메뉴 건너뛰기




Volumn 4, Issue , 2011, Pages

Data mining methods in the prediction of Dementia: A real-data comparison of the accuracy, sensitivity and specificity of linear discriminant analysis, logistic regression, neural networks, support vector machines, classification trees and random forests

Author keywords

[No Author keywords available]

Indexed keywords


EID: 80051660823     PISSN: None     EISSN: 17560500     Source Type: Journal    
DOI: 10.1186/1756-0500-4-299     Document Type: Article
Times cited : (341)

References (73)
  • 2
    • 0035826925 scopus 로고    scopus 로고
    • Practice parameter: Early detection of dementia: Mild cognitive impairment (an evidence-based review) - Report of the Quality Standards Subcommittee of the American Academy of Neurology
    • 11342677
    • Practice parameter: Early detection of dementia: Mild cognitive impairment (an evidence-based review)-Report of the Quality Standards Subcommittee of the American Academy of Neurology. Petersen RC, Stevens JC, Ganguli M, Tangalos EG, Cummings JL, DeKosky ST, Neurology 2001 56 1133 1142 11342677
    • (2001) Neurology , vol.56 , pp. 1133-1142
    • Petersen, R.C.1    Stevens, J.C.2    Ganguli, M.3    Tangalos, E.G.4    Cummings, J.L.5    Dekosky, S.T.6
  • 3
    • 33646830919 scopus 로고    scopus 로고
    • Mild cognitive impairment (MCI) in medical practice: A critical review of the concept and new diagnostic procedure. Report of the MCI Working Group of the European Consortium on Alzheimer's Disease
    • DOI 10.1136/jnnp.2005.085332
    • Mild cognitive impairment (MCI) in medical practice: a critical review of the concept and new diagnostic procedure. Report of the MCI Working Group of the European Consortium on Alzheimer's Disease. Portet F, Ousset PJ, Visser PJ, Frisoni GB, Nobili F, Scheltens P, Vellas B, Touchon J, J Neurol Neurosurg Psychiatry 2006 77 714 718 10.1136/jnnp.2005.085332 16549412 (Pubitemid 43837193)
    • (2006) Journal of Neurology, Neurosurgery and Psychiatry , vol.77 , Issue.6 , pp. 714-718
    • Portet, F.1    Ousset, P.J.2    Visser, P.J.3    Frisoni, G.B.4    Nobili, F.5    Scheltens, Ph.6    Vellas, B.7    Touchon, J.8
  • 6
    • 23744441694 scopus 로고    scopus 로고
    • Preclinical Alzheimer's disease: Diagnosis and prediction of progression
    • DOI 10.1016/S1474-4422(05)70168-X, PII S147444220570168X
    • Preclinical Alzheimer's disease: diagnosis and prediction of progression. Chong MS, Sahadevan S, Lancet Neurology 2005 4 576 579 10.1016/S1474-4422(05) 70168-X 16109364 (Pubitemid 41139979)
    • (2005) Lancet Neurology , vol.4 , Issue.9 , pp. 576-579
    • Chong, M.S.1    Sahadevan, S.2
  • 7
    • 27144436866 scopus 로고    scopus 로고
    • Annual conversion to Alzheimer disease among patients with memory complaints attending an outpatient memory clinic: The influence of amnestic mild cognitive impairment and the predictive value of neuropsychological testing
    • DOI 10.1007/s00508-005-0428-6
    • Annual conversion to Alzheimer disease among patients with memory complaints attending an outpatient memory clinic: The influence of amnestic mild cognitive impairment and the predictive value of neuropsychological testing. Lehrner J, Gufler R, Guttmann G, Maly J, Gleiss A, Auff E, Dal-Bianco P, Wiener Klinische Wochenschrift 2005 117 629 635 10.1007/s00508-005-0428-6 16416345 (Pubitemid 41494965)
    • (2005) Wiener Klinische Wochenschrift , vol.117 , Issue.18 , pp. 629-635
    • Lehrner, J.1    Gufler, R.2    Guttmann, G.3    Maly, J.4    Gleiss, A.5    Auff, E.6    Dal-Bianco, P.7
  • 8
    • 34248175274 scopus 로고    scopus 로고
    • Clinical predictors of progression to Alzheimer disease in amnestic mild cognitive impairment
    • DOI 10.1212/01.wnl.0000258542.58725.4c
    • Clinical predictors of progression to Alzheimer disease in amnestic mild cognitive impairment. Fleisher AS, Sowell BB, Taylor C, Gamst AC, Petersen RC, Thal LJ, Alzheimers Disease C, Neurology 2007 68 1588 1595 10.1212/01.wnl. 0000258542.58725.4c 17287448 (Pubitemid 46717983)
    • (2007) Neurology , vol.68 , Issue.19 , pp. 1588-1595
    • Fleisher, A.S.1    Sowell, B.B.2    Taylor, C.3    Gamst, A.C.4    Petersen, R.C.5    Thal, L.J.6
  • 9
    • 34248175274 scopus 로고    scopus 로고
    • Clinical predictors of progression to Alzheimer disease in amnestic mild cognitive impairment
    • DOI 10.1212/01.wnl.0000258542.58725.4c
    • Alzheimer's Disease Cooperative Study. Clinical predictors of progression to Alzheimer disease in amnestic mild cognitive impairment. Fleisher AS, Sowell BB, Taylor C, Gamst AC, Petersen RC, Thal LJ, Neurology 2007 68 1588 1595 10.1212/01.wnl.0000258542.58725.4c 17287448 (Pubitemid 46717983)
    • (2007) Neurology , vol.68 , Issue.19 , pp. 1588-1595
    • Fleisher, A.S.1    Sowell, B.B.2    Taylor, C.3    Gamst, A.C.4    Petersen, R.C.5    Thal, L.J.6
  • 10
    • 34247352404 scopus 로고    scopus 로고
    • Preclinical dementia: An Italian multicentre study on amnestic mild cognitive impairment
    • DOI 10.1159/000100871
    • Preclinical dementia: an Italian multicentre study on amnestic mild cognitive impairment. Perri R, Serra L, Carlesimo GA, Caltagirone C, Early Diag Grp Italian I, Dementia and Geriatric Cognitive Disorders 2007 23 289 300 10.1159/000100871 17356272 (Pubitemid 46631934)
    • (2007) Dementia and Geriatric Cognitive Disorders , vol.23 , Issue.5 , pp. 289-300
    • Perri, R.1    Serra, L.2    Carlesimo, G.A.3    Caltagirone, C.4
  • 13
    • 34250613098 scopus 로고    scopus 로고
    • A comparison of regression trees, logistic regression, generalized additive models, and multivariate adaptive regression splines for predicting AMI mortality
    • DOI 10.1002/sim.2770
    • A comparison of regression trees, logistic regression, generalized additive models, and multivariate adaptive regression splines for predicting AMI mortality. Peter CA, Statistics in Medicine 2007 26 2937 2957 10.1002/sim.2770 17186501 (Pubitemid 46939420)
    • (2007) Statistics in Medicine , vol.26 , Issue.15 , pp. 2937-2957
    • Austin, P.C.1
  • 14
    • 0141462324 scopus 로고
    • Comparing classification accuracy of neural networks, binary logit regression and discriminant analysis for insolvency prediction of life insurers
    • Comparing classification accuracy of neural networks, binary logit regression and discriminant analysis for insolvency prediction of life insurers. Goss EP, Ramchandani H, Journal of Economics and Finance 1995 19 1 18
    • (1995) Journal of Economics and Finance , vol.19 , pp. 1-18
    • Goss, E.P.1    Ramchandani, H.2
  • 15
    • 84886193637 scopus 로고
    • The efficiency of logistic regression compared to normal discriminant analysis
    • 10.2307/2285453
    • The Efficiency of Logistic Regression Compared to Normal Discriminant Analysis. Efron B, Journal of the American Statistical Association 1975 70 892 898 10.2307/2285453
    • (1975) Journal of the American Statistical Association , vol.70 , pp. 892-898
    • Efron, B.1
  • 16
    • 0033089777 scopus 로고    scopus 로고
    • Comparing linear discriminant function with logistic regression for the two-group classification problem
    • 10.1080/00220979909598356
    • Comparing linear discriminant function with logistic regression for the two-group classification problem. Fan X, Wang L, Journal of Experimental Education 1999 67 265 286 10.1080/00220979909598356
    • (1999) Journal of Experimental Education , vol.67 , pp. 265-286
    • Fan, X.1    Wang, L.2
  • 17
    • 1142290855 scopus 로고    scopus 로고
    • Linear discriminant analysis versus logistic regression: A comparison of classification errors in the two-group case
    • Linear discriminant analysis versus logistic regression: a comparison of classification errors in the two-group case. Lei PW, Koehly LM, The Journal of Experimental Education 2003 72 25 49 10.1080/00220970309600878 (Pubitemid 38213585)
    • (2003) Journal of Experimental Education , vol.72 , Issue.1 , pp. 25-49
    • Lei, P.-W.1    Koehly, L.M.2
  • 18
    • 17644397985 scopus 로고    scopus 로고
    • Comparison of logistic regression and linear. Discriminant analysis: A simulation study
    • Comparison of Logistic Regression and Linear. Discriminant Analysis: A Simulation Study. Pohar M, Blas M, Turk S, Metodoloki zvezki 2004 1 143 161
    • (2004) Metodoloki Zvezki , vol.1 , pp. 143-161
    • Pohar, M.1    Blas, M.2    Turk, S.3
  • 19
    • 0347764867 scopus 로고    scopus 로고
    • Redes neurales vs modelos estadísticos: Simulaciones sobre tareas de prediccián y clasificacián
    • 20385444
    • Redes neurales vs modelos estadísticos: Simulaciones sobre tareas de prediccián y clasificacián. Pitarque A, Roy JF, Ruiz JC, Psicolágica 1998 19 387 400 20385444
    • (1998) Psicolágica , vol.19 , pp. 387-400
    • Pitarque, A.1    Roy, J.F.2    Ruiz, J.C.3
  • 20
    • 16544373696 scopus 로고    scopus 로고
    • Efficient training of RBF networks for classification
    • 10.1142/S0129065704001930 15243952
    • Efficient training of RBF networks for classification. Nabney IT, International Journal of Neural Systems 2004 14 201 208 10.1142/ S0129065704001930 15243952
    • (2004) International Journal of Neural Systems , vol.14 , pp. 201-208
    • Nabney, I.T.1
  • 21
    • 0035204677 scopus 로고    scopus 로고
    • Application of classification tree and neural network algorithms to the identification of serological liver marker profiles for the diagnosis of hepatocellular carcinoma
    • DOI 10.1159/000055334
    • Application of classification tree and neural network algorithms to the identification of serological liver marker profiles for the diagnosis of hepatocellular carcinoma. Poon TC, Chan AT, Zee B, Ho SK, Mok TS, Leung TW, Johnson PJ, Oncology 2001 61 275 283 10.1159/000055334 11721174 (Pubitemid 33135836)
    • (2001) Oncology , vol.61 , Issue.4 , pp. 275-283
    • Poon, T.C.-W.1    Chan, A.T.-C.2    Zee, B.3    Ho, S.K.-W.4    Mok, T.S.-K.5    Leung, T.W.-T.6    Johnson, P.J.7
  • 23
    • 80053315377 scopus 로고    scopus 로고
    • RBF network classification of ECGs as a potential marker for sudden cardiac death
    • Heidelberg, Germany: Physica-Verlag GmbH
    • RBF network classification of ECGs as a potential marker for sudden cardiac death. Kestler HA, Schwenker F, Radial basis function networks 2: new advances in design archive Heidelberg, Germany: Physica-Verlag GmbH 2001 162 214
    • (2001) Radial Basis Function Networks 2: New Advances in Design Archive , pp. 162-214
    • Kestler, H.A.1    Schwenker, F.2
  • 25
    • 34250201125 scopus 로고    scopus 로고
    • Assessment of the performances of multilayer perceptron neural networks in comparison with recurrent neural networks and two statistical methods for diagnosing coronary artery disease
    • DOI 10.1111/j.1468-0394.2007.00425.x
    • Assessment of the performances of multilayer perceptron neural networks in comparison with recurrent neural networks and two statistical methods for diagnosing coronary artery disease. Sut N, Senocak M, Expert Systems 2007 24 131 142 10.1111/j.1468-0394.2007.00425.x (Pubitemid 46898181)
    • (2007) Expert Systems , vol.24 , Issue.3 , pp. 131-142
    • Sut, N.1    Senocak, M.2
  • 26
    • 1042267716 scopus 로고    scopus 로고
    • Improvements in personnel selection with neural networks: A pilot study in the field of aviation psychology
    • Improvements in Personnel Selection with Neural Nets: A Pilot Study in the field of Aviation Psychology. Sommer M, Olbrich A, Arendasy M, The International Journal of Aviation Psychology 2004 14 103 115 10.1207/s15327108ijap1401-6 (Pubitemid 38203198)
    • (2004) International Journal of Aviation Psychology , vol.14 , Issue.1 , pp. 103-115
    • Sommer, M.1    Olbrich, A.2    Arendasy, M.3
  • 27
    • 77957320191 scopus 로고    scopus 로고
    • Support vector machines in DSC-based glioma imaging: Suggestions for optimal characterization
    • Support vector machines in DSC-based glioma imaging: Suggestions for optimal characterization. Zollner FG, Emblem KE, Schad LR, Magn Reson Med 2010
    • (2010) Magn Reson Med
    • Zollner, F.G.1    Emblem, K.E.2    Schad, L.R.3
  • 28
    • 34848824629 scopus 로고    scopus 로고
    • Applications of support vector machines in chemistry
    • Weinheim: John Wiley & Sons, Inc Lipkowitz KB, Cundari TR
    • Applications of Support Vector Machines in Chemistry. Ivanciuc O, Reviews in Computational Chemistry Weinheim: John Wiley & Sons, Inc, Lipkowitz KB, Cundari TR, 2007 23 291 400
    • (2007) Reviews in Computational Chemistry , vol.23 , pp. 291-400
    • Ivanciuc, O.1
  • 29
    • 34248647301 scopus 로고    scopus 로고
    • Comparing performances of logistic regression, classification and regression tree, and neural networks for predicting coronary artery disease
    • DOI 10.1016/j.eswa.2006.09.004, PII S0957417406002855
    • Comparing performances of logistic regression, classification and regression tree, and neural networks for predicting coronary artery disease. Kurt I, Ture M, Kurum AT, Expert Systems with Applications 2008 34 366 374 10.1016/j.eswa.2006.09.004 (Pubitemid 46766626)
    • (2008) Expert Systems with Applications , vol.34 , Issue.1 , pp. 366-374
    • Kurt, I.1    Ture, M.2    Kurum, A.T.3
  • 30
    • 33644754593 scopus 로고    scopus 로고
    • Misclassification rates for four methods of group classification: Impact of predictor distribution, covariance inequality, effect size, sample size, and group size ratio
    • DOI 10.1177/0013164405278579
    • Misclassification Rates for Four Methods of Group Classification: Impact of Predictor Distribution, Covariance Inequality, Effect Size, Sample Size, and Group Size Ratio. Finch H, Schneider MK, Educational and Psychological Measurement 2006 66 240 257 10.1177/0013164405278579 (Pubitemid 43344141)
    • (2006) Educational and Psychological Measurement , vol.66 , Issue.2 , pp. 240-257
    • Finch, W.H.1    Schneider, M.K.2
  • 31
    • 69949110837 scopus 로고    scopus 로고
    • Classification Accuracy of Neural Networks vs. Discriminant Analysis, Logistic Regression, and Classification and Regression Trees: Three- and Five-Group Cases
    • Classification Accuracy of Neural Networks vs. Discriminant Analysis, Logistic Regression, and Classification and Regression Trees: Three- and Five-Group Cases. Finch H, Schneider MK, Methodology 2007 3 47 57
    • (2007) Methodology , vol.3 , pp. 47-57
    • Finch, H.1    Schneider, M.K.2
  • 32
    • 24644475153 scopus 로고    scopus 로고
    • Comparison of three statistical classifiers on a prostate cancer data
    • COMPSTAT 2004
    • Comparison of three statistical classifiers on a prostate cancer data. Gelnarova E, Safarik L, Neural Network World 2005 15 311 318 (Pubitemid 41274837)
    • (2005) Neural Network World , vol.15 , Issue.4 , pp. 311-318
    • Gelnarova, E.1    Safarik, L.2
  • 33
    • 0030145401 scopus 로고    scopus 로고
    • A note on comparing classifiers
    • DOI 10.1016/0167-8655(95)00113-1
    • A note on comparing classifiers. Duin RPW, Pattern Recognition Letters 1996 17 529 536 10.1016/0167-8655(95)00113-1 (Pubitemid 126380803)
    • (1996) Pattern Recognition Letters , vol.17 , Issue.5 , pp. 529-536
    • Duin, R.P.W.1
  • 34
    • 0242288813 scopus 로고    scopus 로고
    • The support vector machine under test
    • DOI 10.1016/S0925-2312(03)00431-4
    • The support vector machine under test. Meyer D, Leischa F, Hornik K, Neurocomputing 2003 55 169 186 10.1016/S0925-2312(03)00431-4 (Pubitemid 37336675)
    • (2003) Neurocomputing , vol.55 , Issue.1-2 , pp. 169-186
    • Meyer, D.1    Leisch, F.2    Hornik, K.3
  • 35
    • 33847618299 scopus 로고    scopus 로고
    • Classification of patients with pain based on neuropathic pain symptoms: Comparison of an artificial neural network against an established scoring system
    • DOI 10.1016/j.ejpain.2006.03.001, PII S1090380106000371
    • Classification of patients with pain based on neuropathic pain symptoms: Comparison of an artificial neural network against an established scoring system. Behrman M, Linder R, Assadi AH, Stacey BR, Backonja MM, European Journal of Pain 2007 11 370 376 10.1016/j.ejpain.2006.03.001 16624601 (Pubitemid 46366761)
    • (2007) European Journal of Pain , vol.11 , Issue.4 , pp. 370-376
    • Behrman, M.1    Linder, R.2    Assadi, A.H.3    Stacey, B.R.4    Backonja, M.-M.5
  • 36
    • 0000764772 scopus 로고
    • The use of multiple measurements in taxonomic problems
    • 10.1111/j.1469-1809.1936.tb02137.x
    • The Use of Multiple Measurements in Taxonomic Problems. Fisher R, Annals of Eugenics 1936 7 179 188 10.1111/j.1469-1809.1936.tb02137.x
    • (1936) Annals of Eugenics , vol.7 , pp. 179-188
    • Fisher, R.1
  • 39
    • 77952763424 scopus 로고    scopus 로고
    • Neural networks
    • 10.1007/978-1-60327-241-4-12 20221921
    • Neural networks. Yang ZR, Methods Mol Biol 2010 609 197 222 10.1007/978-1-60327-241-4-12 20221921
    • (2010) Methods Mol Biol , vol.609 , pp. 197-222
    • Yang, Z.R.1
  • 45
    • 0000661829 scopus 로고
    • An exploratory technique for investigation large quantities of categorical data
    • 10.2307/2986296
    • An exploratory technique for investigation large quantities of categorical data. Kass G, Applied Statistics 1980 29 119 127 10.2307/2986296
    • (1980) Applied Statistics , vol.29 , pp. 119-127
    • Kass, G.1
  • 46
    • 0031312210 scopus 로고    scopus 로고
    • Split selection methods for classification trees
    • Split selection methods for classification trees. Loh W-Y, Shih Y-S, Statistica Sinica 1997 7 815 840
    • (1997) Statistica Sinica , vol.7 , pp. 815-840
    • Loh, W.-Y.1    Shih, Y.-S.2
  • 47
    • 0042262684 scopus 로고    scopus 로고
    • Learning with maximum-entropy distributions
    • DOI 10.1023/A:1010950718922
    • Random forests. Breiman L, Machine Learning 2001 45 123 140 10.1023/A:1010950718922 (Pubitemid 33635982)
    • (2001) Machine Learning , vol.45 , Issue.2 , pp. 123-145
    • Mansour, Y.1    Schain, M.2
  • 48
    • 0345040873 scopus 로고    scopus 로고
    • Classification and Regression by randomForest
    • Classification and Regression by randomForest. Liaw A, Wiener M, R News 2002 2/3 (December) 18 22
    • (2002) R News , vol.23 , pp. 18-22
    • Liaw, A.1    Wiener, M.2
  • 49
    • 0004235298 scopus 로고    scopus 로고
    • APA, Washington, DC: American Psychiatric Association 4 Text revision
    • APA, Diagnostic and statistical manual of mental disorders Washington, DC: American Psychiatric Association 4 2000 Text revision
    • (2000) Diagnostic and Statistical Manual of Mental Disorders
  • 50
    • 0006952029 scopus 로고
    • Doença de Alzheimer, problemas do diagnástico clínico
    • Universidade de Lisboa. Faculdade de Medicina de Lisboa
    • Doença de Alzheimer, problemas do diagnástico clínico. Garcia C, Tese de Doutoramento Universidade de Lisboa., Faculdade de Medicina de Lisboa 1984
    • (1984) Tese de Doutoramento
    • Garcia, C.1
  • 56
    • 0242351992 scopus 로고    scopus 로고
    • Support Vector Machines: The Interface to libsvm in package e1071
    • Support Vector Machines: The Interface to libsvm in package e1071. Meyer D, R News 2001 1/3 23 26
    • (2001) R News , vol.13 , pp. 23-26
    • Meyer, D.1
  • 57
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • DOI 10.1023/A:1009715923555
    • A Tutorial on Support Vector Machines for Pattern Recognition. Burges C, Data Mining and Knowledge Discovery 1998 2 121 167 10.1023/A:1009715923555 (Pubitemid 128126769)
    • (1998) Data Mining and Knowledge Discovery , vol.2 , Issue.2 , pp. 121-168
    • Burges, C.J.C.1
  • 58
    • 33947517339 scopus 로고    scopus 로고
    • Application and comparison of classification algorithms for recognition of Alzheimer's disease in electrical brain activity (EEG)
    • DOI 10.1016/j.jneumeth.2006.10.023, PII S0165027006005425
    • Application and comparison of classification algorithms for recognition of Alzheimer's disease in electrical brain activity (EEG). Lehmann C, Koenig T, Jelic V, Prichep L, John RE, Wahlund LO, Dodge Y, Dierks T, Journal of Neuroscience Methods 2007 161 342 350 10.1016/j.jneumeth.2006.10.023 17156848 (Pubitemid 46466939)
    • (2007) Journal of Neuroscience Methods , vol.161 , Issue.2 , pp. 342-350
    • Lehmann, C.1    Koenig, T.2    Jelic, V.3    Prichep, L.4    John, R.E.5    Wahlund, L.-O.6    Dodge, Y.7    Dierks, T.8
  • 59
    • 0030987793 scopus 로고    scopus 로고
    • Use of a probabilistic neural network to estimate the risk of mortality after cardiac surgery
    • DOI 10.1177/0272989X9701700208
    • Use of a Probabilistic Neural Network to Estimate the Risk of Mortality after Cardiac Surgery. Orr RK, Medical Decision Making 1997 17 178 185 10.1177/0272989X9701700208 9107613 (Pubitemid 27157033)
    • (1997) Medical Decision Making , vol.17 , Issue.2 , pp. 178-185
    • Orr, R.K.1
  • 60
    • 0034728368 scopus 로고    scopus 로고
    • On the misuses of artificial neural networks for prognostic and diagnostic classification in oncology
    • DOI 10.1002/(SICI)1097-0258(20000229)19:4<541::AID-SIM355>3.0.CO;2- V
    • On the misuses of artificial neural networks for prognostic and diagnostic classification in oncology. Schwarzer G, Vach W, Schumacher M, Statistics in Medicine 2000 19 541 561 10.1002/(SICI)1097-0258(20000229)19: 4<541::AID-SIM355>3.0.CO;2-V 10694735 (Pubitemid 30126883)
    • (2000) Statistics in Medicine , vol.19 , Issue.4 , pp. 541-561
    • Schwarzer, G.1    Vach, W.2    Schumacher, M.3
  • 62
    • 0026120032 scopus 로고
    • Small sample size effects in statistical pattern recognition: Recommendations for practitioners
    • 10.1109/34.75512
    • Small Sample Size Effects in Statistical Pattern Recognition: Recommendations for Practitioners. Raudys SJ, Jain AK, IEEE Transactions on Pattern Analysis and Machine Intelligence 1991 13 252 264 10.1109/34.75512
    • (1991) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.13 , pp. 252-264
    • Raudys, S.J.1    Jain, A.K.2
  • 64
    • 77950343082 scopus 로고    scopus 로고
    • Use of SVM methods with surface-based cortical and volumetric subcortical measurements to detect Alzheimer's disease
    • 20061613
    • Use of SVM methods with surface-based cortical and volumetric subcortical measurements to detect Alzheimer's disease. Oliveira PP Jr, Nitrini R, Busatto G, Buchpiguel C, Sato JR, Amaro E Jr, J Alzheimers Dis 2010 19 1263 1272 20061613
    • (2010) J Alzheimers Dis , vol.19 , pp. 1263-1272
    • Oliveira, Jr.P.P.1    Nitrini, R.2    Busatto, G.3    Buchpiguel, C.4    Sato, J.R.5    Amaro, Jr.E.6
  • 65
    • 75849153966 scopus 로고    scopus 로고
    • Feature selection and performance evaluation of support vector machine (SVM)-based classifier for differentiating benign and malignant pulmonary nodules by computed tomography
    • 10.1007/s10278-009-9185-9 19242759
    • Feature selection and performance evaluation of support vector machine (SVM)-based classifier for differentiating benign and malignant pulmonary nodules by computed tomography. Zhu Y, Tan Y, Hua Y, Wang M, Zhang G, Zhang J, J Digit Imaging 2010 23 51 65 10.1007/s10278-009-9185-9 19242759
    • (2010) J Digit Imaging , vol.23 , pp. 51-65
    • Zhu, Y.1    Tan, Y.2    Hua, Y.3    Wang, M.4    Zhang, G.5    Zhang, J.6
  • 66
    • 75649127978 scopus 로고    scopus 로고
    • Comparing performances of logistic regression and neural networks for predicting melatonin excretion patterns in the rat exposed to ELF magnetic fields
    • 19771546
    • Comparing performances of logistic regression and neural networks for predicting melatonin excretion patterns in the rat exposed to ELF magnetic fields. Jahandideh S, Abdolmaleki P, Movahedi MM, Bioelectromagnetics 2010 31 164 171 19771546
    • (2010) Bioelectromagnetics , vol.31 , pp. 164-171
    • Jahandideh, S.1    Abdolmaleki, P.2    Movahedi, M.M.3
  • 67
    • 77954212694 scopus 로고    scopus 로고
    • Novel application of a statistical technique, Random Forests, in a bacterial source tracking study
    • 10.1016/j.watres.2010.05.019 20566209
    • Novel application of a statistical technique, Random Forests, in a bacterial source tracking study. Smith A, Sterba-Boatwright B, Mott J, Water Res 2010 44 4067 4076 10.1016/j.watres.2010.05.019 20566209
    • (2010) Water Res , vol.44 , pp. 4067-4076
    • Smith, A.1    Sterba-Boatwright, B.2    Mott, J.3
  • 68
    • 56149083834 scopus 로고    scopus 로고
    • Are random forests better than support vector machines for microarray-based cancer classification?
    • Are random forests better than support vector machines for microarray-based cancer classification? Statnikov A, Aliferis CF, AMIA Annu Symp Proc 2007 686 690
    • (2007) AMIA Annu Symp Proc , pp. 686-690
    • Statnikov, A.1    Aliferis, C.F.2
  • 69
    • 0348220947 scopus 로고    scopus 로고
    • Classification and regression tree analysis in public health: Methodological review and comparison with logistic regression
    • Classification and regression tree analysis in public health: Methodological review and comparison with logistic regression. Lemon SC, Roy J, Clark MA, Friedmann PD, Rakowski W, Annals of Behavioral Medicine 2003 26 172 181 10.1207/S15324796ABM2603-02 14644693 (Pubitemid 38001837)
    • (2003) Annals of Behavioral Medicine , vol.26 , Issue.3 , pp. 172-181
    • Lemon, S.C.1    Roy, J.2    Clark, M.A.3    Friedmann, P.D.4    Rakowski, W.5
  • 70
    • 0036127092 scopus 로고    scopus 로고
    • A review of evidence of health benefit from artificial neural networks in medical intervention
    • PII S0893608001001113
    • A review of evidence of health benefit from artificial neural networks in medical intervention. Lisboa PJ, Neural Networks 2002 15 11 39 10.1016/S0893-6080(01)00111-3 11958484 (Pubitemid 34234792)
    • (2002) Neural Networks , vol.15 , Issue.1 , pp. 11-39
    • Lisboa, P.J.G.1
  • 72
    • 0034274591 scopus 로고    scopus 로고
    • A comparison of prediction accuracy, complexity, and training time of thirty-three old and new classification algorithms
    • 10.1023/A:1007608224229
    • A Comparison of Prediction Accuracy, Complexity, and Training Time of Thirty-Three Old and New Classification Algorithms. Lim T-S, Loh W-Y, Shih Y-S, Machine Learning 2000 40 203 228 10.1023/A:1007608224229
    • (2000) Machine Learning , vol.40 , pp. 203-228
    • Lim, T.-S.1    Loh, W.-Y.2    Shih, Y.-S.3
  • 73
    • 0030145401 scopus 로고    scopus 로고
    • A note on comparing classifiers
    • DOI 10.1016/0167-8655(95)00113-1
    • A note on comparing classifiers. Duin RPW, Pattern Recognition Letters 1996 17 529 536 10.1016/0167-8655(95)00113-1 (Pubitemid 126380803)
    • (1996) Pattern Recognition Letters , vol.17 , Issue.5 , pp. 529-536
    • Duin, R.P.W.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.