
    • Equivalence and synthesis of causal models
    • UCLA
    • Thomas Verma and Judea Pearl. Equivalence and synthesis of causal models. Technical Report R-150, UCLA, 1991.
    • (1991) Technical Report R-150
    • Verma, T.1    Pearl, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.