메뉴 건너뛰기




Volumn 13, Issue 1, 2015, Pages 31-46

Clinical Prediction from Structural Brain MRI Scans: A Large-Scale Empirical Study

Author keywords

Computer aided diagnosis; Image based prediction; Machine learning; MRI

Indexed keywords

ALGORITHM; ARTIFICIAL INTELLIGENCE; BRAIN; BRAIN MAPPING; HUMAN; IMAGE PROCESSING; NUCLEAR MAGNETIC RESONANCE IMAGING; PATHOLOGY; PROCEDURES;

EID: 84933047930     PISSN: 15392791     EISSN: 15590089     Source Type: Journal    
DOI: 10.1007/s12021-014-9238-1     Document Type: Article
Times cited : (137)

References (85)
  • 1
    • 0033933649 scopus 로고    scopus 로고
    • VVoxel-based morphometry: the methods
    • Ashburner, J., & Friston, K. J. (2000). VVoxel-based morphometry: the methods. NeuroImage, 11, 805–821.
    • (2000) NeuroImage , vol.11 , pp. 805-821
    • Ashburner, J.1    Friston, K.J.2
  • 2
    • 70349336340 scopus 로고    scopus 로고
    • A general and unifying framework for feature construction, in image-based pattern classification. Information Processing in Medical Imaging
    • Batmanghelich, N., Taskar, B., Davatzikos, C. (2009). A general and unifying framework for feature construction, in image-based pattern classification. Information Processing in Medical Imaging. Springer, pp. 423–434.
    • (2009) Springer , pp. 423-434
    • Batmanghelich, N.1    Taskar, B.2    Davatzikos, C.3
  • 6
    • 84855418467 scopus 로고    scopus 로고
    • Individual subject classification for Alzheimer’s disease based on incremental learning using a spatial frequency representation of cortical thickness data
    • PID: 22008371
    • Cho, Y., Seong, J.-K., Jeong, Y., & Shin, S. Y. (2012). Individual subject classification for Alzheimer’s disease based on incremental learning using a spatial frequency representation of cortical thickness data. NeuroImage, 59, 2217–2230.
    • (2012) NeuroImage , vol.59 , pp. 2217-2230
    • Cho, Y.1    Seong, J.-K.2    Jeong, Y.3    Shin, S.Y.4
  • 7
    • 84862776712 scopus 로고    scopus 로고
    • Does feature selection improve classification accuracy? Impact of sample size and feature selection on classification using anatomical magnetic resonance images
    • PID: 22166797
    • Chu, C., Hsu, A.-L., Chou, K.-H., Bandettini, P., & Lin, C. (2012). Does feature selection improve classification accuracy? Impact of sample size and feature selection on classification using anatomical magnetic resonance images. NeuroImage, 60, 59–70.
    • (2012) NeuroImage , vol.60 , pp. 59-70
    • Chu, C.1    Hsu, A.-L.2    Chou, K.-H.3    Bandettini, P.4    Lin, C.5
  • 8
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20, 273–297.
    • (1995) Machine Learning , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 9
    • 68149169975 scopus 로고    scopus 로고
    • Prognostic and diagnostic potential of the structural neuroanatomy of depression
    • PID: 19633718
    • Costafreda, S. G., Chu, C., Ashburner, J., & Fu, C. H. (2009). Prognostic and diagnostic potential of the structural neuroanatomy of depression. PloS One, 4, e6353.
    • (2009) PloS One , vol.4 , pp. e6353
    • Costafreda, S.G.1    Chu, C.2    Ashburner, J.3    Fu, C.H.4
  • 10
    • 84861846263 scopus 로고    scopus 로고
    • Decision forests for classification, regression, density estimation, manifold learning and semi-supervised learning. Microsoft Research Cambridge, Tech
    • Criminisi, A., Shotton, J., Konukoglu, E., (2011). Decision forests for classification, regression, density estimation, manifold learning and semi-supervised learning. Microsoft Research Cambridge, Tech. Rep. MSRTR-2011-114 5, 12.
    • (2011) Rep. MSRTR-2011-114 , vol.5 , pp. 12
    • Criminisi, A.1    Shotton, J.2    Konukoglu, E.3
  • 11
    • 79955059574 scopus 로고    scopus 로고
    • Automatic classification of patients with Alzheimer’s disease from structural MRI: a comparison of ten methods using the ADNI database
    • PID: 20542124
    • Cuingnet, R., Gerardin, E., Tessieras, J., Auzias, G., Lehericy, S., Habert, M.-O., Chupin, M., Benali, H., & Colliot, O. (2011). Automatic classification of patients with Alzheimer’s disease from structural MRI: a comparison of ten methods using the ADNI database. NeuroImage, 56, 766–781.
    • (2011) NeuroImage , vol.56 , pp. 766-781
    • Cuingnet, R.1    Gerardin, E.2    Tessieras, J.3    Auzias, G.4    Lehericy, S.5    Habert, M.-O.6    Chupin, M.7    Benali, H.8    Colliot, O.9
  • 12
    • 0032769093 scopus 로고    scopus 로고
    • Cortical surface-based analysis: I. Segmentation and surface reconstruction
    • PID: 9931268
    • Dale, A. M., Fischl, B., & Sereno, M. I. (1999). Cortical surface-based analysis: I. Segmentation and surface reconstruction. NeuroImage, 9, 179–194.
    • (1999) NeuroImage , vol.9 , pp. 179-194
    • Dale, A.M.1    Fischl, B.2    Sereno, M.I.3
  • 13
    • 44649136049 scopus 로고    scopus 로고
    • Individual patient diagnosis of AD and FTD via high-dimensional pattern classification of MRI
    • PID: 18474436
    • Davatzikos, C., Resnick, S. M., Wu, X., Parmpi, P., & Clark, C. (2008). Individual patient diagnosis of AD and FTD via high-dimensional pattern classification of MRI. NeuroImage, 41, 1220–1227.
    • (2008) NeuroImage , vol.41 , pp. 1220-1227
    • Davatzikos, C.1    Resnick, S.M.2    Wu, X.3    Parmpi, P.4    Clark, C.5
  • 14
    • 67749130881 scopus 로고    scopus 로고
    • Longitudinal progression of Alzheimer’s-like patterns of atrophy in normal older adults: the SPARE-AD index
    • PID: 19416949
    • Davatzikos, C., Xu, F., An, Y., Fan, Y., & Resnick, S. M. (2009). Longitudinal progression of Alzheimer’s-like patterns of atrophy in normal older adults: the SPARE-AD index. Brain, 132, 2026–2035.
    • (2009) Brain , vol.132 , pp. 2026-2035
    • Davatzikos, C.1    Xu, F.2    An, Y.3    Fan, Y.4    Resnick, S.M.5
  • 15
    • 0023710206 scopus 로고
    • Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach
    • DeLong, E.R., DeLong, D.M., Clarke-Pearson, D.L. (1988). Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics, 837–845.
    • (1988) Biometrics , pp. 837-845
    • DeLong, E.R.1    DeLong, D.M.2    Clarke-Pearson, D.L.3
  • 17
    • 57149142419 scopus 로고    scopus 로고
    • Automated computer differential classification in Parkinsonian syndromes via pattern analysis on MRI
    • PID: 19064213
    • Duchesne, S., Rolland, Y., & Verin, M. (2009). Automated computer differential classification in Parkinsonian syndromes via pattern analysis on MRI. Academic Radiology, 16, 61–70.
    • (2009) Academic Radiology , vol.16 , pp. 61-70
    • Duchesne, S.1    Rolland, Y.2    Verin, M.3
  • 19
    • 33846264886 scopus 로고    scopus 로고
    • COMPARE: classification of morphological patterns using adaptive regional elements
    • Fan, Y., Shen, D., Gur, R. C., Gur, R. E., & Davatzikos, C. (2007). COMPARE: classification of morphological patterns using adaptive regional elements. Medical Imaging, IEEE Transactions, 26, 93–105.
    • (2007) Medical Imaging, IEEE Transactions , vol.26 , pp. 93-105
    • Fan, Y.1    Shen, D.2    Gur, R.C.3    Gur, R.E.4    Davatzikos, C.5
  • 20
    • 1342309509 scopus 로고    scopus 로고
    • Structural brain abnormalities in multiple sclerosis patients with major depression
    • Feinstein, A., Roy, P., Lobaugh, N., Feinstein, K., O’Connor, P., & Black, S. (2004). Structural brain abnormalities in multiple sclerosis patients with major depression. Neurology, 62(4), 586–590.
    • (2004) Neurology , vol.62 , Issue.4 , pp. 586-590
    • Feinstein, A.1    Roy, P.2    Lobaugh, N.3    Feinstein, K.4    O’Connor, P.5    Black, S.6
  • 21
    • 84862997809 scopus 로고    scopus 로고
    • Free surfer
    • PID: 22248573
    • Fischl, B. (2012). Free surfer. NeuroImage, 62, 774–781.
    • (2012) NeuroImage , vol.62 , pp. 774-781
    • Fischl, B.1
  • 22
    • 0032799993 scopus 로고    scopus 로고
    • Cortical surface-based analysis: II: Inflation, flattening, and a surface-based coordinate system
    • PID: 9931269
    • Fischl, B., Sereno, M. I., & Dale, A. M. (1999a). Cortical surface-based analysis: II: Inflation, flattening, and a surface-based coordinate system. NeuroImage, 9, 195–207.
    • (1999) NeuroImage , vol.9 , pp. 195-207
    • Fischl, B.1    Sereno, M.I.2    Dale, A.M.3
  • 23
    • 0032741345 scopus 로고    scopus 로고
    • High-resolution intersubject averaging and a coordinate system for the cortical surface
    • PID: 10619420
    • Fischl, B., Sereno, M. I., Tootell, R. B., & Dale, A. M. (1999b). High-resolution intersubject averaging and a coordinate system for the cortical surface. Human Brain Mapping, 8, 272–284.
    • (1999) Human Brain Mapping , vol.8 , pp. 272-284
    • Fischl, B.1    Sereno, M.I.2    Tootell, R.B.3    Dale, A.M.4
  • 29
    • 84877323945 scopus 로고    scopus 로고
    • Analytic estimation of statistical significance maps for support vector machine based multi-variate image analysis and classification
    • PID: 23583748
    • Gaonkar, B., & Davatzikos, C. (2013). Analytic estimation of statistical significance maps for support vector machine based multi-variate image analysis and classification. NeuroImage, 78, 270–283.
    • (2013) NeuroImage , vol.78 , pp. 270-283
    • Gaonkar, B.1    Davatzikos, C.2
  • 32
    • 33748658691 scopus 로고    scopus 로고
    • Reliability of MRI-derived measurements of human cerebral cortical thickness: the effects of field strength, scanner upgrade and manufacturer
    • PID: 16651008
    • Han, X., Jovicich, J., Salat, D., van der Kouwe, A., Quinn, B., Czanner, S., Busa, E., Pacheco, J., Albert, M., & Killiany, R. (2006). Reliability of MRI-derived measurements of human cerebral cortical thickness: the effects of field strength, scanner upgrade and manufacturer. NeuroImage, 32, 180–194.
    • (2006) NeuroImage , vol.32 , pp. 180-194
    • Han, X.1    Jovicich, J.2    Salat, D.3    van der Kouwe, A.4    Quinn, B.5    Czanner, S.6    Busa, E.7    Pacheco, J.8    Albert, M.9    Killiany, R.10
  • 33
    • 0037977109 scopus 로고    scopus 로고
    • Progressive structural brain abnormalities and their relationship to clinical outcome: a longitudinal magnetic resonance imaging study early in schizophrenia
    • PID: 12796222
    • Ho, B.-C., Andreasen, N. C., Nopoulos, P., Arndt, S., Magnotta, V., & Flaum, M. (2003). Progressive structural brain abnormalities and their relationship to clinical outcome: a longitudinal magnetic resonance imaging study early in schizophrenia. Archives of General Psychiatry, 60, 585.
    • (2003) Archives of General Psychiatry , vol.60 , pp. 585
    • Ho, B.-C.1    Andreasen, N.C.2    Nopoulos, P.3    Arndt, S.4    Magnotta, V.5    Flaum, M.6
  • 36
    • 84924514239 scopus 로고    scopus 로고
    • Evaluating learning algorithms: a classification perspective
    • Japkowicz, N., Shah, M. (2011). Evaluating learning algorithms: a classification perspective. Cambridge University Press.
    • (2011) Cambridge University Press
    • Japkowicz, N.1    Shah, M.2
  • 44
    • 1642574430 scopus 로고    scopus 로고
    • Morphological classification of brains via high-dimensional shape transformations and machine learning methods
    • PID: 14741641
    • Lao, Z., Shen, D., Xue, Z., Karacali, B., Resnick, S. M., & Davatzikos, C. (2004). Morphological classification of brains via high-dimensional shape transformations and machine learning methods. NeuroImage, 21, 46–57.
    • (2004) NeuroImage , vol.21 , pp. 46-57
    • Lao, Z.1    Shen, D.2    Xue, Z.3    Karacali, B.4    Resnick, S.M.5    Davatzikos, C.6
  • 45
    • 36148973896 scopus 로고    scopus 로고
    • Automated cortical thickness measurements from MRI can accurately separate Alzheimer’s patients from normal elderly controls
    • PID: 17097767
    • Lerch, J. P., Pruessner, J., Zijdenbos, A. P., Collins, D. L., Teipel, S. J., Hampel, H., & Evans, A. C. (2008). Automated cortical thickness measurements from MRI can accurately separate Alzheimer’s patients from normal elderly controls. Neurobiology of Aging, 29, 23–30.
    • (2008) Neurobiology of Aging , vol.29 , pp. 23-30
    • Lerch, J.P.1    Pruessner, J.2    Zijdenbos, A.P.3    Collins, D.L.4    Teipel, S.J.5    Hampel, H.6    Evans, A.C.7
  • 46
    • 84864004297 scopus 로고    scopus 로고
    • Classification of different therapeutic responses of major depressive disorder with multivariate pattern analysis method based on structural MR scans
    • PID: 22815880
    • Liu, F., Guo, W., Yu, D., Gao, Q., Gao, K., Xue, Z., Du, H., Zhang, J., Tan, C., & Liu, Z. (2012). Classification of different therapeutic responses of major depressive disorder with multivariate pattern analysis method based on structural MR scans. PloS One, 7, e40968.
    • (2012) PloS One , vol.7 , pp. e40968
    • Liu, F.1    Guo, W.2    Yu, D.3    Gao, Q.4    Gao, K.5    Xue, Z.6    Du, H.7    Zhang, J.8    Tan, C.9    Liu, Z.10
  • 48
    • 0000234257 scopus 로고
    • The evidence framework applied to classification networks
    • MacKay, D. J. (1992). The evidence framework applied to classification networks. Neural Computation, 4, 720–736.
    • (1992) Neural Computation , vol.4 , pp. 720-736
    • MacKay, D.J.1
  • 50
    • 34548409688 scopus 로고    scopus 로고
    • Open access series of imaging studies (OASIS): cross-sectional MRI data in young, middle aged, nondemented, and demented older adults
    • PID: 17714011
    • Marcus, D. S., Wang, T. H., Parker, J., Csernansky, J. G., Morris, J. C., & Buckner, R. L. (2007b). Open access series of imaging studies (OASIS): cross-sectional MRI data in young, middle aged, nondemented, and demented older adults. Journal of Cognitive Neuroscience, 19, 1498–1507.
    • (2007) Journal of Cognitive Neuroscience , vol.19 , pp. 1498-1507
    • Marcus, D.S.1    Wang, T.H.2    Parker, J.3    Csernansky, J.G.4    Morris, J.C.5    Buckner, R.L.6
  • 52
    • 84872254483 scopus 로고    scopus 로고
    • The ADHD-200 consortium: a model to advance the translational potential of neuroimaging in clinical neuroscience
    • Milham, M. P., Fair, D., Mennes, M., & Mostofsky, S. H. (2012). The ADHD-200 consortium: a model to advance the translational potential of neuroimaging in clinical neuroscience. Frontiers in Systems Neuroscience, 6, 62.
    • (2012) Frontiers in Systems Neuroscience , vol.6 , pp. 62
    • Milham, M.P.1    Fair, D.2    Mennes, M.3    Mostofsky, S.H.4
  • 54
    • 28244492778 scopus 로고    scopus 로고
    • Classifying brain states and determining the discriminating activation patterns: support vector machine on functional MRI data
    • PID: 16275139
    • Mourao-Miranda, J., Bokde, A. L., Born, C., Hampel, H., & Stetter, M. (2005). Classifying brain states and determining the discriminating activation patterns: support vector machine on functional MRI data. NeuroImage, 28, 980–995.
    • (2005) NeuroImage , vol.28 , pp. 980-995
    • Mourao-Miranda, J.1    Bokde, A.L.2    Born, C.3    Hampel, H.4    Stetter, M.5
  • 56
    • 83755174702 scopus 로고    scopus 로고
    • Prediction of illness severity in patients with major depression using structural MR brain scans
    • PID: 21959677
    • Mwangi, B., Matthews, K., & Steele, J. D. (2012). Prediction of illness severity in patients with major depression using structural MR brain scans. Journal of Magnetic Resonance Imaging, 35, 64–71.
    • (2012) Journal of Magnetic Resonance Imaging , vol.35 , pp. 64-71
    • Mwangi, B.1    Matthews, K.2    Steele, J.D.3
  • 57
    • 55349148361 scopus 로고    scopus 로고
    • Quantitative analysis of lesion morphology and texture features for diagnostic prediction in breast MRI
    • PID: 19000868
    • Nie, K., Chen, J.-H., Yu, H. J., Chu, Y., Nalcioglu, O., & Su, M.-Y. (2008). Quantitative analysis of lesion morphology and texture features for diagnostic prediction in breast MRI. Academic Radiology, 15, 1513–1525.
    • (2008) Academic Radiology , vol.15 , pp. 1513-1525
    • Nie, K.1    Chen, J.-H.2    Yu, H.J.3    Chu, Y.4    Nalcioglu, O.5    Su, M.-Y.6
  • 59
    • 84861187769 scopus 로고    scopus 로고
    • Classification of schizophrenia patients and healthy controls from structural MRI scans in two large independent samples
    • PID: 22507227
    • Nieuwenhuis, M., van Haren, N. E., Hulshoff Pol, H. E., Cahn, W., Kahn, R. S., & Schnack, H. G. (2012). Classification of schizophrenia patients and healthy controls from structural MRI scans in two large independent samples. NeuroImage, 61, 606–612.
    • (2012) NeuroImage , vol.61 , pp. 606-612
    • Nieuwenhuis, M.1    van Haren, N.E.2    Hulshoff Pol, H.E.3    Cahn, W.4    Kahn, R.S.5    Schnack, H.G.6
  • 60
    • 79954987179 scopus 로고    scopus 로고
    • Machine learning classification with confidence: application of transductive conformal predictors to MRI-based diagnostic and prognostic markers in depression
    • PID: 20483379
    • Nouretdinov, I., Costafreda, S. G., Gammerman, A., Chervonenkis, A., Vovk, V., Vapnik, V., & Fu, C. H. (2011). Machine learning classification with confidence: application of transductive conformal predictors to MRI-based diagnostic and prognostic markers in depression. NeuroImage, 56, 809–813.
    • (2011) NeuroImage , vol.56 , pp. 809-813
    • Nouretdinov, I.1    Costafreda, S.G.2    Gammerman, A.3    Chervonenkis, A.4    Vovk, V.5    Vapnik, V.6    Fu, C.H.7
  • 61
    • 38349089209 scopus 로고    scopus 로고
    • Stratification bias in low signal microarray studies
    • Parker, B. J., Günter, S., & Bedo, J. (2007). Stratification bias in low signal microarray studies. BMC Bioinformatics, 8(1), 326.
    • (2007) BMC Bioinformatics , vol.8 , Issue.1 , pp. 326
    • Parker, B.J.1    Günter, S.2    Bedo, J.3
  • 62
    • 80052666239 scopus 로고    scopus 로고
    • Classification of functional magnetic resonance imaging data using informative pattern features. Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining
    • Pereira, F., Botvinick, M., (2011). Classification of functional magnetic resonance imaging data using informative pattern features. Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, pp. 940–946.
    • (2011) ACM , pp. 940-946
    • Pereira, F.1    Botvinick, M.2
  • 66
    • 84870489618 scopus 로고    scopus 로고
    • The Relevance Voxel Machine (RVoxM): A self-tuning bayesian model for informative image-based prediction. Medical Imaging
    • Sabuncu, M. R., Van Leemput, K. (2012). The Relevance Voxel Machine (RVoxM): A self-tuning bayesian model for informative image-based prediction. Medical Imaging, IEEE Transactions on Medical Imaging, 31(12), 2290–2306.
    • (2012) IEEE Transactions on Medical Imaging , vol.31 , Issue.12 , pp. 2290-2306
    • Sabuncu, M.R.1    Van Leemput, K.2
  • 67
    • 35748932917 scopus 로고    scopus 로고
    • A review of feature selection techniques in bioinformatics
    • PID: 17720704
    • Saeys, Y., Inza, I. a., & Larra√±aga, P. (2007). A review of feature selection techniques in bioinformatics. Bioinformatics, 23, 2507–2517.
    • (2007) Bioinformatics , vol.23 , pp. 2507-2517
    • Saeys, Y.1    Inza, I.2    Larra√±aga, P.3
  • 68
    • 84884243434 scopus 로고    scopus 로고
    • Can structural MRI aid in clinical classification? A machine learning study in two independent samples of patients with schizophrenia, bipolar disorder and healthy subjects
    • PID: 24004694
    • Schnack, H. G., Nieuwenhuis, M., van Haren, N. E., Abramovic, L., Scheewe, T. W., Brouwer, R. M., Hulshoff Pol, H. E., & Kahn, R. S. (2014). Can structural MRI aid in clinical classification? A machine learning study in two independent samples of patients with schizophrenia, bipolar disorder and healthy subjects. NeuroImage, 84, 299–306.
    • (2014) NeuroImage , vol.84 , pp. 299-306
    • Schnack, H.G.1    Nieuwenhuis, M.2    van Haren, N.E.3    Abramovic, L.4    Scheewe, T.W.5    Brouwer, R.M.6    Hulshoff Pol, H.E.7    Kahn, R.S.8
  • 69
    • 33745885491 scopus 로고    scopus 로고
    • Learning with kernels: Support vector machines, regularization, optimization, and beyond
    • Scholkopf, B., Smola, A.J. (2002). Learning with kernels: Support vector machines, regularization, optimization, and beyond. the MIT Press.
    • (2002) the MIT Press
    • Scholkopf, B.1    Smola, A.J.2
  • 71
    • 64149093013 scopus 로고    scopus 로고
    • Neurodegenerative diseases target large-scale human brain networks
    • PID: 19376066
    • Seeley, W. W., Crawford, R. K., Zhou, J., Miller, B. L., & Greicius, M. D. (2009). Neurodegenerative diseases target large-scale human brain networks. Neuron, 62, 42–52.
    • (2009) Neuron , vol.62 , pp. 42-52
    • Seeley, W.W.1    Crawford, R.K.2    Zhou, J.3    Miller, B.L.4    Greicius, M.D.5
  • 72
    • 46249106500 scopus 로고    scopus 로고
    • POIMs: positional oligomer importance matrices—understanding support vector machine-based signal detectors
    • Sonnenburg, S., Zien, A., Philips, P., & Rätsch, G. (2008). POIMs: positional oligomer importance matrices—understanding support vector machine-based signal detectors. Bioinformatics, 24(13), i6–i14.
    • (2008) Bioinformatics , vol.24 , Issue.13 , pp. i6-i14
    • Sonnenburg, S.1    Zien, A.2    Philips, P.3    Rätsch, G.4
  • 74
    • 77952888499 scopus 로고    scopus 로고
    • Predicting clinical scores from magnetic resonance scans in Alzheimer’s disease
    • PID: 20347044
    • Stonnington, C. M., Chu, C., Kl√∂ppel, S., Jack, C. R., Jr., Ashburner, J., & Frackowiak, R. S. (2010). Predicting clinical scores from magnetic resonance scans in Alzheimer’s disease. NeuroImage, 51, 1405–1413.
    • (2010) NeuroImage , vol.51 , pp. 1405-1413
    • Stonnington, C.M.1    Chu, C.2    Kl√∂ppel, S.3    Jack, C.R.4    Ashburner, J.5    Frackowiak, R.S.6
  • 76
    • 34548795886 scopus 로고    scopus 로고
    • Multivariate deformation-based analysis of brain atrophy to predict Alzheimer’s disease in mild cognitive impairment
    • PID: 17827035
    • Teipel, S. J., Born, C., Ewers, M., Bokde, A. L., Reiser, M. F., M√∂ller, H.-J. R., & Hampel, H. (2007). Multivariate deformation-based analysis of brain atrophy to predict Alzheimer’s disease in mild cognitive impairment. NeuroImage, 38, 13–24.
    • (2007) NeuroImage , vol.38 , pp. 13-24
    • Teipel, S.J.1    Born, C.2    Ewers, M.3    Bokde, A.L.4    Reiser, M.F.5    M√∂ller, H.-J.R.6    Hampel, H.7
  • 77
    • 0001224048 scopus 로고    scopus 로고
    • Sparse Bayesian learning and the relevance vector machine
    • Tipping, M. E. (2001). Sparse Bayesian learning and the relevance vector machine. The Journal of Machine Learning Research, 1, 211–244.
    • (2001) The Journal of Machine Learning Research , vol.1 , pp. 211-244
    • Tipping, M.E.1
  • 79
    • 33746881122 scopus 로고    scopus 로고
    • Rough set feature selection and rule induction for prediction of malignancy degree in brain glioma
    • PID: 16893588
    • Wang, X., Yang, J., Jensen, R., & Liu, X. (2006). Rough set feature selection and rule induction for prediction of malignancy degree in brain glioma. Computer Methods and Programs in Biomedicine, 83, 147–156.
    • (2006) Computer Methods and Programs in Biomedicine , vol.83 , pp. 147-156
    • Wang, X.1    Yang, J.2    Jensen, R.3    Liu, X.4
  • 80
    • 77950588524 scopus 로고    scopus 로고
    • High-dimensional pattern regression using machine learning: from medical images to continuous clinical variables
    • PID: 20056158
    • Wang, Y., Fan, Y., Bhatt, P., & Davatzikos, C. (2010). High-dimensional pattern regression using machine learning: from medical images to continuous clinical variables. NeuroImage, 50, 1519–1535.
    • (2010) NeuroImage , vol.50 , pp. 1519-1535
    • Wang, Y.1    Fan, Y.2    Bhatt, P.3    Davatzikos, C.4
  • 81
    • 84863059819 scopus 로고    scopus 로고
    • Sparse multi-task regression and feature selection to identify brain imaging predictors for memory performance. Computer Vision (ICCV), 2011 I
    • Wang, H., Nie, F., Huang, H., Risacher, S., Ding, C., Saykin, A.J., Shen, L. (2011). Sparse multi-task regression and feature selection to identify brain imaging predictors for memory performance. Computer Vision (ICCV), 2011 I.E. International Conference on. IEEE, pp. 557–562.
    • (2011) E. International Conference on. IEEE , pp. 557-562
    • Wang, H.1    Nie, F.2    Huang, H.3    Risacher, S.4    Ding, C.5    Saykin, A.J.6    Shen, L.7
  • 85
    • 70349960048 scopus 로고    scopus 로고
    • Zien, A., Krämer, N., Sonnenburg, S.r., Rätsch, G. (2009). The feature importance ranking measure. In Machine Learning and Knowledge Discovery in Databases (pp. 694–709). Springer Berlin Heidelberg
    • Zien, A., Krämer, N., Sonnenburg, S.r., Rätsch, G. (2009). The feature importance ranking measure. In Machine Learning and Knowledge Discovery in Databases (pp. 694–709). Springer Berlin Heidelberg.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.