메뉴 건너뛰기




Volumn 19, Issue 3, 2016, Pages 404-413

Computational psychiatry as a bridge from neuroscience to clinical applications

Author keywords

[No Author keywords available]

Indexed keywords

AREA UNDER THE CURVE; ARTIFICIAL NEURAL NETWORK; BAYES THEOREM; COGNITIVE THERAPY; COMORBIDITY; COMPUTATIONAL PSYCHIATRY; DIFFUSION; DISEASE CLASSIFICATION; HUMAN; MACHINE LEARNING; MAJOR DEPRESSION; MATHEMATICAL ANALYSIS; NEUROIMAGING; NEUROSCIENCE; PRIORITY JOURNAL; PSYCHIATRIC DIAGNOSIS; PSYCHIATRY; RANDOMIZED CONTROLLED TRIAL (TOPIC); REINFORCEMENT; REVIEW; TREATMENT OUTCOME; TREATMENT RESPONSE; BIOLOGICAL MODEL; MENTAL DISORDERS; PROCEDURES; PSYCHOLOGICAL MODEL; TRANSLATIONAL RESEARCH;

EID: 84975687657     PISSN: 10976256     EISSN: 15461726     Source Type: Journal    
DOI: 10.1038/nn.4238     Document Type: Review
Times cited : (639)

References (148)
  • 1
    • 84870064521 scopus 로고    scopus 로고
    • Why has it taken so long for biological psychiatry to develop clinical tests and what to do about it?
    • Kapur, S., Phillips, A.G. & Insel, T.R. Why has it taken so long for biological psychiatry to develop clinical tests and what to do about it? Mol. Psychiatry 17, 1174-1179 (2012).
    • (2012) Mol. Psychiatry , vol.17 , pp. 1174-1179
    • Kapur, S.1    Phillips, A.G.2    Insel, T.R.3
  • 2
    • 84955513015 scopus 로고    scopus 로고
    • The role of serotonin in orbitofrontal function and obsessive-compulsive disorder
    • Maia, T.V. & Cano-Colino, M. The role of serotonin in orbitofrontal function and obsessive-compulsive disorder. Clin. Psychol. Sci. 3, 460-482 (2015).
    • (2015) Clin. Psychol. Sci. , vol.3 , pp. 460-482
    • Maia, T.V.1    Cano-Colino, M.2
  • 3
    • 79957608463 scopus 로고    scopus 로고
    • Are computational models of any use to psychiatry?
    • Huys, Q.J.M., Moutoussis, M. & Williams, J. Are computational models of any use to psychiatry? Neural Netw. 24, 544-551 (2011).
    • (2011) Neural Netw. , vol.24 , pp. 544-551
    • Huys, Q.J.M.1    Moutoussis, M.2    Williams, J.3
  • 4
    • 84953350446 scopus 로고    scopus 로고
    • Charting the landscape of priority problems in psychiatry, part 1: Classifcation and diagnosis
    • Stephan, K.E. et al. Charting the landscape of priority problems in psychiatry, part 1: classifcation and diagnosis. Lancet Psychiatry 3, 77-83 (2015).
    • (2015) Lancet Psychiatry , vol.3 , pp. 77-83
    • Stephan, K.E.1
  • 5
    • 33745684557 scopus 로고    scopus 로고
    • Gene-environment interactions in psychiatry: Joining forces with neuroscience
    • Caspi, A. & Mofftt, T.E. Gene-environment interactions in psychiatry: joining forces with neuroscience. Nat. Rev. Neurosci. 7, 583-590 (2006).
    • (2006) Nat. Rev. Neurosci. , vol.7 , pp. 583-590
    • Caspi, A.1    Mofftt, T.E.2
  • 6
    • 78650770457 scopus 로고    scopus 로고
    • International Study to Predict Optimized Treatment for Depression (iSPOT-D), a randomized clinical trial: Rationale and protocol
    • Williams, L.M. et al. International Study to Predict Optimized Treatment for Depression (iSPOT-D), a randomized clinical trial: rationale and protocol. Trials 12, 4 (2011).
    • (2011) Trials , vol.12 , pp. 4
    • Williams, L.M.1
  • 8
    • 84955472483 scopus 로고    scopus 로고
    • Introduction to the series on computational psychiatry
    • Maia, T.V. Introduction to the series on computational psychiatry. Clin. Psychol. Sci. 3, 374-377 (2015).
    • (2015) Clin. Psychol. Sci. , vol.3 , pp. 374-377
    • Maia, T.V.1
  • 9
    • 79251569290 scopus 로고    scopus 로고
    • From reinforcement learning models to psychiatric and neurological disorders
    • Maia, T.V. & Frank, M.J. From reinforcement learning models to psychiatric and neurological disorders. Nat. Neurosci. 14, 154-162 (2011).
    • (2011) Nat. Neurosci. , vol.14 , pp. 154-162
    • Maia, T.V.1    Frank, M.J.2
  • 11
    • 84912059989 scopus 로고    scopus 로고
    • Computational psychiatry
    • Wang, X.J. & Krystal, J.H. Computational psychiatry. Neuron 84, 638-654 (2014).
    • (2014) Neuron , vol.84 , pp. 638-654
    • Wang, X.J.1    Krystal, J.H.2
  • 12
    • 84929597056 scopus 로고    scopus 로고
    • Model-based cognitive neuroscience approaches to computational psychiatry clustering and classifcation
    • Wiecki, T.V., Poland, J. & Frank, M.J. Model-based cognitive neuroscience approaches to computational psychiatry clustering and classifcation. Clin. Psychol. Sci. 3, 378-399 (2015).
    • (2015) Clin. Psychol. Sci. , vol.3 , pp. 378-399
    • Wiecki, T.V.1    Poland, J.2    Frank, M.J.3
  • 13
    • 84855301161 scopus 로고    scopus 로고
    • A neurocomputational approach to obsessive-compulsive disorder
    • Maia, T.V. & McClelland, J.L. A neurocomputational approach to obsessive-compulsive disorder. Trends Cogn. Sci. 16, 14-15 (2012).
    • (2012) Trends Cogn. Sci. , vol.16 , pp. 14-15
    • Maia, T.V.1    McClelland, J.L.2
  • 14
    • 84891334262 scopus 로고    scopus 로고
    • Computational approaches to psychiatry
    • Stephan, K.E. & Mathys, C. Computational approaches to psychiatry. Curr. Opin. Neurobiol. 25, 85-92 (2014).
    • (2014) Curr. Opin. Neurobiol. , vol.25 , pp. 85-92
    • Stephan, K.E.1    Mathys, C.2
  • 15
  • 16
    • 84939559585 scopus 로고    scopus 로고
    • Translational perspectives for computational neuroimaging
    • Stephan, K.E., Iglesias, S., Heinzle, J. & Diaconescu, A.O. Translational perspectives for computational neuroimaging. Neuron 87, 716-732 (2015).
    • (2015) Neuron , vol.87 , pp. 716-732
    • Stephan, K.E.1    Iglesias, S.2    Heinzle, J.3    Diaconescu, A.O.4
  • 18
    • 84975782664 scopus 로고
    • World Health Organization Press
    • World Health Organization. International Classifcation of Diseases (World Health Organization Press, 1990).
    • (1990) International Classifcation of Diseases
  • 19
    • 77954230363 scopus 로고    scopus 로고
    • Research domain criteria (RDoC): Toward a new classifcation framework for research on mental disorders
    • Insel, T. et al. Research domain criteria (RDoC): toward a new classifcation framework for research on mental disorders. Am. J. Psychiatry 167, 748-751 (2010).
    • (2010) Am. J. Psychiatry , vol.167 , pp. 748-751
    • Insel, T.1
  • 21
    • 84883465830 scopus 로고    scopus 로고
    • Genetic relationship between fve psychiatric disorders estimated from genome-wide SNPs
    • Lee, S.H. et al.; Cross-Disorder Group of the Psychiatric Genomics Consortium; International Infammatory Bowel Disease Genetics Consortium (IIBDGC). Genetic relationship between fve psychiatric disorders estimated from genome-wide SNPs. Nat. Genet. 45, 984-994 (2013).
    • (2013) Nat. Genet. , vol.45 , pp. 984-994
    • Lee, S.H.1
  • 23
    • 84908555723 scopus 로고    scopus 로고
    • Dimensionality reduction for large-scale neural recordings
    • Cunningham, J.P. & Yu, B.M. Dimensionality reduction for large-scale neural recordings. Nat. Neurosci. 17, 1500-1509 (2014).
    • (2014) Nat. Neurosci. , vol.17 , pp. 1500-1509
    • Cunningham, J.P.1    Yu, B.M.2
  • 24
    • 84890522254 scopus 로고    scopus 로고
    • Dissecting psychiatric spectrum disorders by generative embedding
    • Brodersen, K.H. et al. Dissecting psychiatric spectrum disorders by generative embedding. Neuroimage Clin. 4, 98-111 (2014).
    • (2014) Neuroimage Clin. , vol.4 , pp. 98-111
    • Brodersen, K.H.1
  • 25
    • 84947790937 scopus 로고    scopus 로고
    • Bayesian neural adjustment of inhibitory control predicts emergence of problem stimulant use
    • Harlé, K.M. et al. Bayesian neural adjustment of inhibitory control predicts emergence of problem stimulant use. Brain 138, 3413-3426 (2015).
    • (2015) Brain , vol.138 , pp. 3413-3426
    • Harlé, K.M.1
  • 26
    • 84857000430 scopus 로고    scopus 로고
    • Using Support Vector Machine to identify imaging biomarkers of neurological and psychiatric disease: A critical review
    • Orrù, G., Pettersson-Yeo, W., Marquand, A.F., Sartori, G. & Mechelli, A. Using Support Vector Machine to identify imaging biomarkers of neurological and psychiatric disease: a critical review. Neurosci. Biobehav. Rev. 36, 1140-1152 (2012).
    • (2012) Neurosci. Biobehav. Rev. , vol.36 , pp. 1140-1152
    • Orrù, G.1    Pettersson-Yeo, W.2    Marquand, A.F.3    Sartori, G.4    Mechelli, A.5
  • 27
    • 84952637704 scopus 로고    scopus 로고
    • From estimating activation locality to predicting disorder: A review of pattern recognition for neuroimaging-based psychiatric diagnostics
    • Wolfers, T., Buitelaar, J.K., Beckmann, C.F., Franke, B. & Marquand, A.F. From estimating activation locality to predicting disorder: A review of pattern recognition for neuroimaging-based psychiatric diagnostics. Neurosci. Biobehav. Rev. 57, 328-349 (2015).
    • (2015) Neurosci. Biobehav. Rev. , vol.57 , pp. 328-349
    • Wolfers, T.1    Buitelaar, J.K.2    Beckmann, C.F.3    Franke, B.4    Marquand, A.F.5
  • 29
    • 0030050976 scopus 로고    scopus 로고
    • Comorbidity of DSM-III-R major depressive disorder in the general population: Results from the US National Comorbidity Survey
    • Kessler, R.C. et al. Comorbidity of DSM-III-R major depressive disorder in the general population: results from the US National Comorbidity Survey. Br. J. Psychiatry Suppl. 30, 17-30 (1996).
    • (1996) Br. J. Psychiatry Suppl. , vol.30 , pp. 17-30
    • Kessler, R.C.1
  • 30
    • 18844392532 scopus 로고    scopus 로고
    • Eating disorder NOS (EDNOS): An example of the troublesome "not otherwise specifed" (NOS) category in DSM-IV
    • Fairburn, C.G. & Bohn, K. Eating disorder NOS (EDNOS): an example of the troublesome "not otherwise specifed" (NOS) category in DSM-IV. Behav. Res. Ther. 43, 691-701 (2005).
    • (2005) Behav. Res. Ther. , vol.43 , pp. 691-701
    • Fairburn, C.G.1    Bohn, K.2
  • 31
    • 0030803362 scopus 로고    scopus 로고
    • Prevalence correlates, and course of minor depression and major depression in the National Comorbidity Survey
    • Kessler, R.C., Zhao, S., Blazer, D.G. & Swartz, M. Prevalence, correlates, and course of minor depression and major depression in the National Comorbidity Survey. J. Affect. Disord. 45, 19-30 (1997).
    • (1997) J. Affect. Disord. , vol.45 , pp. 19-30
    • Kessler, R.C.1    Zhao, S.2    Blazer, D.G.3    Swartz, M.4
  • 32
    • 84872078739 scopus 로고    scopus 로고
    • The initial feld trials of DSM-5: New blooms and old thorns
    • Freedman, R. et al. The initial feld trials of DSM-5: new blooms and old thorns. Am. J. Psychiatry 170, 1-5 (2013).
    • (2013) Am. J. Psychiatry , vol.170 , pp. 1-5
    • Freedman, R.1
  • 33
    • 84912551879 scopus 로고    scopus 로고
    • The tenth annual MLSP competition: Schizophrenia classifcation challenge
    • Silva, R.F. et al. The tenth annual MLSP competition: schizophrenia classifcation challenge. IEEE Int. Workshop Mach. Learn. Signal Process. 1-6 (2014).
    • (2014) IEEE Int. Workshop Mach. Learn. Signal Process. , pp. 1-6
    • Silva, R.F.1
  • 35
    • 84933047930 scopus 로고    scopus 로고
    • Alzheimer's Disease Neuroimaging Initiative. Clinical prediction from structural brain MRI scans: A large-scale empirical study
    • Sabuncu, M.R. & Konukoglu, E. Alzheimer's Disease Neuroimaging Initiative. Clinical prediction from structural brain MRI scans: a large-scale empirical study. Neuroinformatics 13, 31-46 (2015).
    • (2015) Neuroinformatics , vol.13 , pp. 31-46
    • Sabuncu, M.R.1    Konukoglu, E.2
  • 36
    • 79953761839 scopus 로고    scopus 로고
    • Integrating neurobiological markers of depression
    • Hahn, T. et al. Integrating neurobiological markers of depression. Arch. Gen. Psychiatry 68, 361-368 (2011).
    • (2011) Arch. Gen. Psychiatry , vol.68 , pp. 361-368
    • Hahn, T.1
  • 37
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • Hinton, G.E., Osindero, S. & Teh, Y.W. A fast learning algorithm for deep belief nets. Neural Comput. 18, 1527-1554 (2006).
    • (2006) Neural Comput. , vol.18 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.W.3
  • 38
    • 84894284759 scopus 로고    scopus 로고
    • Extreme learning machine-based classifcation of ADHD using brain structural MRI data
    • Peng, X., Lin, P., Zhang, T. & Wang, J. Extreme learning machine-based classifcation of ADHD using brain structural MRI data. PLoS One 8, e79476 (2013).
    • (2013) PLoS One , vol.8 , pp. e79476
    • Peng, X.1    Lin, P.2    Zhang, T.3    Wang, J.4
  • 39
    • 84941964814 scopus 로고    scopus 로고
    • Deep neural network with weight sparsity control and pre-training extracts hierarchical features and enhances classifcation performance: Evidence from whole-brain resting-state functional connectivity patterns of schizophrenia
    • Kim, J., Calhoun, V.D., Shim, E. & Lee, J.H. Deep neural network with weight sparsity control and pre-training extracts hierarchical features and enhances classifcation performance: Evidence from whole-brain resting-state functional connectivity patterns of schizophrenia. Neuroimage 124 Pt A, 127-146 2016).
    • (2016) Neuroimage , vol.124 , pp. 127-146
    • Kim, J.1    Calhoun, V.D.2    Shim, E.3    Lee, J.H.4
  • 40
    • 84899966189 scopus 로고    scopus 로고
    • Disease prediction based on functional connectomes using a scalable and spatially-informed support vector machine
    • Watanabe, T., Kessler, D., Scott, C., Angstadt, M. & Sripada, C. Disease prediction based on functional connectomes using a scalable and spatially-informed support vector machine. Neuroimage 96, 183-202 (2014).
    • (2014) Neuroimage , vol.96 , pp. 183-202
    • Watanabe, T.1    Kessler, D.2    Scott, C.3    Angstadt, M.4    Sripada, C.5
  • 41
    • 79251561866 scopus 로고    scopus 로고
    • Pattern of neural responses to verbal fuency shows diagnostic specifcity for schizophrenia and bipolar disorder
    • Costafreda, S.G. et al. Pattern of neural responses to verbal fuency shows diagnostic specifcity for schizophrenia and bipolar disorder. BMC Psychiatry 11, 18 (2011).
    • (2011) BMC Psychiatry , vol.11 , pp. 18
    • Costafreda, S.G.1
  • 42
    • 65549168742 scopus 로고    scopus 로고
    • Machine learning classifers and fMRI: A tutorial overview
    • Pereira, F., Mitchell, T. & Botvinick, M. Machine learning classifers and fMRI: a tutorial overview. Neuroimage 45 (suppl.) S199-S209 (2009).
    • (2009) Neuroimage , vol.45 , pp. S199-S209
    • Pereira, F.1    Mitchell, T.2    Botvinick, M.3
  • 43
    • 36349027559 scopus 로고    scopus 로고
    • Subtypes versus severity differences in attention-defcit/hyperactivity disorder in the Northern Finnish Birth Cohort
    • Lubke, G.H. et al. Subtypes versus severity differences in attention-defcit/hyperactivity disorder in the Northern Finnish Birth Cohort. J. Am. Acad. Child Adolesc. Psychiatry 46, 1584-1593 (2007).
    • (2007) J. Am. Acad. Child Adolesc. Psychiatry , vol.46 , pp. 1584-1593
    • Lubke, G.H.1
  • 44
    • 84899952101 scopus 로고    scopus 로고
    • The p factor: One general psychopathology factor in the structure of psychiatric disorders?
    • Caspi, A. et al. The p factor: One general psychopathology factor in the structure of psychiatric disorders? Clin. Psychol. Sci. 2, 119-137 (2014).
    • (2014) Clin. Psychol. Sci. , vol.2 , pp. 119-137
    • Caspi, A.1
  • 45
    • 84901596842 scopus 로고    scopus 로고
    • Bayesian nonparametric comorbidity analysis of psychiatric disorders
    • Ruiz, F.J.R., Valera, I., Blanco, C. & Perez-Cruz, F. Bayesian nonparametric comorbidity analysis of psychiatric disorders. J. Mach. Learn. Res. 15, 1215-1247 (2014).
    • (2014) J. Mach. Learn. Res. , vol.15 , pp. 1215-1247
    • Ruiz, F.J.R.1    Valera, I.2    Blanco, C.3    Perez-Cruz, F.4
  • 46
    • 77952909945 scopus 로고    scopus 로고
    • The diagnosis of mental disorders: The problem of reifcation
    • Hyman, S.E. The diagnosis of mental disorders: the problem of reifcation. Annu. Rev. Clin. Psychol. 6, 155-179 (2010).
    • (2010) Annu. Rev. Clin. Psychol. , vol.6 , pp. 155-179
    • Hyman, S.E.1
  • 47
    • 67650457029 scopus 로고    scopus 로고
    • Use of neuroanatomical pattern classifcation to identify subjects in at-risk mental states of psychosis and predict disease transition
    • Koutsouleris, N. et al. Use of neuroanatomical pattern classifcation to identify subjects in at-risk mental states of psychosis and predict disease transition. Arch. Gen. Psychiatry 66, 700-712 (2009).
    • (2009) Arch. Gen. Psychiatry , vol.66 , pp. 700-712
    • Koutsouleris, N.1
  • 48
    • 84937643094 scopus 로고    scopus 로고
    • Predicting the naturalistic course of major depressive disorder using clinical and multimodal neuroimaging information: A multivariate pattern recognition study
    • Schmaal, L. et al. Predicting the naturalistic course of major depressive disorder using clinical and multimodal neuroimaging information: A multivariate pattern recognition study. Biol. Psychiatry 78, 278-286 (2015).
    • (2015) Biol. Psychiatry , vol.78 , pp. 278-286
    • Schmaal, L.1
  • 49
    • 84946577604 scopus 로고    scopus 로고
    • The brain's response to reward anticipation and depression in adolescence: Dimensionality, specifcity, and longitudinal predictions in a community-based sample
    • Stringaris, A. et al.; IMAGEN Consortium. The brain's response to reward anticipation and depression in adolescence: dimensionality, specifcity, and longitudinal predictions in a community-based sample. Am. J. Psychiatry 172, 1215-1223 (2015).
    • (2015) Am. J. Psychiatry , vol.172 , pp. 1215-1223
    • Stringaris, A.1
  • 50
    • 84906266049 scopus 로고    scopus 로고
    • Neuropsychosocial profles of current and future adolescent alcohol misusers
    • Whelan, R. et al.; IMAGEN Consortium. Neuropsychosocial profles of current and future adolescent alcohol misusers. Nature 512, 185-189 (2014).
    • (2014) Nature , vol.512 , pp. 185-189
    • Whelan, R.1
  • 51
    • 84961290231 scopus 로고    scopus 로고
    • Pavlovian-to-instrumental transfer effects in the nucleus accumbens relate to relapse in alcohol dependence
    • 1 April 2015
    • Garbusow, M. et al. Pavlovian-to-instrumental transfer effects in the nucleus accumbens relate to relapse in alcohol dependence. Addict. Biol. published online, doi:10.1111/adb.12243 (1 April 2015).
    • Addict. Biol. Published Online
    • Garbusow, M.1
  • 52
    • 84946492005 scopus 로고    scopus 로고
    • Understanding and predicting suicidality using a combined genomic and clinical risk assessment approach
    • Niculescu, A.B. et al. Understanding and predicting suicidality using a combined genomic and clinical risk assessment approach. Mol. Psychiatry 20, 1266-1285 (2015).
    • (2015) Mol. Psychiatry , vol.20 , pp. 1266-1285
    • Niculescu, A.B.1
  • 53
    • 33751338530 scopus 로고    scopus 로고
    • Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: A STAR∗ D report
    • Rush, A.J. et al. Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: a STAR∗D report. Am. J. Psychiatry 163, 1905-1917 (2006).
    • (2006) Am. J. Psychiatry , vol.163 , pp. 1905-1917
    • Rush, A.J.1
  • 54
    • 84886715277 scopus 로고    scopus 로고
    • EEG biomarkers in major depressive disorder: Discriminative power and prediction of treatment response
    • Olbrich, S. & Arns, M. EEG biomarkers in major depressive disorder: discriminative power and prediction of treatment response. Int. Rev. Psychiatry 25, 604-618 (2013).
    • (2013) Int. Rev. Psychiatry , vol.25 , pp. 604-618
    • Olbrich, S.1    Arns, M.2
  • 55
    • 79958050956 scopus 로고    scopus 로고
    • Electroencephalography-derived biomarkers of antidepressant response
    • Iosifescu, D.V. Electroencephalography-derived biomarkers of antidepressant response. Harv. Rev. Psychiatry 19, 144-154 (2011).
    • (2011) Harv. Rev. Psychiatry , vol.19 , pp. 144-154
    • Iosifescu, D.V.1
  • 56
    • 84938745204 scopus 로고    scopus 로고
    • Frontal and rostral anterior cingulate (rACC) theta EEG in depression: Implications for treatment outcome?
    • Arns, M. et al. Frontal and rostral anterior cingulate (rACC) theta EEG in depression: implications for treatment outcome? Eur. Neuropsychopharmacol. 25, 1190-1200 (2015).
    • (2015) Eur. Neuropsychopharmacol. , vol.25 , pp. 1190-1200
    • Arns, M.1
  • 57
    • 84964430134 scopus 로고    scopus 로고
    • EEG alpha asymmetry as a gender-specifc predictor of outcome to acute treatment with different antidepressant medications in the randomized ISPOT-D study
    • Arns, M. et al. EEG alpha asymmetry as a gender-specifc predictor of outcome to acute treatment with different antidepressant medications in the randomized ISPOT-D study. Clin. Neurophysiol. 127, 509-519 (2015).
    • (2015) Clin. Neurophysiol. , vol.127 , pp. 509-519
    • Arns, M.1
  • 58
    • 84947496208 scopus 로고    scopus 로고
    • Utility of event-related potentials in predicting antidepressant treatment response: An iSPOT-D report
    • Dinteren, Rv. et al. Utility of event-related potentials in predicting antidepressant treatment response: an iSPOT-D report. Eur. Neuropsychopharmacol. 25, 1981-1990 (2015).
    • (2015) Eur. Neuropsychopharmacol. , vol.25 , pp. 1981-1990
    • Dinteren, Rv.1
  • 59
    • 0027992093 scopus 로고
    • Cordance: A new method for assessment of cerebral perfusion and metabolism using quantitative electroencephalography
    • Leuchter, A.F. et al. Cordance: a new method for assessment of cerebral perfusion and metabolism using quantitative electroencephalography. Neuroimage 1, 208-219 (1994).
    • (1994) Neuroimage , vol.1 , pp. 208-219
    • Leuchter, A.F.1
  • 60
    • 70349487527 scopus 로고    scopus 로고
    • Frontal EEG predictors of treatment outcome in major depressive disorder
    • Iosifescu, D.V. et al. Frontal EEG predictors of treatment outcome in major depressive disorder. Eur. Neuropsychopharmacol. 19, 772-777 (2009).
    • (2009) Eur. Neuropsychopharmacol. , vol.19 , pp. 772-777
    • Iosifescu, D.V.1
  • 61
    • 84883052925 scopus 로고    scopus 로고
    • A machine learning approach using EEG data to predict response to SSRI treatment for major depressive disorder
    • Khodayari-Rostamabad, A., Reilly, J.P., Hasey, G.M., de Bruin, H. & Maccrimmon, D.J. A machine learning approach using EEG data to predict response to SSRI treatment for major depressive disorder. Clin. Neurophysiol. 124, 1975-1985 (2013).
    • (2013) Clin. Neurophysiol. , vol.124 , pp. 1975-1985
    • Khodayari-Rostamabad, A.1    Reilly, J.P.2    Hasey, G.M.3    De Bruin, H.4    Maccrimmon, D.J.5
  • 62
    • 84959571586 scopus 로고    scopus 로고
    • Cross-trial prediction of treatment outcome in depression
    • 20 January 2016
    • Chekroud, A. et al. Cross-trial prediction of treatment outcome in depression. Lancet Psychiatry published online, doi:10.1016/S2215-0366(15)00471-X (20 January 2016).
    • Lancet Psychiatry Published Online
    • Chekroud, A.1
  • 63
    • 84924104214 scopus 로고    scopus 로고
    • Toward an online cognitive and emotional battery to predict treatment remission in depression
    • Gordon, E., Rush, A.J., Palmer, D.M., Braund, T.A. & Rekshan, W. Toward an online cognitive and emotional battery to predict treatment remission in depression. Neuropsychiatr. Dis. Treat. 11, 517-531 (2015).
    • (2015) Neuropsychiatr. Dis. Treat. , vol.11 , pp. 517-531
    • Gordon, E.1    Rush, A.J.2    Palmer, D.M.3    Braund, T.A.4    Rekshan, W.5
  • 64
    • 84939989691 scopus 로고    scopus 로고
    • A cognitive-emotional biomarker for predicting remission with antidepressant medications: A report from the iSPOT-D trial
    • Etkin, A. et al. A cognitive-emotional biomarker for predicting remission with antidepressant medications: a report from the iSPOT-D trial. Neuropsychopharmacology 40, 1332-1342 (2015).
    • (2015) Neuropsychopharmacology , vol.40 , pp. 1332-1342
    • Etkin, A.1
  • 65
    • 84927726000 scopus 로고    scopus 로고
    • Magnetic resonance imaging measures of brain structure to predict antidepressant treatment outcome in major depressive disorder
    • Korgaonkar, M.S. et al. Magnetic resonance imaging measures of brain structure to predict antidepressant treatment outcome in major depressive disorder. EBioMedicine 2, 37-45 (2015).
    • (2015) EBioMedicine , vol.2 , pp. 37-45
    • Korgaonkar, M.S.1
  • 66
    • 56749117943 scopus 로고    scopus 로고
    • In defense of one-vs-all classifcation
    • Rifkin, R. & Klautau, A. In defense of one-vs-all classifcation. J. Mach. Learn. Res. 5, 101-141 (2004).
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 101-141
    • Rifkin, R.1    Klautau, A.2
  • 67
    • 84896694905 scopus 로고    scopus 로고
    • The Personalized Advantage Index: Translating research on prediction into individualized treatment recommendations. A demonstration
    • DeRubeis, R.J. et al. The Personalized Advantage Index: translating research on prediction into individualized treatment recommendations. A demonstration. PLoS One 9, e83875 (2014).
    • (2014) PLoS One , vol.9 , pp. e83875
    • DeRubeis, R.J.1
  • 69
    • 84939265908 scopus 로고    scopus 로고
    • Amygdala reactivity to emotional faces in the prediction of general and medication-specifc responses to antidepressant treatment in the randomized iSPOT-D trial
    • Williams, L.M. et al. Amygdala reactivity to emotional faces in the prediction of general and medication-specifc responses to antidepressant treatment in the randomized iSPOT-D trial. Neuropsychopharmacology 40, 2398-2408 (2015).
    • (2015) Neuropsychopharmacology , vol.40 , pp. 2398-2408
    • Williams, L.M.1
  • 70
    • 84882408136 scopus 로고    scopus 로고
    • Toward a neuroimaging treatment selection biomarker for major depressive disorder
    • McGrath, C.L. et al. Toward a neuroimaging treatment selection biomarker for major depressive disorder. JAMA Psychiatry 70, 821-829 (2013).
    • (2013) JAMA Psychiatry , vol.70 , pp. 821-829
    • McGrath, C.L.1
  • 71
    • 78650948927 scopus 로고    scopus 로고
    • The use of referenced-EEG (rEEG) in assisting medication selection for the treatment of depression
    • DeBattista, C. et al. The use of referenced-EEG (rEEG) in assisting medication selection for the treatment of depression. J. Psychiatr. Res. 45, 64-75 (2011).
    • (2011) J. Psychiatr. Res. , vol.45 , pp. 64-75
    • DeBattista, C.1
  • 73
    • 84877626914 scopus 로고    scopus 로고
    • Toward the future of psychiatric diagnosis: The seven pillars of RDoC
    • Cuthbert, B.N. & Insel, T.R. Toward the future of psychiatric diagnosis: the seven pillars of RDoC. BMC Med. 11, 126 (2013).
    • (2013) BMC Med. , vol.11 , pp. 126
    • Cuthbert, B.N.1    Insel, T.R.2
  • 75
    • 77955643772 scopus 로고    scopus 로고
    • The early course of depression: A longitudinal investigation of prodromal symptoms and their relation to the symptomatic course of depressive episodes
    • Iacoviello, B.M., Alloy, L.B., Abramson, L.Y. & Choi, J.Y. The early course of depression: a longitudinal investigation of prodromal symptoms and their relation to the symptomatic course of depressive episodes. J. Abnorm. Psychol. 119, 459-467 (2010).
    • (2010) J. Abnorm. Psychol. , vol.119 , pp. 459-467
    • Iacoviello, B.M.1    Alloy, L.B.2    Abramson, L.Y.3    Choi, J.Y.4
  • 76
    • 70350570499 scopus 로고    scopus 로고
    • A Bayesian formulation of behavioral control
    • Huys, Q.J.M. & Dayan, P. A Bayesian formulation of behavioral control. Cognition 113, 314-328 (2009).
    • (2009) Cognition , vol.113 , pp. 314-328
    • Huys, Q.J.M.1    Dayan, P.2
  • 77
    • 84860732899 scopus 로고    scopus 로고
    • Experience sampling methodology studies of depression: The state of the art
    • Telford, C., McCarthy-Jones, S., Corcoran, R. & Rowse, G. Experience sampling methodology studies of depression: the state of the art. Psychol. Med. 42, 1119-1129 (2012).
    • (2012) Psychol. Med. , vol.42 , pp. 1119-1129
    • Telford, C.1    McCarthy-Jones, S.2    Corcoran, R.3    Rowse, G.4
  • 78
    • 84875931417 scopus 로고    scopus 로고
    • A network approach to psychopathology: New insights into clinical longitudinal data
    • Bringmann, L.F. et al. A network approach to psychopathology: new insights into clinical longitudinal data. PLoS One 8, e60188 (2013).
    • (2013) PLoS One , vol.8 , pp. e60188
    • Bringmann, L.F.1
  • 80
    • 84937019493 scopus 로고    scopus 로고
    • Exploring the underlying structure of mental disorders: Cross-diagnostic differences and similarities from a network perspective using both a top-down and a bottom-up approach
    • Wigman, J.T.W. et al.; MERGE. Exploring the underlying structure of mental disorders: cross-diagnostic differences and similarities from a network perspective using both a top-down and a bottom-up approach. Psychol. Med. 45, 2375-2387 (2015).
    • (2015) Psychol. Med. , vol.45 , pp. 2375-2387
    • MERGE1    Wigman, J.T.W.2
  • 81
    • 84891949610 scopus 로고    scopus 로고
    • Critical slowing down as early warning for the onset and termination of depression
    • van de Leemput, I.A. et al. Critical slowing down as early warning for the onset and termination of depression. Proc. Natl. Acad. Sci. USA 111, 87-92 (2014).
    • (2014) Proc. Natl. Acad. Sci. USA , vol.111 , pp. 87-92
    • Van De Leemput, I.A.1
  • 82
    • 78649946380 scopus 로고    scopus 로고
    • Antidepressant monotherapy vs sequential pharmacotherapy and mindfulness-based cognitive therapy, or placebo, for relapse prophylaxis in recurrent depression
    • Segal, Z.V. et al. Antidepressant monotherapy vs sequential pharmacotherapy and mindfulness-based cognitive therapy, or placebo, for relapse prophylaxis in recurrent depression. Arch. Gen. Psychiatry 67, 1256-1264 (2010).
    • (2010) Arch. Gen. Psychiatry , vol.67 , pp. 1256-1264
    • Segal, Z.V.1
  • 83
    • 84861221732 scopus 로고    scopus 로고
    • Recovery and subsequent recurrence in patients with recurrent major depressive disorder
    • Dunlop, B.W., Holland, P., Bao, W., Ninan, P.T. & Keller, M.B. Recovery and subsequent recurrence in patients with recurrent major depressive disorder. J. Psychiatr. Res. 46, 708-715 (2012).
    • (2012) J. Psychiatr. Res. , vol.46 , pp. 708-715
    • Dunlop, B.W.1    Holland, P.2    Bao, W.3    Ninan, P.T.4    Keller, M.B.5
  • 84
    • 0003834557 scopus 로고
    • Freeman, New York
    • Marr, D. Vision (Freeman, New York, 1982).
    • (1982) Vision
    • Marr, D.1
  • 85
    • 84861621282 scopus 로고    scopus 로고
    • Go and no-go learning in reward and punishment: Interactions between affect and effect
    • Guitart-Masip, M. et al. Go and no-go learning in reward and punishment: interactions between affect and effect. Neuroimage 62, 154-166 (2012).
    • (2012) Neuroimage , vol.62 , pp. 154-166
    • Guitart-Masip, M.1
  • 87
    • 84944582652 scopus 로고    scopus 로고
    • Linking across levels of computation in model-based cognitive neuroscience
    • (eds. B. Forstmann & E. Wagenmakers) Springer, New York
    • Frank, M.J. Linking across levels of computation in model-based cognitive neuroscience. in An Introduction to Model-Based Cognitive Neuroscience (eds. B. Forstmann & E. Wagenmakers) 163-181 (Springer, New York, 2015).
    • (2015) An Introduction to Model-Based Cognitive Neuroscience , pp. 163-181
    • Frank, M.J.1
  • 88
    • 84905503383 scopus 로고    scopus 로고
    • Opponent actor learning (OpAL): Modeling interactive effects of striatal dopamine on reinforcement learning and choice incentive
    • Collins, A.G.E. & Frank, M.J. Opponent actor learning (OpAL): modeling interactive effects of striatal dopamine on reinforcement learning and choice incentive. Psychol. Rev. 121, 337-366 (2014).
    • (2014) Psychol. Rev. , vol.121 , pp. 337-366
    • Collins, A.G.E.1    Frank, M.J.2
  • 89
    • 42749095376 scopus 로고    scopus 로고
    • Circuit-based framework for understanding neurotransmitter and risk gene interactions in schizophrenia
    • Lisman, J.E. et al. Circuit-based framework for understanding neurotransmitter and risk gene interactions in schizophrenia. Trends Neurosci. 31, 234-242 (2008).
    • (2008) Trends Neurosci. , vol.31 , pp. 234-242
    • Lisman, J.E.1
  • 90
    • 84896359684 scopus 로고    scopus 로고
    • Linking microcircuit dysfunction to cognitive impairment: Effects of disinhibition associated with schizophrenia in a cortical working memory model
    • Murray, J.D. et al. Linking microcircuit dysfunction to cognitive impairment: effects of disinhibition associated with schizophrenia in a cortical working memory model. Cereb. Cortex 24, 859-872 (2014).
    • (2014) Cereb. Cortex , vol.24 , pp. 859-872
    • Murray, J.D.1
  • 91
    • 0028323167 scopus 로고
    • Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses
    • Krystal, J.H. et al. Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch. Gen. Psychiatry 51, 199-214 (1994).
    • (1994) Arch. Gen. Psychiatry , vol.51 , pp. 199-214
    • Krystal, J.H.1
  • 92
    • 84867393672 scopus 로고    scopus 로고
    • NMDA receptor function in large-scale anticorrelated neural systems with implications for cognition and schizophrenia
    • Anticevic, A. et al. NMDA receptor function in large-scale anticorrelated neural systems with implications for cognition and schizophrenia. Proc. Natl. Acad. Sci. USA 109, 16720-16725 (2012).
    • (2012) Proc. Natl. Acad. Sci. USA , vol.109 , pp. 16720-16725
    • Anticevic, A.1
  • 93
    • 12544251990 scopus 로고    scopus 로고
    • Dynamic dopamine modulation in the basal ganglia: A neurocomputational account of cognitive defcits in medicated and nonmedicated Parkinsonism
    • Frank, M.J. Dynamic dopamine modulation in the basal ganglia: a neurocomputational account of cognitive defcits in medicated and nonmedicated Parkinsonism. J. Cogn. Neurosci. 17, 51-72 (2005).
    • (2005) J. Cogn. Neurosci. , vol.17 , pp. 51-72
    • Frank, M.J.1
  • 94
    • 84922228056 scopus 로고    scopus 로고
    • A new framework for cortico-striatal plasticity: Behavioural theory meets in vitro data at the reinforcement-action interface
    • Gurney, K.N., Humphries, M.D. & Redgrave, P. A new framework for cortico-striatal plasticity: behavioural theory meets in vitro data at the reinforcement-action interface. PLoS Biol. 13, e1002034 (2015).
    • (2015) PLoS Biol. , vol.13 , pp. e1002034
    • Gurney, K.N.1    Humphries, M.D.2    Redgrave, P.3
  • 95
    • 50949089019 scopus 로고    scopus 로고
    • The dynamic brain: From spiking neurons to neural masses and cortical felds
    • Deco, G., Jirsa, V.K., Robinson, P.A., Breakspear, M. & Friston, K. The dynamic brain: from spiking neurons to neural masses and cortical felds. PLoS Comput. Biol. 4, e1000092 (2008).
    • (2008) PLoS Comput. Biol. , vol.4 , pp. e1000092
    • Deco, G.1    Jirsa, V.K.2    Robinson, P.A.3    Breakspear, M.4    Friston, K.5
  • 97
    • 80052600884 scopus 로고    scopus 로고
    • Trial-by-trial data analysis using computational models
    • (eds. M.R. Delgado, E.A. Phelps & T.W. Robbins) OUP
    • Daw, N. Trial-by-trial data analysis using computational models. in Decision Making, Affect, and Learning: Attention and Performance XXIII (eds. M.R. Delgado, E.A. Phelps & T.W. Robbins) 1-23 (OUP, 2009).
    • (2009) Decision Making, Affect, and Learning: Attention and Performance XXIII , pp. 1-23
    • Daw, N.1
  • 98
    • 72449166356 scopus 로고    scopus 로고
    • Reinforcement learning, conditioning and the brain: Successes and challenges
    • Maia, T.V. Reinforcement learning, conditioning and the brain: successes and challenges. Cogn. Affect. Behav. Neurosci. 9, 343-364 (2009).
    • (2009) Cogn. Affect. Behav. Neurosci. , vol.9 , pp. 343-364
    • Maia, T.V.1
  • 99
    • 84941212802 scopus 로고    scopus 로고
    • Arithmetic and local circuitry underlying dopamine prediction errors
    • Eshel, N. et al. Arithmetic and local circuitry underlying dopamine prediction errors. Nature 525, 243-246 (2015).
    • (2015) Nature , vol.525 , pp. 243-246
    • Eshel, N.1
  • 100
    • 84975759349 scopus 로고    scopus 로고
    • The specifcity of pavlovian regulation is associated with recovery from depression
    • in the press
    • Huys, Q.J.M. et al. The specifcity of pavlovian regulation is associated with recovery from depression. Psychol. Med. (in the press).
    • Psychol. Med
    • Huys, Q.J.M.1
  • 101
    • 84856723289 scopus 로고    scopus 로고
    • Negative symptoms and the failure to represent the expected reward value of actions: Behavioral and computational modeling evidence
    • Gold, J.M. et al. Negative symptoms and the failure to represent the expected reward value of actions: behavioral and computational modeling evidence. Arch. Gen. Psychiatry 69, 129-138 (2012).
    • (2012) Arch. Gen. Psychiatry , vol.69 , pp. 129-138
    • Gold, J.M.1
  • 102
    • 64849099978 scopus 로고    scopus 로고
    • Do patients with schizophrenia exhibit aberrant salience?
    • Roiser, J.P. et al. Do patients with schizophrenia exhibit aberrant salience? Psychol. Med. 39, 199-209 (2009).
    • (2009) Psychol. Med. , vol.39 , pp. 199-209
    • Roiser, J.P.1
  • 103
    • 84891696800 scopus 로고    scopus 로고
    • Striatal dysfunction during reversal learning in unmedicated schizophrenia patients
    • Schlagenhauf, F. et al. Striatal dysfunction during reversal learning in unmedicated schizophrenia patients. Neuroimage 89, 171-180 (2014).
    • (2014) Neuroimage , vol.89 , pp. 171-180
    • Schlagenhauf, F.1
  • 104
    • 0037382264 scopus 로고    scopus 로고
    • Coordination of actions and habits in the medial prefrontal cortex of rats
    • Killcross, S. & Coutureau, E. Coordination of actions and habits in the medial prefrontal cortex of rats. Cereb. Cortex 13, 400-408 (2003).
    • (2003) Cereb. Cortex , vol.13 , pp. 400-408
    • Killcross, S.1    Coutureau, E.2
  • 105
    • 28044450875 scopus 로고    scopus 로고
    • Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control
    • Daw, N.D., Niv, Y. & Dayan, P. Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control. Nat. Neurosci. 8, 1704-1711 (2005).
    • (2005) Nat. Neurosci. , vol.8 , pp. 1704-1711
    • Daw, N.D.1    Niv, Y.2    Dayan, P.3
  • 106
    • 84885802926 scopus 로고    scopus 로고
    • Goals and habits in the brain
    • Dolan, R.J. & Dayan, P. Goals and habits in the brain. Neuron 80, 312-325 (2013).
    • (2013) Neuron , vol.80 , pp. 312-325
    • Dolan, R.J.1    Dayan, P.2
  • 107
    • 84905512012 scopus 로고    scopus 로고
    • Devaluation and sequential decisions: Linking goal-directed and model-based behavior
    • Friedel, E. et al. Devaluation and sequential decisions: linking goal-directed and model-based behavior. Front. Hum. Neurosci. 8, 587 (2014).
    • (2014) Front. Hum. Neurosci. , vol.8 , pp. 587
    • Friedel, E.1
  • 108
    • 84922261945 scopus 로고    scopus 로고
    • Changes in corticostriatal connectivity during reinforcement learning in humans
    • Horga, G. et al. Changes in corticostriatal connectivity during reinforcement learning in humans. Hum. Brain Mapp. 36, 793-803 (2015).
    • (2015) Hum. Brain Mapp. , vol.36 , pp. 793-803
    • Horga, G.1
  • 110
    • 10344225664 scopus 로고    scopus 로고
    • Addiction as a computational process gone awry
    • Redish, A.D. Addiction as a computational process gone awry. Science 306, 1944-1947 (2004).
    • (2004) Science , vol.306 , pp. 1944-1947
    • Redish, A.D.1
  • 111
    • 34249744700 scopus 로고    scopus 로고
    • Blocking of conditioning to a cocaine-paired stimulus: Testing the hypothesis that cocaine perpetually produces a signal of larger-than-expected reward
    • Panlilio, L.V., Thorndike, E.B. & Schindler, C.W. Blocking of conditioning to a cocaine-paired stimulus: testing the hypothesis that cocaine perpetually produces a signal of larger-than-expected reward. Pharmacol. Biochem. Behav. 86, 774-777 (2007).
    • (2007) Pharmacol. Biochem. Behav. , vol.86 , pp. 774-777
    • Panlilio, L.V.1    Thorndike, E.B.2    Schindler, C.W.3
  • 112
    • 33645582850 scopus 로고    scopus 로고
    • Amphetamine exposure enhances habit formation
    • Nelson, A. & Killcross, S. Amphetamine exposure enhances habit formation. J. Neurosci. 26, 3805-3812 (2006).
    • (2006) J. Neurosci. , vol.26 , pp. 3805-3812
    • Nelson, A.1    Killcross, S.2
  • 113
    • 78650971061 scopus 로고    scopus 로고
    • A selective role for dopamine in stimulus-reward learning
    • Flagel, S.B. et al. A selective role for dopamine in stimulus-reward learning. Nature 469, 53-57 (2011).
    • (2011) Nature , vol.469 , pp. 53-57
    • Flagel, S.B.1
  • 114
    • 84895773656 scopus 로고    scopus 로고
    • Modelling individual differences in the form of Pavlovian conditioned approach responses: A dual learning systems approach with factored representations
    • Lesaint, F., Sigaud, O., Flagel, S.B., Robinson, T.E. & Khamassi, M. Modelling individual differences in the form of Pavlovian conditioned approach responses: a dual learning systems approach with factored representations. PLoS Comput. Biol. 10, e1003466 (2014).
    • (2014) PLoS Comput. Biol. , vol.10 , pp. e1003466
    • Lesaint, F.1    Sigaud, O.2    Flagel, S.B.3    Robinson, T.E.4    Khamassi, M.5
  • 115
    • 84904677320 scopus 로고    scopus 로고
    • The role of learning-related dopamine signals in addiction vulnerability
    • Huys, Q.J.M., Tobler, P.N., Hasler, G. & Flagel, S.B. The role of learning-related dopamine signals in addiction vulnerability. Prog. Brain Res. 211, 31-77 (2014).
    • (2014) Prog. Brain Res. , vol.211 , pp. 31-77
    • Huys, Q.J.M.1    Tobler, P.N.2    Hasler, G.3    Flagel, S.B.4
  • 116
    • 84890391251 scopus 로고    scopus 로고
    • Behavioral and neuroimaging evidence for overreliance on habit learning in alcohol-dependent patients
    • Sjoerds, Z. et al. Behavioral and neuroimaging evidence for overreliance on habit learning in alcohol-dependent patients. Transl. Psychiatry 3, e337 (2013).
    • (2013) Transl. Psychiatry , vol.3 , pp. e337
    • Sjoerds, Z.1
  • 117
    • 84924655858 scopus 로고    scopus 로고
    • Disorders of compulsivity: A common bias towards learning habits
    • Voon, V. et al. Disorders of compulsivity: a common bias towards learning habits. Mol. Psychiatry 20, 345-352 (2014).
    • (2014) Mol. Psychiatry , vol.20 , pp. 345-352
    • Voon, V.1
  • 118
    • 84904681202 scopus 로고    scopus 로고
    • Model-based and model-free decisions in alcohol dependence
    • Sebold, M. et al. Model-based and model-free decisions in alcohol dependence. Neuropsychobiology 70, 122-131 (2014).
    • (2014) Neuropsychobiology , vol.70 , pp. 122-131
    • Sebold, M.1
  • 119
    • 84855338277 scopus 로고    scopus 로고
    • Neurocognitive endophenotypes of impulsivity and compulsivity: Towards dimensional psychiatry
    • Robbins, T.W., Gillan, C.M., Smith, D.G., de Wit, S. & Ersche, K.D. Neurocognitive endophenotypes of impulsivity and compulsivity: towards dimensional psychiatry. Trends Cogn. Sci. 16, 81-91 (2012).
    • (2012) Trends Cogn. Sci. , vol.16 , pp. 81-91
    • Robbins, T.W.1    Gillan, C.M.2    Smith, D.G.3    De Wit, S.4    Ersche, K.D.5
  • 120
    • 84923884822 scopus 로고    scopus 로고
    • Functional neuroimaging of avoidance habits in obsessive-compulsive disorder
    • Gillan, C.M. et al. Functional neuroimaging of avoidance habits in obsessive-compulsive disorder. Am. J. Psychiatry 172, 284-293 (2015).
    • (2015) Am. J. Psychiatry , vol.172 , pp. 284-293
    • Gillan, C.M.1
  • 121
    • 84864935116 scopus 로고    scopus 로고
    • Dopamine enhances model-based over model-free choice behavior
    • Wunderlich, K., Smittenaar, P. & Dolan, R.J. Dopamine enhances model-based over model-free choice behavior. Neuron 75, 418-424 (2012).
    • (2012) Neuron , vol.75 , pp. 418-424
    • Wunderlich, K.1    Smittenaar, P.2    Dolan, R.J.3
  • 122
    • 84922309111 scopus 로고    scopus 로고
    • Ventral striatal dopamine refects behavioral and neural signatures of model-based control during sequential decision making
    • Deserno, L. et al. Ventral striatal dopamine refects behavioral and neural signatures of model-based control during sequential decision making. Proc. Natl. Acad. Sci. USA 112, 1595-1600 (2015).
    • (2015) Proc. Natl. Acad. Sci. USA , vol.112 , pp. 1595-1600
    • Deserno, L.1
  • 123
    • 84946811477 scopus 로고    scopus 로고
    • Habitual control of goal selection in humans
    • Cushman, F. & Morris, A. Habitual control of goal selection in humans. Proc. Natl. Acad. Sci. USA 112, 13817-13822 (2015).
    • (2015) Proc. Natl. Acad. Sci. USA , vol.112 , pp. 13817-13822
    • Cushman, F.1    Morris, A.2
  • 124
    • 84881089217 scopus 로고    scopus 로고
    • Cognitive control over learning: Creating, clustering, and generalizing task-set structure
    • Collins, A.G.E. & Frank, M.J. Cognitive control over learning: creating, clustering, and generalizing task-set structure. Psychol. Rev. 120, 190-229 (2013).
    • (2013) Psychol. Rev. , vol.120 , pp. 190-229
    • Collins, A.G.E.1    Frank, M.J.2
  • 125
    • 27644454882 scopus 로고    scopus 로고
    • Neural systems of reinforcement for drug addiction: From actions to habits to compulsion
    • Everitt, B.J. & Robbins, T.W. Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat. Neurosci. 8, 1481-1489 (2005).
    • (2005) Nat. Neurosci. , vol.8 , pp. 1481-1489
    • Everitt, B.J.1    Robbins, T.W.2
  • 126
    • 84877341847 scopus 로고    scopus 로고
    • The curse of planning: Dissecting multiple reinforcement-learning systems by taxing the central executive
    • Otto, A.R., Gershman, S.J., Markman, A.B. & Daw, N.D. The curse of planning: dissecting multiple reinforcement-learning systems by taxing the central executive. Psychol. Sci. 24, 751-761 (2013).
    • (2013) Psychol. Sci. , vol.24 , pp. 751-761
    • Otto, A.R.1    Gershman, S.J.2    Markman, A.B.3    Daw, N.D.4
  • 127
    • 84923385272 scopus 로고    scopus 로고
    • Processing speed enhances model-based over model-free reinforcement learning in the presence of high working memory functioning
    • Schad, D.J. et al. Processing speed enhances model-based over model-free reinforcement learning in the presence of high working memory functioning. Front. Psychol. 5, 1450 (2014).
    • (2014) Front. Psychol. , vol.5 , pp. 1450
    • Schad, D.J.1
  • 129
    • 84945897192 scopus 로고    scopus 로고
    • Deciding how to decide: Self-control and meta-decision making
    • Boureau, Y.L., Sokol-Hessner, P. & Daw, N.D. Deciding how to decide: self-control and meta-decision making. Trends Cogn. Sci. 19, 700-710 (2015).
    • (2015) Trends Cogn. Sci. , vol.19 , pp. 700-710
    • Boureau, Y.L.1    Sokol-Hessner, P.2    Daw, N.D.3
  • 130
    • 79958143780 scopus 로고    scopus 로고
    • Speed/accuracy trade-off between the habitual and the goal-directed processes
    • Keramati, M., Dezfouli, A. & Piray, P. Speed/accuracy trade-off between the habitual and the goal-directed processes. PLoS Comput. Biol. 7, e1002055 (2011).
    • (2011) PLoS Comput. Biol. , vol.7 , pp. e1002055
    • Keramati, M.1    Dezfouli, A.2    Piray, P.3
  • 131
  • 132
    • 84859371025 scopus 로고    scopus 로고
    • Bonsai trees in your head: How the pavlovian system sculpts goal-directed choices by pruning decision trees
    • Huys, Q.J.M. et al. Bonsai trees in your head: how the pavlovian system sculpts goal-directed choices by pruning decision trees. PLoS Comput. Biol. 8, e1002410 (2012).
    • (2012) PLoS Comput. Biol. , vol.8 , pp. e1002410
    • Huys, Q.J.M.1
  • 133
    • 84924325916 scopus 로고    scopus 로고
    • Interplay of approximate planning strategies
    • Huys, Q.J.M. et al. Interplay of approximate planning strategies. Proc. Natl. Acad. Sci. USA 112, 3098-3103 (2015).
    • (2015) Proc. Natl. Acad. Sci. USA , vol.112 , pp. 3098-3103
    • Huys, Q.J.M.1
  • 135
    • 84887935902 scopus 로고    scopus 로고
    • Gradual extinction prevents the return of fear: Implications for the discovery of state
    • Gershman, S.J., Jones, C.E., Norman, K.A., Monfls, M.H. & Niv, Y. Gradual extinction prevents the return of fear: implications for the discovery of state. Front. Behav. Neurosci. 7, 164 (2013).
    • (2013) Front. Behav. Neurosci. , vol.7 , pp. 164
    • Gershman, S.J.1    Jones, C.E.2    Norman, K.A.3    Monfls, M.H.4    Niv, Y.5
  • 136
    • 77953156256 scopus 로고    scopus 로고
    • Fear conditioning and social groups: Statistics, not genetics
    • Maia, T.V. Fear conditioning and social groups: statistics, not genetics. Cogn. Sci. 33, 1232-1251 (2009).
    • (2009) Cogn. Sci. , vol.33 , pp. 1232-1251
    • Maia, T.V.1
  • 137
    • 84925784161 scopus 로고    scopus 로고
    • Anxious individuals have diffculty learning the causal statistics of aversive environments
    • Browning, M., Behrens, T.E., Jocham, G., O'Reilly, J.X. & Bishop, S.J. Anxious individuals have diffculty learning the causal statistics of aversive environments. Nat. Neurosci. 18, 590-596 (2015).
    • (2015) Nat. Neurosci. , vol.18 , pp. 590-596
    • Browning, M.1    Behrens, T.E.2    Jocham, G.3    O'Reilly, J.X.4    Bishop, S.J.5
  • 138
    • 82955236155 scopus 로고    scopus 로고
    • Rational decision-making in inhibitory control
    • Shenoy, P. & Yu, A.J. Rational decision-making in inhibitory control. Front. Hum. Neurosci. 5, 48 (2011).
    • (2011) Front. Hum. Neurosci. , vol.5 , pp. 48
    • Shenoy, P.1    Yu, A.J.2
  • 139
    • 84920972979 scopus 로고    scopus 로고
    • FMRI and EEG predictors of dynamic decision parameters during human reinforcement learning
    • Frank, M.J. et al. fMRI and EEG predictors of dynamic decision parameters during human reinforcement learning. J. Neurosci. 35, 485-494 (2015).
    • (2015) J. Neurosci. , vol.35 , pp. 485-494
    • Frank, M.J.1
  • 140
    • 80055008688 scopus 로고    scopus 로고
    • Subthalamic nucleus stimulation reverses mediofrontal infuence over decision threshold
    • Cavanagh, J.F. et al. Subthalamic nucleus stimulation reverses mediofrontal infuence over decision threshold. Nat. Neurosci. 14, 1462-1467 (2011).
    • (2011) Nat. Neurosci. , vol.14 , pp. 1462-1467
    • Cavanagh, J.F.1
  • 142
    • 84898857098 scopus 로고    scopus 로고
    • When optimism hurts: Infated predictions in psychiatric neuroimaging
    • Whelan, R. & Garavan, H. When optimism hurts: infated predictions in psychiatric neuroimaging. Biol. Psychiatry 75, 746-748 (2014).
    • (2014) Biol. Psychiatry , vol.75 , pp. 746-748
    • Whelan, R.1    Garavan, H.2
  • 143
    • 79954990666 scopus 로고    scopus 로고
    • Introduction to machine learning for brain imaging
    • Lemm, S., Blankertz, B., Dickhaus, T. & Müller, K.R. Introduction to machine learning for brain imaging. Neuroimage 56, 387-399 (2011).
    • (2011) Neuroimage , vol.56 , pp. 387-399
    • Lemm, S.1    Blankertz, B.2    Dickhaus, T.3    Müller, K.R.4
  • 144
    • 84899902574 scopus 로고    scopus 로고
    • A review of feature reduction techniques in neuroimaging
    • Mwangi, B., Tian, T.S. & Soares, J.C. A review of feature reduction techniques in neuroimaging. Neuroinformatics 12, 229-244 (2014).
    • (2014) Neuroinformatics , vol.12 , pp. 229-244
    • Mwangi, B.1    Tian, T.S.2    Soares, J.C.3
  • 145
    • 84904314251 scopus 로고    scopus 로고
    • Parcellating an individual subject's cortical and subcortical brain structures using snowball sampling of resting-state correlations
    • Wig, G.S. et al. Parcellating an individual subject's cortical and subcortical brain structures using snowball sampling of resting-state correlations. Cereb. Cortex 24, 2036-2054 (2014).
    • (2014) Cereb. Cortex , vol.24 , pp. 2036-2054
    • Wig, G.S.1
  • 146
    • 80051660823 scopus 로고    scopus 로고
    • Data mining methods in the prediction of Dementia: A real-data comparison of the accuracy sensitivity and specifcity of linear discriminant analysis logistic regression neural networks support vector machines classifcation trees and random forests
    • Maroco, J. et al. Data mining methods in the prediction of Dementia: A real-data comparison of the accuracy, sensitivity and specifcity of linear discriminant analysis, logistic regression, neural networks, support vector machines, classifcation trees and random forests. BMC Res. Notes 4, 299 (2011).
    • (2011) BMC Res. Notes , vol.4 , pp. 299
    • Maroco, J.1
  • 147
    • 0001025418 scopus 로고
    • Bayesian interpolation
    • MacKay, D.J. Bayesian interpolation. Neural Comput. 4, 415-447 (1992).
    • (1992) Neural Comput. , vol.4 , pp. 415-447
    • MacKay, D.J.1
  • 148
    • 0001122762 scopus 로고
    • A study of cross-validation and bootstrap for accuracy estimation and model selection
    • Kohavi, R. A study of cross-validation and bootstrap for accuracy estimation and model selection. Neuroimage 14, 1137-1145 (1995).
    • (1995) Neuroimage , vol.14 , pp. 1137-1145
    • Kohavi, R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.