-
1
-
-
84955474071
-
Bridging levels of understanding in schizophrenia through computational modeling
-
A.AnticevicJ.D.MurrayD.M.Barch (2015). Bridging levels of understanding in schizophrenia through computational modeling. Clinical Psychological Science, 3, 433–459.
-
(2015)
Clinical Psychological Science
, vol.3
, pp. 433-459
-
-
Anticevic, A.1
Murray, J.D.2
Barch, D.M.3
-
2
-
-
84890522254
-
Dissecting psychiatric spectrum disorders by generative embedding
-
K.H.BrodersenL.DesernoF.SchlagenhaufZ.LinW.D.PennyJ.M.BuhmannK.E.Stephan (2014). Dissecting psychiatric spectrum disorders by generative embedding. NeuroImage: Clinical, 4, 98–111. doi:10.1016/j.nicl.2013.11.002
-
(2014)
NeuroImage: Clinical
, vol.4
, pp. 98-111
-
-
Brodersen, K.H.1
Deserno, L.2
Schlagenhauf, F.3
Lin, Z.4
Penny, W.D.5
Buhmann, J.M.6
Stephan, K.E.7
-
3
-
-
84896717406
-
VBA: A probabilistic treatment of nonlinear models for neurobiological and behavioural data
-
J.DaunizeauV.AdamL.Rigoux (2014). VBA: A probabilistic treatment of nonlinear models for neurobiological and behavioural data. PLOS Computational Biology, 10, e1003441. doi:10.1371/journal.pcbi.1003441
-
(2014)
PLOS Computational Biology
, vol.10
, pp. e1003441
-
-
Daunizeau, J.1
Adam, V.2
Rigoux, L.3
-
4
-
-
84921627984
-
Trial-by-trial data analysis using computational models
-
Oxford, England: Oxford University Press,,. In (Eds.),, (pp.)
-
N.D.Daw (2011). Trial-by-trial data analysis using computational models. In (Eds.), Decision making, affect, and learning: Attention & performance XXIII (pp.). Oxford, England: Oxford University Press. doi:10.1093/acprof:oso/9780199600434.003.0001
-
(2011)
Decision making, affect, and learning: Attention & performance XXIII
-
-
Daw, N.D.1
-
6
-
-
85021374853
-
Computational psychiatry
-
New York, NY: Springer,,. In (Eds.),, (pp.)
-
Q.J.M.Huys (2013). Computational psychiatry. In (Eds.), Encyclopedia of computational neuroscience (pp.). New York, NY: Springer. doi:10.1007/978-1-4614-7320-6_501-2
-
(2013)
Encyclopedia of computational neuroscience
-
-
Huys, Q.J.M.1
-
8
-
-
84860734393
-
Diagnostic neuroimaging across diseases
-
S.KlöppelA.AbdulkadirC.R.JackN.KoutsoulerisJ.Mourão-MirandaP.Vemuri (2012). Diagnostic neuroimaging across diseases. NeuroImage, 61, 457–463. doi:10.1016/j.neuroimage.2011.11.002
-
(2012)
NeuroImage
, vol.61
, pp. 457-463
-
-
Klöppel, S.1
Abdulkadir, A.2
Jack, C.R.3
Koutsouleris, N.4
Mourão-Miranda, J.5
Vemuri, P.6
-
9
-
-
84955453238
-
Single-stimulus functional MRI produces a neural individual difference measure for autism spectrum disorder
-
J.LuK.KishidaJ.Asis-CruzT.De LohrenzD.Treadwell-DeeringM.BeauchampP.R.Montague (2015). Single-stimulus functional MRI produces a neural individual difference measure for autism spectrum disorder. Clinical Psychological Science, 3, 422–432.
-
(2015)
Clinical Psychological Science
, vol.3
, pp. 422-432
-
-
Lu, J.1
Kishida, K.2
Asis-Cruz, J.3
De Lohrenz, T.4
Treadwell-Deering, D.5
Beauchamp, M.6
Montague, P.R.7
-
10
-
-
84955513015
-
The role of serotonin in orbitofrontal function and obsessive-compulsive disorder
-
T.V.MaiaM.Cano-Colino (2015). The role of serotonin in orbitofrontal function and obsessive-compulsive disorder. Clinical Psychological Science, 3, 460–482.
-
(2015)
Clinical Psychological Science
, vol.3
, pp. 460-482
-
-
Maia, T.V.1
Cano-Colino, M.2
-
11
-
-
79251569290
-
From reinforcement learning models to psychiatric and neurological disorders
-
T.V.MaiaM.J.Frank (2011). From reinforcement learning models to psychiatric and neurological disorders. Nature Neuroscience, 14, 154–162. doi:10.1038/nn.2723
-
(2011)
Nature Neuroscience
, vol.14
, pp. 154-162
-
-
Maia, T.V.1
Frank, M.J.2
-
14
-
-
84887176786
-
Bayesian model selection for group studies—Revisited
-
L.RigouxK.E.StephanK.J.FristonJ.Daunizeau (2014). Bayesian model selection for group studies—Revisited. NeuroImage, 84, 971–985. doi:10.1016/j.neuroimage.2013.08.065
-
(2014)
NeuroImage
, vol.84
, pp. 971-985
-
-
Rigoux, L.1
Stephan, K.E.2
Friston, K.J.3
Daunizeau, J.4
-
15
-
-
84891334262
-
Computational approaches to psychiatry
-
K.E.StephanC.Mathys (2014). Computational approaches to psychiatry. Current Opinion in Neurobiology, 25, 85–92. doi:10.1016/j.conb.2013.12.007
-
(2014)
Current Opinion in Neurobiology
, vol.25
, pp. 85-92
-
-
Stephan, K.E.1
Mathys, C.2
-
17
-
-
84912059989
-
Computational psychiatry
-
X.-J.WangJ.H.Krystal (2014). Computational psychiatry. Neuron, 84, 638–654. doi:10.1016/j.neuron.2014.10.018
-
(2014)
Neuron
, vol.84
, pp. 638-654
-
-
Wang, X.-J.1
Krystal, J.H.2
-
18
-
-
84929597056
-
Model-based cognitive neuroscience approaches to computational psychiatry: Clustering and classification
-
T.V.WieckiJ.PolandM.J.Frank (2015). Model-based cognitive neuroscience approaches to computational psychiatry: Clustering and classification. Clinical Psychological Science, 3, 378–399.
-
(2015)
Clinical Psychological Science
, vol.3
, pp. 378-399
-
-
Wiecki, T.V.1
Poland, J.2
Frank, M.J.3
|