-
1
-
-
0033933649
-
VVoxel-based morphometry: the methods
-
Ashburner, J., & Friston, K. J. (2000). VVoxel-based morphometry: the methods. NeuroImage, 11, 805–821.
-
(2000)
NeuroImage
, vol.11
, pp. 805-821
-
-
Ashburner, J.1
Friston, K.J.2
-
2
-
-
70349336340
-
A general and unifying framework for feature construction, in image-based pattern classification. Information Processing in Medical Imaging
-
Batmanghelich, N., Taskar, B., Davatzikos, C. (2009). A general and unifying framework for feature construction, in image-based pattern classification. Information Processing in Medical Imaging. Springer, pp. 423–434.
-
(2009)
Springer
, pp. 423-434
-
-
Batmanghelich, N.1
Taskar, B.2
Davatzikos, C.3
-
4
-
-
84867122690
-
ADHD-200 Global Competition: diagnosing ADHD using personal characteristic data can outperform resting state fMRI measurements
-
Brown, M.R., Sidhu, G.S., Greiner, R., Asgarian, N., Bastani, M., Silverstone, P.H., Greenshaw, A.J., Dursun, S.M. (2012). ADHD-200 Global Competition: diagnosing ADHD using personal characteristic data can outperform resting state fMRI measurements. Frontiers in systems neuroscience 6.
-
(2012)
Frontiers in systems neuroscience
, pp. 6
-
-
Brown, M.R.1
Sidhu, G.S.2
Greiner, R.3
Asgarian, N.4
Bastani, M.5
Silverstone, P.H.6
Greenshaw, A.J.7
Dursun, S.M.8
-
6
-
-
84855418467
-
Individual subject classification for Alzheimer’s disease based on incremental learning using a spatial frequency representation of cortical thickness data
-
PID: 22008371
-
Cho, Y., Seong, J.-K., Jeong, Y., & Shin, S. Y. (2012). Individual subject classification for Alzheimer’s disease based on incremental learning using a spatial frequency representation of cortical thickness data. NeuroImage, 59, 2217–2230.
-
(2012)
NeuroImage
, vol.59
, pp. 2217-2230
-
-
Cho, Y.1
Seong, J.-K.2
Jeong, Y.3
Shin, S.Y.4
-
7
-
-
84862776712
-
Does feature selection improve classification accuracy? Impact of sample size and feature selection on classification using anatomical magnetic resonance images
-
PID: 22166797
-
Chu, C., Hsu, A.-L., Chou, K.-H., Bandettini, P., & Lin, C. (2012). Does feature selection improve classification accuracy? Impact of sample size and feature selection on classification using anatomical magnetic resonance images. NeuroImage, 60, 59–70.
-
(2012)
NeuroImage
, vol.60
, pp. 59-70
-
-
Chu, C.1
Hsu, A.-L.2
Chou, K.-H.3
Bandettini, P.4
Lin, C.5
-
8
-
-
34249753618
-
Support-vector networks
-
Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20, 273–297.
-
(1995)
Machine Learning
, vol.20
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
9
-
-
68149169975
-
Prognostic and diagnostic potential of the structural neuroanatomy of depression
-
PID: 19633718
-
Costafreda, S. G., Chu, C., Ashburner, J., & Fu, C. H. (2009). Prognostic and diagnostic potential of the structural neuroanatomy of depression. PloS One, 4, e6353.
-
(2009)
PloS One
, vol.4
, pp. e6353
-
-
Costafreda, S.G.1
Chu, C.2
Ashburner, J.3
Fu, C.H.4
-
10
-
-
84861846263
-
Decision forests for classification, regression, density estimation, manifold learning and semi-supervised learning. Microsoft Research Cambridge, Tech
-
Criminisi, A., Shotton, J., Konukoglu, E., (2011). Decision forests for classification, regression, density estimation, manifold learning and semi-supervised learning. Microsoft Research Cambridge, Tech. Rep. MSRTR-2011-114 5, 12.
-
(2011)
Rep. MSRTR-2011-114
, vol.5
, pp. 12
-
-
Criminisi, A.1
Shotton, J.2
Konukoglu, E.3
-
11
-
-
79955059574
-
Automatic classification of patients with Alzheimer’s disease from structural MRI: a comparison of ten methods using the ADNI database
-
PID: 20542124
-
Cuingnet, R., Gerardin, E., Tessieras, J., Auzias, G., Lehericy, S., Habert, M.-O., Chupin, M., Benali, H., & Colliot, O. (2011). Automatic classification of patients with Alzheimer’s disease from structural MRI: a comparison of ten methods using the ADNI database. NeuroImage, 56, 766–781.
-
(2011)
NeuroImage
, vol.56
, pp. 766-781
-
-
Cuingnet, R.1
Gerardin, E.2
Tessieras, J.3
Auzias, G.4
Lehericy, S.5
Habert, M.-O.6
Chupin, M.7
Benali, H.8
Colliot, O.9
-
12
-
-
0032769093
-
Cortical surface-based analysis: I. Segmentation and surface reconstruction
-
PID: 9931268
-
Dale, A. M., Fischl, B., & Sereno, M. I. (1999). Cortical surface-based analysis: I. Segmentation and surface reconstruction. NeuroImage, 9, 179–194.
-
(1999)
NeuroImage
, vol.9
, pp. 179-194
-
-
Dale, A.M.1
Fischl, B.2
Sereno, M.I.3
-
13
-
-
44649136049
-
Individual patient diagnosis of AD and FTD via high-dimensional pattern classification of MRI
-
PID: 18474436
-
Davatzikos, C., Resnick, S. M., Wu, X., Parmpi, P., & Clark, C. (2008). Individual patient diagnosis of AD and FTD via high-dimensional pattern classification of MRI. NeuroImage, 41, 1220–1227.
-
(2008)
NeuroImage
, vol.41
, pp. 1220-1227
-
-
Davatzikos, C.1
Resnick, S.M.2
Wu, X.3
Parmpi, P.4
Clark, C.5
-
14
-
-
67749130881
-
Longitudinal progression of Alzheimer’s-like patterns of atrophy in normal older adults: the SPARE-AD index
-
PID: 19416949
-
Davatzikos, C., Xu, F., An, Y., Fan, Y., & Resnick, S. M. (2009). Longitudinal progression of Alzheimer’s-like patterns of atrophy in normal older adults: the SPARE-AD index. Brain, 132, 2026–2035.
-
(2009)
Brain
, vol.132
, pp. 2026-2035
-
-
Davatzikos, C.1
Xu, F.2
An, Y.3
Fan, Y.4
Resnick, S.M.5
-
15
-
-
0023710206
-
Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach
-
DeLong, E.R., DeLong, D.M., Clarke-Pearson, D.L. (1988). Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics, 837–845.
-
(1988)
Biometrics
, pp. 837-845
-
-
DeLong, E.R.1
DeLong, D.M.2
Clarke-Pearson, D.L.3
-
16
-
-
34047099795
-
Classification based on cortical folding patterns. Medical Imaging
-
Duchesnay, E., Cachia, A., Roche, A., Rivière, D., Cointepas, Y., Papadopoulos-Orfanos, D., Zilbovicius, M., Martinot, J.-L., & Mangin, J. F. (2007). Classification based on cortical folding patterns. Medical Imaging, IEEE Transactions, 26(4), 553–565.
-
(2007)
IEEE Transactions
, vol.26
, Issue.4
, pp. 553-565
-
-
Duchesnay, E.1
Cachia, A.2
Roche, A.3
Rivière, D.4
Cointepas, Y.5
Papadopoulos-Orfanos, D.6
Zilbovicius, M.7
Martinot, J.-L.8
Mangin, J.F.9
-
17
-
-
57149142419
-
Automated computer differential classification in Parkinsonian syndromes via pattern analysis on MRI
-
PID: 19064213
-
Duchesne, S., Rolland, Y., & Verin, M. (2009). Automated computer differential classification in Parkinsonian syndromes via pattern analysis on MRI. Academic Radiology, 16, 61–70.
-
(2009)
Academic Radiology
, vol.16
, pp. 61-70
-
-
Duchesne, S.1
Rolland, Y.2
Verin, M.3
-
18
-
-
70349964707
-
Investigating the predictive value of whole-brain structural MR scans in autism: a pattern classification approach
-
PID: 19683584
-
Ecker, C., Rocha-Rego, V., Johnston, P., Mourao-Miranda, J., Marquand, A., Daly, E. M., Brammer, M. J., Murphy, C., & Murphy, D. G. (2010). Investigating the predictive value of whole-brain structural MR scans in autism: a pattern classification approach. NeuroImage, 49, 44–56.
-
(2010)
NeuroImage
, vol.49
, pp. 44-56
-
-
Ecker, C.1
Rocha-Rego, V.2
Johnston, P.3
Mourao-Miranda, J.4
Marquand, A.5
Daly, E.M.6
Brammer, M.J.7
Murphy, C.8
Murphy, D.G.9
-
19
-
-
33846264886
-
COMPARE: classification of morphological patterns using adaptive regional elements
-
Fan, Y., Shen, D., Gur, R. C., Gur, R. E., & Davatzikos, C. (2007). COMPARE: classification of morphological patterns using adaptive regional elements. Medical Imaging, IEEE Transactions, 26, 93–105.
-
(2007)
Medical Imaging, IEEE Transactions
, vol.26
, pp. 93-105
-
-
Fan, Y.1
Shen, D.2
Gur, R.C.3
Gur, R.E.4
Davatzikos, C.5
-
20
-
-
1342309509
-
Structural brain abnormalities in multiple sclerosis patients with major depression
-
Feinstein, A., Roy, P., Lobaugh, N., Feinstein, K., O’Connor, P., & Black, S. (2004). Structural brain abnormalities in multiple sclerosis patients with major depression. Neurology, 62(4), 586–590.
-
(2004)
Neurology
, vol.62
, Issue.4
, pp. 586-590
-
-
Feinstein, A.1
Roy, P.2
Lobaugh, N.3
Feinstein, K.4
O’Connor, P.5
Black, S.6
-
21
-
-
84862997809
-
Free surfer
-
PID: 22248573
-
Fischl, B. (2012). Free surfer. NeuroImage, 62, 774–781.
-
(2012)
NeuroImage
, vol.62
, pp. 774-781
-
-
Fischl, B.1
-
22
-
-
0032799993
-
Cortical surface-based analysis: II: Inflation, flattening, and a surface-based coordinate system
-
PID: 9931269
-
Fischl, B., Sereno, M. I., & Dale, A. M. (1999a). Cortical surface-based analysis: II: Inflation, flattening, and a surface-based coordinate system. NeuroImage, 9, 195–207.
-
(1999)
NeuroImage
, vol.9
, pp. 195-207
-
-
Fischl, B.1
Sereno, M.I.2
Dale, A.M.3
-
23
-
-
0032741345
-
High-resolution intersubject averaging and a coordinate system for the cortical surface
-
PID: 10619420
-
Fischl, B., Sereno, M. I., Tootell, R. B., & Dale, A. M. (1999b). High-resolution intersubject averaging and a coordinate system for the cortical surface. Human Brain Mapping, 8, 272–284.
-
(1999)
Human Brain Mapping
, vol.8
, pp. 272-284
-
-
Fischl, B.1
Sereno, M.I.2
Tootell, R.B.3
Dale, A.M.4
-
24
-
-
18244406829
-
Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain
-
PID: 11832223
-
Fischl, B., Salat, D. H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., van der Kouwe, A., Killiany, R., Kennedy, D., & Klaveness, S. (2002). Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron, 33, 341–355.
-
(2002)
Neuron
, vol.33
, pp. 341-355
-
-
Fischl, B.1
Salat, D.H.2
Busa, E.3
Albert, M.4
Dieterich, M.5
Haselgrove, C.6
van der Kouwe, A.7
Killiany, R.8
Kennedy, D.9
Klaveness, S.10
-
25
-
-
9144254529
-
Automatically parcellating the human cerebral cortex
-
Fischl, B., van Der Kouwe, A., Destrieux, C., Halgren, E., Ségonne, F., Salat, D. H., Busa, E., Seidman, L. J., Goldstein, J., Kennedy, D. & Dale, A. M. (2004). Automatically parcellating the human cerebral cortex. Cerebral Cortex, 14(1), 11–22.
-
(2004)
Cerebral Cortex
, vol.14
, Issue.1
, pp. 11-22
-
-
Fischl, B.1
van Der Kouwe, A.2
Destrieux, C.3
Halgren, E.4
Ségonne, F.5
Salat, D.H.6
Busa, E.7
Seidman, L.J.8
Goldstein, J.9
Kennedy, D.10
Dale, A.M.11
-
26
-
-
76849095847
-
The clinical use of structural MRI in Alzheimer disease
-
PID: 20139996
-
Frisoni, G. B., Fox, N. C., Jack, C. R., Scheltens, P., & Thompson, P. M. (2010). The clinical use of structural MRI in Alzheimer disease. Nature Reviews Neurology, 6, 67–77.
-
(2010)
Nature Reviews Neurology
, vol.6
, pp. 67-77
-
-
Frisoni, G.B.1
Fox, N.C.2
Jack, C.R.3
Scheltens, P.4
Thompson, P.M.5
-
27
-
-
4344705249
-
Statistical parametric maps in functional imaging: a general linear approach
-
Friston, K. J., Holmes, A. P., Worsley, K. J., Poline, J. Ä., Frith, C. D., & Frackowiak, R. S. (1994). Statistical parametric maps in functional imaging: a general linear approach. Human Brain Mapping, 2, 189–210.
-
(1994)
Human Brain Mapping
, vol.2
, pp. 189-210
-
-
Friston, K.J.1
Holmes, A.P.2
Worsley, K.J.3
Poline, J.Ä.4
Frith, C.D.5
Frackowiak, R.S.6
-
28
-
-
36048980266
-
Bayesian decoding of brain images
-
PID: 17919928
-
Friston, K., Chu, C., Mourao-Miranda, J., Hulme, O., Rees, G., Penny, W., & Ashburner, J. (2008). Bayesian decoding of brain images. NeuroImage, 39, 181–205.
-
(2008)
NeuroImage
, vol.39
, pp. 181-205
-
-
Friston, K.1
Chu, C.2
Mourao-Miranda, J.3
Hulme, O.4
Rees, G.5
Penny, W.6
Ashburner, J.7
-
29
-
-
84877323945
-
Analytic estimation of statistical significance maps for support vector machine based multi-variate image analysis and classification
-
PID: 23583748
-
Gaonkar, B., & Davatzikos, C. (2013). Analytic estimation of statistical significance maps for support vector machine based multi-variate image analysis and classification. NeuroImage, 78, 270–283.
-
(2013)
NeuroImage
, vol.78
, pp. 270-283
-
-
Gaonkar, B.1
Davatzikos, C.2
-
30
-
-
84881093689
-
The MCIC Collection: A Shared Repository of Multi-Modal, Multi-Site Brain Image Data from a Clinical Investigation of Schizophrenia
-
Gollub, R.L., Shoemaker, J.M., King, M.D., White, T., Ehrlich, S., Sponheim, S.R., Clark, V.P., Turner, J.A., Mueller, B.A., Magnotta, V. (2013). The MCIC Collection: A Shared Repository of Multi-Modal, Multi-Site Brain Image Data from a Clinical Investigation of Schizophrenia. Neuroinformatics, 1–22.
-
(2013)
Neuroinformatics
, pp. 1-22
-
-
Gollub, R.L.1
Shoemaker, J.M.2
King, M.D.3
White, T.4
Ehrlich, S.5
Sponheim, S.R.6
Clark, V.P.7
Turner, J.A.8
Mueller, B.A.9
Magnotta, V.10
-
32
-
-
33748658691
-
Reliability of MRI-derived measurements of human cerebral cortical thickness: the effects of field strength, scanner upgrade and manufacturer
-
PID: 16651008
-
Han, X., Jovicich, J., Salat, D., van der Kouwe, A., Quinn, B., Czanner, S., Busa, E., Pacheco, J., Albert, M., & Killiany, R. (2006). Reliability of MRI-derived measurements of human cerebral cortical thickness: the effects of field strength, scanner upgrade and manufacturer. NeuroImage, 32, 180–194.
-
(2006)
NeuroImage
, vol.32
, pp. 180-194
-
-
Han, X.1
Jovicich, J.2
Salat, D.3
van der Kouwe, A.4
Quinn, B.5
Czanner, S.6
Busa, E.7
Pacheco, J.8
Albert, M.9
Killiany, R.10
-
33
-
-
0037977109
-
Progressive structural brain abnormalities and their relationship to clinical outcome: a longitudinal magnetic resonance imaging study early in schizophrenia
-
PID: 12796222
-
Ho, B.-C., Andreasen, N. C., Nopoulos, P., Arndt, S., Magnotta, V., & Flaum, M. (2003). Progressive structural brain abnormalities and their relationship to clinical outcome: a longitudinal magnetic resonance imaging study early in schizophrenia. Archives of General Psychiatry, 60, 585.
-
(2003)
Archives of General Psychiatry
, vol.60
, pp. 585
-
-
Ho, B.-C.1
Andreasen, N.C.2
Nopoulos, P.3
Arndt, S.4
Magnotta, V.5
Flaum, M.6
-
34
-
-
41949137974
-
The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods
-
PID: 18302232
-
Jack, C. R., Bernstein, M. A., Fox, N. C., Thompson, P., Alexander, G., Harvey, D., Borowski, B., Britson, P. J., Whitwell, J. L., & Ward, C. (2008). The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods. Journal of Magnetic Resonance Imaging, 27, 685–691.
-
(2008)
Journal of Magnetic Resonance Imaging
, vol.27
, pp. 685-691
-
-
Jack, C.R.1
Bernstein, M.A.2
Fox, N.C.3
Thompson, P.4
Alexander, G.5
Harvey, D.6
Borowski, B.7
Britson, P.J.8
Whitwell, J.L.9
Ward, C.10
-
35
-
-
0031078007
-
Feature selection: evaluation, application, and small sample performance
-
Jain, A., & Zongker, D. (1997). Feature selection: evaluation, application, and small sample performance. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 19, 153–158.
-
(1997)
Pattern Analysis and Machine Intelligence, IEEE Transactions on
, vol.19
, pp. 153-158
-
-
Jain, A.1
Zongker, D.2
-
36
-
-
84924514239
-
Evaluating learning algorithms: a classification perspective
-
Japkowicz, N., Shah, M. (2011). Evaluating learning algorithms: a classification perspective. Cambridge University Press.
-
(2011)
Cambridge University Press
-
-
Japkowicz, N.1
Shah, M.2
-
37
-
-
33751113321
-
Multivariate voxel-based morphometry successfully differentiates schizophrenia patients from healthy controls
-
PID: 17045492
-
Kawasaki, Y., Suzuki, M., Kherif, F., Takahashi, T., Zhou, S.-Y., Nakamura, K., Matsui, M., Sumiyoshi, T., Seto, H., & Kurachi, M. (2007). Multivariate voxel-based morphometry successfully differentiates schizophrenia patients from healthy controls. NeuroImage, 34, 235–242.
-
(2007)
NeuroImage
, vol.34
, pp. 235-242
-
-
Kawasaki, Y.1
Suzuki, M.2
Kherif, F.3
Takahashi, T.4
Zhou, S.-Y.5
Nakamura, K.6
Matsui, M.7
Sumiyoshi, T.8
Seto, H.9
Kurachi, M.10
-
38
-
-
39749191312
-
Automatic classification of MR scans in Alzheimer’s disease
-
PID: 18202106
-
Kloppel, S., Stonnington, C. M., Chu, C., Draganski, B., Scahill, R. I., Rohrer, J. D., Fox, N. C., Jack, C. R., Ashburner, J., & Frackowiak, R. S. (2008). Automatic classification of MR scans in Alzheimer’s disease. Brain, 131, 681–689.
-
(2008)
Brain
, vol.131
, pp. 681-689
-
-
Kloppel, S.1
Stonnington, C.M.2
Chu, C.3
Draganski, B.4
Scahill, R.I.5
Rohrer, J.D.6
Fox, N.C.7
Jack, C.R.8
Ashburner, J.9
Frackowiak, R.S.10
-
39
-
-
61549122053
-
Automatic detection of preclinical neurodegeneration Presymptomatic Huntington disease
-
PID: 19188573
-
Kloppel, S., Chu, C., Tan, G., Draganski, B., Johnson, H., Paulsen, J., Kienzle, W., Tabrizi, S., Ashburner, J., & Frackowiak, R. (2009). Automatic detection of preclinical neurodegeneration Presymptomatic Huntington disease. Neurology, 72, 426–431.
-
(2009)
Neurology
, vol.72
, pp. 426-431
-
-
Kloppel, S.1
Chu, C.2
Tan, G.3
Draganski, B.4
Johnson, H.5
Paulsen, J.6
Kienzle, W.7
Tabrizi, S.8
Ashburner, J.9
Frackowiak, R.10
-
40
-
-
84860734393
-
Diagnostic neuroimaging across diseases
-
PID: 22094642
-
Kloppel, S., Abdulkadir, A., Jack, C. R., Jr., Koutsouleris, N., Mour√£o-Miranda, J., & Vemuri, P. (2012). Diagnostic neuroimaging across diseases. NeuroImage, 61, 457–463.
-
(2012)
NeuroImage
, vol.61
, pp. 457-463
-
-
Kloppel, S.1
Abdulkadir, A.2
Jack, C.R.3
Koutsouleris, N.4
Mour√£o-Miranda, J.5
Vemuri, P.6
-
41
-
-
84879879457
-
Neighbourhood Approximation using randomized forests
-
Konukoglu, E., Glocker, B., Zikic, D., & Criminisi, A., (2013). Neighbourhood Approximation using randomized forests. Medical Image Analysis 17(7), 790–804.
-
(2013)
Medical Image Analysis
, vol.17
, Issue.7
, pp. 790-804
-
-
Konukoglu, E.1
Glocker, B.2
Zikic, D.3
Criminisi, A.4
-
42
-
-
67650457029
-
Use of neuroanatomical pattern classification to identify subjects in at-risk mental states of psychosis and predict disease transition
-
PID: 19581561
-
Koutsouleris, N., Meisenzahl, E. M., Davatzikos, C., Bottlender, R., Frodl, T., Scheuerecker, J., Schmitt, G., Zetzsche, T., Decker, P., & Reiser, M. (2009). Use of neuroanatomical pattern classification to identify subjects in at-risk mental states of psychosis and predict disease transition. Archives of General Psychiatry, 66, 700.
-
(2009)
Archives of General Psychiatry
, vol.66
, pp. 700
-
-
Koutsouleris, N.1
Meisenzahl, E.M.2
Davatzikos, C.3
Bottlender, R.4
Frodl, T.5
Scheuerecker, J.6
Schmitt, G.7
Zetzsche, T.8
Decker, P.9
Reiser, M.10
-
43
-
-
33644870032
-
Information-based functional brain mapping
-
PID: 16537458
-
Kriegeskorte, N., Goebel, R., & Bandettini, P. (2006). Information-based functional brain mapping. Proceedings of the National Academy of Sciences of the United States of America, 103, 3863–3868.
-
(2006)
Proceedings of the National Academy of Sciences of the United States of America
, vol.103
, pp. 3863-3868
-
-
Kriegeskorte, N.1
Goebel, R.2
Bandettini, P.3
-
44
-
-
1642574430
-
Morphological classification of brains via high-dimensional shape transformations and machine learning methods
-
PID: 14741641
-
Lao, Z., Shen, D., Xue, Z., Karacali, B., Resnick, S. M., & Davatzikos, C. (2004). Morphological classification of brains via high-dimensional shape transformations and machine learning methods. NeuroImage, 21, 46–57.
-
(2004)
NeuroImage
, vol.21
, pp. 46-57
-
-
Lao, Z.1
Shen, D.2
Xue, Z.3
Karacali, B.4
Resnick, S.M.5
Davatzikos, C.6
-
45
-
-
36148973896
-
Automated cortical thickness measurements from MRI can accurately separate Alzheimer’s patients from normal elderly controls
-
PID: 17097767
-
Lerch, J. P., Pruessner, J., Zijdenbos, A. P., Collins, D. L., Teipel, S. J., Hampel, H., & Evans, A. C. (2008). Automated cortical thickness measurements from MRI can accurately separate Alzheimer’s patients from normal elderly controls. Neurobiology of Aging, 29, 23–30.
-
(2008)
Neurobiology of Aging
, vol.29
, pp. 23-30
-
-
Lerch, J.P.1
Pruessner, J.2
Zijdenbos, A.P.3
Collins, D.L.4
Teipel, S.J.5
Hampel, H.6
Evans, A.C.7
-
46
-
-
84864004297
-
Classification of different therapeutic responses of major depressive disorder with multivariate pattern analysis method based on structural MR scans
-
PID: 22815880
-
Liu, F., Guo, W., Yu, D., Gao, Q., Gao, K., Xue, Z., Du, H., Zhang, J., Tan, C., & Liu, Z. (2012). Classification of different therapeutic responses of major depressive disorder with multivariate pattern analysis method based on structural MR scans. PloS One, 7, e40968.
-
(2012)
PloS One
, vol.7
, pp. e40968
-
-
Liu, F.1
Guo, W.2
Yu, D.3
Gao, Q.4
Gao, K.5
Xue, Z.6
Du, H.7
Zhang, J.8
Tan, C.9
Liu, Z.10
-
47
-
-
84939921456
-
-
R., A significance test for the lasso:
-
Lockhart, R., Taylor, J., Tibshirani, R.J., Tibshirani, R., 2012. A significance test for the lasso.
-
(2012)
Tibshirani
-
-
Lockhart, R.1
Taylor, J.2
Tibshirani, R.J.3
-
48
-
-
0000234257
-
The evidence framework applied to classification networks
-
MacKay, D. J. (1992). The evidence framework applied to classification networks. Neural Computation, 4, 720–736.
-
(1992)
Neural Computation
, vol.4
, pp. 720-736
-
-
MacKay, D.J.1
-
49
-
-
34247173865
-
The extensible neuroimaging archive toolkit
-
PID: 17426351
-
Marcus, D. S., Olsen, T. R., Ramaratnam, M., & Buckner, R. L. (2007a). The extensible neuroimaging archive toolkit. Neuroinformatics, 5, 11–33.
-
(2007)
Neuroinformatics
, vol.5
, pp. 11-33
-
-
Marcus, D.S.1
Olsen, T.R.2
Ramaratnam, M.3
Buckner, R.L.4
-
50
-
-
34548409688
-
Open access series of imaging studies (OASIS): cross-sectional MRI data in young, middle aged, nondemented, and demented older adults
-
PID: 17714011
-
Marcus, D. S., Wang, T. H., Parker, J., Csernansky, J. G., Morris, J. C., & Buckner, R. L. (2007b). Open access series of imaging studies (OASIS): cross-sectional MRI data in young, middle aged, nondemented, and demented older adults. Journal of Cognitive Neuroscience, 19, 1498–1507.
-
(2007)
Journal of Cognitive Neuroscience
, vol.19
, pp. 1498-1507
-
-
Marcus, D.S.1
Wang, T.H.2
Parker, J.3
Csernansky, J.G.4
Morris, J.C.5
Buckner, R.L.6
-
51
-
-
77958487535
-
Stability selection
-
Meinshausen, N., & Buhlmann, P. (2010). Stability selection. Journal of the Royal Statistical Society, Series B: Statistical Methodology, 72, 417–473.
-
(2010)
Journal of the Royal Statistical Society, Series B: Statistical Methodology
, vol.72
, pp. 417-473
-
-
Meinshausen, N.1
Buhlmann, P.2
-
52
-
-
84872254483
-
The ADHD-200 consortium: a model to advance the translational potential of neuroimaging in clinical neuroscience
-
Milham, M. P., Fair, D., Mennes, M., & Mostofsky, S. H. (2012). The ADHD-200 consortium: a model to advance the translational potential of neuroimaging in clinical neuroscience. Frontiers in Systems Neuroscience, 6, 62.
-
(2012)
Frontiers in Systems Neuroscience
, vol.6
, pp. 62
-
-
Milham, M.P.1
Fair, D.2
Mennes, M.3
Mostofsky, S.H.4
-
53
-
-
3242802095
-
Learning to decode cognitive states from brain images
-
Mitchell, T. M., Hutchinson, R., Niculescu, R. S., Pereira, F., Wang, X., Just, M., & Newman, S. (2004). Learning to decode cognitive states from brain images. Machine Learning, 57, 145–175.
-
(2004)
Machine Learning
, vol.57
, pp. 145-175
-
-
Mitchell, T.M.1
Hutchinson, R.2
Niculescu, R.S.3
Pereira, F.4
Wang, X.5
Just, M.6
Newman, S.7
-
54
-
-
28244492778
-
Classifying brain states and determining the discriminating activation patterns: support vector machine on functional MRI data
-
PID: 16275139
-
Mourao-Miranda, J., Bokde, A. L., Born, C., Hampel, H., & Stetter, M. (2005). Classifying brain states and determining the discriminating activation patterns: support vector machine on functional MRI data. NeuroImage, 28, 980–995.
-
(2005)
NeuroImage
, vol.28
, pp. 980-995
-
-
Mourao-Miranda, J.1
Bokde, A.L.2
Born, C.3
Hampel, H.4
Stetter, M.5
-
55
-
-
84859260848
-
Individualized prediction of illness course at the first psychotic episode: a support vector machine MRI study
-
PID: 22059690
-
Mourao-Miranda, J., Reinders, A., Rocha-Rego, V., Lappin, J., Rondina, J., Morgan, C., Morgan, K., Fearon, P., Jones, P., & Doody, G. (2012). Individualized prediction of illness course at the first psychotic episode: a support vector machine MRI study. Psychological Medicine, 42, 1037.
-
(2012)
Psychological Medicine
, vol.42
, pp. 1037
-
-
Mourao-Miranda, J.1
Reinders, A.2
Rocha-Rego, V.3
Lappin, J.4
Rondina, J.5
Morgan, C.6
Morgan, K.7
Fearon, P.8
Jones, P.9
Doody, G.10
-
56
-
-
83755174702
-
Prediction of illness severity in patients with major depression using structural MR brain scans
-
PID: 21959677
-
Mwangi, B., Matthews, K., & Steele, J. D. (2012). Prediction of illness severity in patients with major depression using structural MR brain scans. Journal of Magnetic Resonance Imaging, 35, 64–71.
-
(2012)
Journal of Magnetic Resonance Imaging
, vol.35
, pp. 64-71
-
-
Mwangi, B.1
Matthews, K.2
Steele, J.D.3
-
57
-
-
55349148361
-
Quantitative analysis of lesion morphology and texture features for diagnostic prediction in breast MRI
-
PID: 19000868
-
Nie, K., Chen, J.-H., Yu, H. J., Chu, Y., Nalcioglu, O., & Su, M.-Y. (2008). Quantitative analysis of lesion morphology and texture features for diagnostic prediction in breast MRI. Academic Radiology, 15, 1513–1525.
-
(2008)
Academic Radiology
, vol.15
, pp. 1513-1525
-
-
Nie, K.1
Chen, J.-H.2
Yu, H.J.3
Chu, Y.4
Nalcioglu, O.5
Su, M.-Y.6
-
58
-
-
84884686280
-
Multisite functional connectivity MRI classification of autism: ABIDE results
-
Nielsen, J.A., Zielinski, B.A., Fletcher, P.T., Alexander, A.L., Lange, N., Bigler, E.D., Lainhart, J.E., Anderson, J.S., 2013. Multisite functional connectivity MRI classification of autism: ABIDE results. Frontiers in human neuroscience 7.
-
(2013)
Frontiers in human neuroscience
, pp. 7
-
-
Nielsen, J.A.1
Zielinski, B.A.2
Fletcher, P.T.3
Alexander, A.L.4
Lange, N.5
Bigler, E.D.6
Lainhart, J.E.7
Anderson, J.S.8
-
59
-
-
84861187769
-
Classification of schizophrenia patients and healthy controls from structural MRI scans in two large independent samples
-
PID: 22507227
-
Nieuwenhuis, M., van Haren, N. E., Hulshoff Pol, H. E., Cahn, W., Kahn, R. S., & Schnack, H. G. (2012). Classification of schizophrenia patients and healthy controls from structural MRI scans in two large independent samples. NeuroImage, 61, 606–612.
-
(2012)
NeuroImage
, vol.61
, pp. 606-612
-
-
Nieuwenhuis, M.1
van Haren, N.E.2
Hulshoff Pol, H.E.3
Cahn, W.4
Kahn, R.S.5
Schnack, H.G.6
-
60
-
-
79954987179
-
Machine learning classification with confidence: application of transductive conformal predictors to MRI-based diagnostic and prognostic markers in depression
-
PID: 20483379
-
Nouretdinov, I., Costafreda, S. G., Gammerman, A., Chervonenkis, A., Vovk, V., Vapnik, V., & Fu, C. H. (2011). Machine learning classification with confidence: application of transductive conformal predictors to MRI-based diagnostic and prognostic markers in depression. NeuroImage, 56, 809–813.
-
(2011)
NeuroImage
, vol.56
, pp. 809-813
-
-
Nouretdinov, I.1
Costafreda, S.G.2
Gammerman, A.3
Chervonenkis, A.4
Vovk, V.5
Vapnik, V.6
Fu, C.H.7
-
61
-
-
38349089209
-
Stratification bias in low signal microarray studies
-
Parker, B. J., Günter, S., & Bedo, J. (2007). Stratification bias in low signal microarray studies. BMC Bioinformatics, 8(1), 326.
-
(2007)
BMC Bioinformatics
, vol.8
, Issue.1
, pp. 326
-
-
Parker, B.J.1
Günter, S.2
Bedo, J.3
-
62
-
-
80052666239
-
Classification of functional magnetic resonance imaging data using informative pattern features. Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining
-
Pereira, F., Botvinick, M., (2011). Classification of functional magnetic resonance imaging data using informative pattern features. Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, pp. 940–946.
-
(2011)
ACM
, pp. 940-946
-
-
Pereira, F.1
Botvinick, M.2
-
63
-
-
0032988610
-
Mild cognitive impairment: clinical characterization and outcome
-
PID: 10190820
-
Petersen, R. C., Smith, G. E., Waring, S. C., Ivnik, R. J., Tangalos, E. G., & Kokmen, E. (1999). Mild cognitive impairment: clinical characterization and outcome. Archives of Neurology, 56, 303.
-
(1999)
Archives of Neurology
, vol.56
, pp. 303
-
-
Petersen, R.C.1
Smith, G.E.2
Waring, S.C.3
Ivnik, R.J.4
Tangalos, E.G.5
Kokmen, E.6
-
64
-
-
75249106883
-
Automated detection of brain atrophy patterns based on MRI for the prediction of Alzheimer’s disease
-
Plant, C., Teipel, S. J., Oswald, A., Böhm, C., Meindl, T., Mourao-Miranda, J., Bokde, A. W., Hampel, H., & Ewers, M. (2010). Automated detection of brain atrophy patterns based on MRI for the prediction of Alzheimer’s disease. NeuroImage, 50(1), 162–174.
-
(2010)
NeuroImage
, vol.50
, Issue.1
, pp. 162-174
-
-
Plant, C.1
Teipel, S.J.2
Oswald, A.3
Böhm, C.4
Meindl, T.5
Mourao-Miranda, J.6
Bokde, A.W.7
Hampel, H.8
Ewers, M.9
-
65
-
-
84939921457
-
-
Mourao-Miranda, J: SCoRS-a method based on stability for feature selection and mapping
-
Rondina, J., Hahn, T., de Oliveira, L., Marquand, A., Dresler, T., Leitner, T., Fallgatter, A., Shawe-Taylor, J., Mourao-Miranda, J. (2013). SCoRS-a method based on stability for feature selection and mapping in neuroimaging.
-
(2013)
Shawe-Taylor, J.
-
-
Rondina, J.1
Hahn, T.2
de Oliveira, L.3
Marquand, A.4
Dresler, T.5
Leitner, T.6
Fallgatter, A.7
-
66
-
-
84870489618
-
The Relevance Voxel Machine (RVoxM): A self-tuning bayesian model for informative image-based prediction. Medical Imaging
-
Sabuncu, M. R., Van Leemput, K. (2012). The Relevance Voxel Machine (RVoxM): A self-tuning bayesian model for informative image-based prediction. Medical Imaging, IEEE Transactions on Medical Imaging, 31(12), 2290–2306.
-
(2012)
IEEE Transactions on Medical Imaging
, vol.31
, Issue.12
, pp. 2290-2306
-
-
Sabuncu, M.R.1
Van Leemput, K.2
-
67
-
-
35748932917
-
A review of feature selection techniques in bioinformatics
-
PID: 17720704
-
Saeys, Y., Inza, I. a., & Larra√±aga, P. (2007). A review of feature selection techniques in bioinformatics. Bioinformatics, 23, 2507–2517.
-
(2007)
Bioinformatics
, vol.23
, pp. 2507-2517
-
-
Saeys, Y.1
Inza, I.2
Larrañaga, P.3
-
68
-
-
84884243434
-
Can structural MRI aid in clinical classification? A machine learning study in two independent samples of patients with schizophrenia, bipolar disorder and healthy subjects
-
PID: 24004694
-
Schnack, H. G., Nieuwenhuis, M., van Haren, N. E., Abramovic, L., Scheewe, T. W., Brouwer, R. M., Hulshoff Pol, H. E., & Kahn, R. S. (2014). Can structural MRI aid in clinical classification? A machine learning study in two independent samples of patients with schizophrenia, bipolar disorder and healthy subjects. NeuroImage, 84, 299–306.
-
(2014)
NeuroImage
, vol.84
, pp. 299-306
-
-
Schnack, H.G.1
Nieuwenhuis, M.2
van Haren, N.E.3
Abramovic, L.4
Scheewe, T.W.5
Brouwer, R.M.6
Hulshoff Pol, H.E.7
Kahn, R.S.8
-
69
-
-
33745885491
-
Learning with kernels: Support vector machines, regularization, optimization, and beyond
-
Scholkopf, B., Smola, A.J. (2002). Learning with kernels: Support vector machines, regularization, optimization, and beyond. the MIT Press.
-
(2002)
the MIT Press
-
-
Scholkopf, B.1
Smola, A.J.2
-
70
-
-
84993945123
-
COINS: an innovative informatics and neuroimaging tool suite built for large heterogeneous datasets
-
Scott, A., Courtney, W., Wood, D., De la Garza, R., Lane, S., King, M., Wang, R., Roberts, J., Turner, J.A., Calhoun, V.D., 2011. COINS: an innovative informatics and neuroimaging tool suite built for large heterogeneous datasets. Frontiers in neuroinformatics 5.
-
(2011)
Frontiers in neuroinformatics
, pp. 5
-
-
Scott, A.1
Courtney, W.2
Wood, D.3
De la Garza, R.4
Lane, S.5
King, M.6
Wang, R.7
Roberts, J.8
Turner, J.A.9
Calhoun, V.D.10
-
71
-
-
64149093013
-
Neurodegenerative diseases target large-scale human brain networks
-
PID: 19376066
-
Seeley, W. W., Crawford, R. K., Zhou, J., Miller, B. L., & Greicius, M. D. (2009). Neurodegenerative diseases target large-scale human brain networks. Neuron, 62, 42–52.
-
(2009)
Neuron
, vol.62
, pp. 42-52
-
-
Seeley, W.W.1
Crawford, R.K.2
Zhou, J.3
Miller, B.L.4
Greicius, M.D.5
-
72
-
-
46249106500
-
POIMs: positional oligomer importance matrices—understanding support vector machine-based signal detectors
-
Sonnenburg, S., Zien, A., Philips, P., & Rätsch, G. (2008). POIMs: positional oligomer importance matrices—understanding support vector machine-based signal detectors. Bioinformatics, 24(13), i6–i14.
-
(2008)
Bioinformatics
, vol.24
, Issue.13
, pp. i6-i14
-
-
Sonnenburg, S.1
Zien, A.2
Philips, P.3
Rätsch, G.4
-
73
-
-
34047161656
-
Identifying patients with obsessive-compulsive disorder using whole-brain anatomy
-
PID: 17321758
-
Soriano-Mas, C., Pujol, J., Alonso, P., Cardoner, N., Menchon, J. M., Harrison, B. J., Deus, J., Vallejo, J., & Gaser, C. (2007). Identifying patients with obsessive-compulsive disorder using whole-brain anatomy. NeuroImage, 35, 1028–1037.
-
(2007)
NeuroImage
, vol.35
, pp. 1028-1037
-
-
Soriano-Mas, C.1
Pujol, J.2
Alonso, P.3
Cardoner, N.4
Menchon, J.M.5
Harrison, B.J.6
Deus, J.7
Vallejo, J.8
Gaser, C.9
-
74
-
-
77952888499
-
Predicting clinical scores from magnetic resonance scans in Alzheimer’s disease
-
PID: 20347044
-
Stonnington, C. M., Chu, C., Kl√∂ppel, S., Jack, C. R., Jr., Ashburner, J., & Frackowiak, R. S. (2010). Predicting clinical scores from magnetic resonance scans in Alzheimer’s disease. NeuroImage, 51, 1405–1413.
-
(2010)
NeuroImage
, vol.51
, pp. 1405-1413
-
-
Stonnington, C.M.1
Chu, C.2
Klöppel, S.3
Jack, C.R.4
Ashburner, J.5
Frackowiak, R.S.6
-
75
-
-
48549095457
-
Conditional variable importance for random forests
-
PID: 18620558
-
Strobl, C., Boulesteix, A.-L., Kneib, T., Augustin, T., & Zeileis, A. (2008). Conditional variable importance for random forests. BMC Bioinformatics, 9, 307.
-
(2008)
BMC Bioinformatics
, vol.9
, pp. 307
-
-
Strobl, C.1
Boulesteix, A.-L.2
Kneib, T.3
Augustin, T.4
Zeileis, A.5
-
76
-
-
34548795886
-
Multivariate deformation-based analysis of brain atrophy to predict Alzheimer’s disease in mild cognitive impairment
-
PID: 17827035
-
Teipel, S. J., Born, C., Ewers, M., Bokde, A. L., Reiser, M. F., M√∂ller, H.-J. R., & Hampel, H. (2007). Multivariate deformation-based analysis of brain atrophy to predict Alzheimer’s disease in mild cognitive impairment. NeuroImage, 38, 13–24.
-
(2007)
NeuroImage
, vol.38
, pp. 13-24
-
-
Teipel, S.J.1
Born, C.2
Ewers, M.3
Bokde, A.L.4
Reiser, M.F.5
Möller, H.-J.R.6
Hampel, H.7
-
77
-
-
0001224048
-
Sparse Bayesian learning and the relevance vector machine
-
Tipping, M. E. (2001). Sparse Bayesian learning and the relevance vector machine. The Journal of Machine Learning Research, 1, 211–244.
-
(2001)
The Journal of Machine Learning Research
, vol.1
, pp. 211-244
-
-
Tipping, M.E.1
-
78
-
-
47949121047
-
Antemortem MRI based Structural abnormality iNDex (STAND)-scores correlate with postmortem braak neurofibrillary tangle stage
-
PID: 18572417
-
Vemuri, P., Whitwell, J. L., Kantarci, K., Josephs, K. A., Parisi, J. E., Shiung, M. S., Knopman, D. S., Boeve, B. F., Petersen, R. C., & Dickson, D. W. (2008). Antemortem MRI based Structural abnormality iNDex (STAND)-scores correlate with postmortem braak neurofibrillary tangle stage. NeuroImage, 42, 559–567.
-
(2008)
NeuroImage
, vol.42
, pp. 559-567
-
-
Vemuri, P.1
Whitwell, J.L.2
Kantarci, K.3
Josephs, K.A.4
Parisi, J.E.5
Shiung, M.S.6
Knopman, D.S.7
Boeve, B.F.8
Petersen, R.C.9
Dickson, D.W.10
-
79
-
-
33746881122
-
Rough set feature selection and rule induction for prediction of malignancy degree in brain glioma
-
PID: 16893588
-
Wang, X., Yang, J., Jensen, R., & Liu, X. (2006). Rough set feature selection and rule induction for prediction of malignancy degree in brain glioma. Computer Methods and Programs in Biomedicine, 83, 147–156.
-
(2006)
Computer Methods and Programs in Biomedicine
, vol.83
, pp. 147-156
-
-
Wang, X.1
Yang, J.2
Jensen, R.3
Liu, X.4
-
80
-
-
77950588524
-
High-dimensional pattern regression using machine learning: from medical images to continuous clinical variables
-
PID: 20056158
-
Wang, Y., Fan, Y., Bhatt, P., & Davatzikos, C. (2010). High-dimensional pattern regression using machine learning: from medical images to continuous clinical variables. NeuroImage, 50, 1519–1535.
-
(2010)
NeuroImage
, vol.50
, pp. 1519-1535
-
-
Wang, Y.1
Fan, Y.2
Bhatt, P.3
Davatzikos, C.4
-
81
-
-
84863059819
-
Sparse multi-task regression and feature selection to identify brain imaging predictors for memory performance. Computer Vision (ICCV), 2011 I
-
Wang, H., Nie, F., Huang, H., Risacher, S., Ding, C., Saykin, A.J., Shen, L. (2011). Sparse multi-task regression and feature selection to identify brain imaging predictors for memory performance. Computer Vision (ICCV), 2011 I.E. International Conference on. IEEE, pp. 557–562.
-
(2011)
E. International Conference on. IEEE
, pp. 557-562
-
-
Wang, H.1
Nie, F.2
Huang, H.3
Risacher, S.4
Ding, C.5
Saykin, A.J.6
Shen, L.7
-
82
-
-
78649699771
-
Multivariate analysis of MRI data for Alzheimer’s disease, mild cognitive impairment and healthy controls
-
PID: 20800095
-
Westman, E., Simmons, A., Zhang, Y., Muehlboeck, J., Tunnard, C., Liu, Y., Collins, L., Evans, A., Mecocci, P., & Vellas, B. (2011). Multivariate analysis of MRI data for Alzheimer’s disease, mild cognitive impairment and healthy controls. NeuroImage, 54, 1178–1187.
-
(2011)
NeuroImage
, vol.54
, pp. 1178-1187
-
-
Westman, E.1
Simmons, A.2
Zhang, Y.3
Muehlboeck, J.4
Tunnard, C.5
Liu, Y.6
Collins, L.7
Evans, A.8
Mecocci, P.9
Vellas, B.10
-
83
-
-
67651054973
-
Automated MRI-based classification of primary progressive aphasia variants
-
PID: 19501654
-
Wilson, S. M., Ogar, J. M., Laluz, V., Growdon, M., Jang, J., Glenn, S., Miller, B. L., Weiner, M. W., & Gorno-Tempini, M. L. (2009). Automated MRI-based classification of primary progressive aphasia variants. NeuroImage, 47, 1558–1567.
-
(2009)
NeuroImage
, vol.47
, pp. 1558-1567
-
-
Wilson, S.M.1
Ogar, J.M.2
Laluz, V.3
Growdon, M.4
Jang, J.5
Glenn, S.6
Miller, B.L.7
Weiner, M.W.8
Gorno-Tempini, M.L.9
-
85
-
-
70349960048
-
-
Zien, A., Krämer, N., Sonnenburg, S.r., Rätsch, G. (2009). The feature importance ranking measure. In Machine Learning and Knowledge Discovery in Databases (pp. 694–709). Springer Berlin Heidelberg
-
Zien, A., Krämer, N., Sonnenburg, S.r., Rätsch, G. (2009). The feature importance ranking measure. In Machine Learning and Knowledge Discovery in Databases (pp. 694–709). Springer Berlin Heidelberg.
-
-
-
|