-
1
-
-
0028915430
-
Molecular neurobiology and genetics of circadian rhythms in mammals
-
Takahashi JS. Molecular neurobiology and genetics of circadian rhythms in mammals. Annu. Rev. Neurosci. 1995;18:531-553.
-
(1995)
Annu. Rev. Neurosci.
, vol.18
, pp. 531-553
-
-
Takahashi, J.S.1
-
2
-
-
0033593306
-
Molecular bases for circadian clocks
-
Dunlap, JC. Molecular bases for circadian clocks. Cell. 1999;96:271-290.
-
(1999)
Cell
, vol.96
, pp. 271-290
-
-
Dunlap, J.C.1
-
3
-
-
0032486330
-
Role of the CLOCK protein in the mammalian circadian mechanism
-
Gekakis N, Staknis D, Nguyen HB, et al. Role of the CLOCK protein in the mammalian circadian mechanism. Science. 1998;280:1564-1569.
-
(1998)
Science
, vol.280
, pp. 1564-1569
-
-
Gekakis, N.1
Staknis, D.2
Nguyen, H.B.3
-
4
-
-
0037194790
-
Coordination of circadian timing in mammals
-
Reppert SM, Weaver DR. Coordination of circadian timing in mammals. Nature. 2002;418:935-941.
-
(2002)
Nature
, vol.418
, pp. 935-941
-
-
Reppert, S.M.1
Weaver, D.R.2
-
5
-
-
0035136677
-
An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome
-
Toh KL, Jones CR, He Y, et al. An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome. Science. 2001;291:1040-1043.
-
(2001)
Science
, vol.291
, pp. 1040-1043
-
-
Toh, K.L.1
Jones, C.R.2
He, Y.3
-
6
-
-
33847779219
-
Post-translational modifications regulate the ticking of the circadian clock
-
Gallego M, Virshup DM. Post-translational modifications regulate the ticking of the circadian clock. Nat. Rev. Mol. Cell Biol. 2007;8:139-148.
-
(2007)
Nat. Rev. Mol. Cell Biol.
, vol.8
, pp. 139-148
-
-
Gallego, M.1
Virshup, D.M.2
-
7
-
-
59649092573
-
Clocks go forward: Progress in the molecular genetic analysis of rhythmic behaviour
-
Nolan PM, Parsons MJ. Clocks go forward: progress in the molecular genetic analysis of rhythmic behaviour. Mamm. Genome. 2009;20:67-70
-
(2009)
Mamm. Genome.
, vol.20
, pp. 67-70
-
-
Nolan, P.M.1
Parsons, M.J.2
-
8
-
-
79955890550
-
Kinases and phosphatases in the mammalian circadian clock
-
Reischl S, Kramer A. Kinases and phosphatases in the mammalian circadian clock. FEBS Lett. 2011;585:1393-1399
-
(2011)
FEBS Lett.
, vol.585
, pp. 1393-1399
-
-
Reischl, S.1
Kramer, A.2
-
9
-
-
0037184977
-
A web of circadian pacemakers
-
Schibler U, Sassone-Corsi P. A web of circadian pacemakers. Cell. 2002;111:919-922
-
(2002)
Cell
, vol.111
, pp. 919-922
-
-
Schibler, U.1
Sassone-Corsi, P.2
-
10
-
-
4544362674
-
Mammalian circadian biology: Elucidating genome-wide levels of temporal organization
-
Lowrey PL, Takahashi JS. Mammalian circadian biology: elucidating genome-wide levels of temporal organization. Annu. Rev. Genomics Hum. Genet. 2004;5:407-441.
-
(2004)
Annu. Rev. Genomics Hum. Genet.
, vol.5
, pp. 407-441
-
-
Lowrey, P.L.1
Takahashi, J.S.2
-
11
-
-
34648836981
-
Neurons and networks in daily rhythms
-
Herzog ED. Neurons and networks in daily rhythms. Nat. Rev. Neurosci. 2007;8:790-802.
-
(2007)
Nat. Rev. Neurosci.
, vol.8
, pp. 790-802
-
-
Herzog, E.D.1
-
12
-
-
0033574429
-
Proliferative defect and embryonic lethality in mice homozygous for a deletion in the p110alpha subunit of phosphoinositide 3-kinase
-
Bi L, Okabe I, Bernard DJ, et al. Proliferative defect and embryonic lethality in mice homozygous for a deletion in the p110alpha subunit of phosphoinositide 3-kinase. J. Biol. Chem. 1999;274:10963-10968.
-
(1999)
J. Biol. Chem.
, vol.274
, pp. 10963-10968
-
-
Bi, L.1
Okabe, I.2
Bernard, D.J.3
-
13
-
-
0036185944
-
Early embryonic lethality in mice deficient in the p110beta catalytic subunit of PI3-kinase
-
Bi L, Okabe I, Bernard DJ, et al. Early embryonic lethality in mice deficient in the p110beta catalytic subunit of PI3-kinase. Mamm. Genome. 2002;13:169-172.
-
(2002)
Mamm. Genome.
, vol.13
, pp. 169-172
-
-
Bi, L.1
Okabe, I.2
Bernard, D.J.3
-
14
-
-
33744990592
-
Critical role for the p110α phosphoinositide-3-OH kinase in growth and metabolic regulation
-
Foukas LC, Claret M, Pearce W, Okkenhaug K, et al. Critical role for the p110α phosphoinositide-3-OH kinase in growth and metabolic regulation. Nature. 2006;441:366-370.
-
(2006)
Nature
, vol.441
, pp. 366-370
-
-
Foukas, L.C.1
Claret, M.2
Pearce, W.3
Okkenhaug, K.4
-
15
-
-
55649084906
-
Phosphoinositide 3-Kinase p110β activity: Key role in metabolism and mammary gland cancer but not development
-
Ciraolo E, Iezzi M, Marone R, et al. Phosphoinositide 3-Kinase p110β activity: key role in metabolism and mammary gland cancer but not development. Sci. Signal. 2008;1:ra3.
-
(2008)
Sci. Signal.
, vol.1
, pp. ra3
-
-
Ciraolo, E.1
Iezzi, M.2
Marone, R.3
-
16
-
-
49649087385
-
Essential roles of PI3K-p110 beta in cell growth, metabolism and tumorigenesis
-
Jia S, Liu Z, Zhang S, et al. Essential roles of PI3K-p110 beta in cell growth, metabolism and tumorigenesis. Nature. 2008;454:776-779.
-
(2008)
Nature
, vol.454
, pp. 776-779
-
-
Jia, S.1
Liu, Z.2
Zhang, S.3
-
17
-
-
77249100829
-
Specific roles of the p110α isoform of phosphatidylinsositol 3-kinase in hepatic insulin signaling and metabolic regulation
-
Sopasakis VR, Liu P, Suzuki R, et al. Specific roles of the p110α isoform of phosphatidylinsositol 3-kinase in hepatic insulin signaling and metabolic regulation. Cell Metab. 2010;11:220-230.
-
(2010)
Cell Metab.
, vol.11
, pp. 220-230
-
-
Sopasakis, V.R.1
Liu, P.2
Suzuki, R.3
-
18
-
-
0032143284
-
Phosphoinositide 3-kinase: The key switch mechanism in insulin signalling
-
Shepherd PR, Withers DJ, Siddle K. Phosphoinositide 3-kinase: the key switch mechanism in insulin signalling. Biochem. J. 1998;333:471-490.
-
(1998)
Biochem. J.
, vol.333
, pp. 471-490
-
-
Shepherd, P.R.1
Withers, D.J.2
Siddle, K.3
-
19
-
-
16244393685
-
Signalling by PI3K isoforms: Insights from gene-targeted mice
-
Vanhaesebroeck B, Ali K, Bilancio A, et al. Signalling by PI3K isoforms: insights from gene-targeted mice. Trends Biochem. Sci. 2005;30:194-204.
-
(2005)
Trends Biochem. Sci.
, vol.30
, pp. 194-204
-
-
Vanhaesebroeck, B.1
Ali, K.2
Bilancio, A.3
-
20
-
-
0032497832
-
Structure and function of phosphoinositide 3-kinases
-
Wymann MP, Pirola L. Structure and function of phosphoinositide 3-kinases. Biochim. Biophys. Acta. 1998;1436:127-150.
-
(1998)
Biochim. Biophys. Acta
, vol.1436
, pp. 127-150
-
-
Wymann, M.P.1
Pirola, L.2
-
21
-
-
67650614337
-
Mini screening of kinase inhibitors affecting period-length of mammalian cellular circadian clock
-
Yagita K, Yamanaka I, Koinuma S, et al. Mini screening of kinase inhibitors affecting period-length of mammalian cellular circadian clock. Acta Histochem. Cytochem. 2009;42:89-93
-
(2009)
Acta Histochem. Cytochem.
, vol.42
, pp. 89-93
-
-
Yagita, K.1
Yamanaka, I.2
Koinuma, S.3
-
22
-
-
70349184395
-
A genome-wide RNAi screen for modifiers of the circadian clock in human cells
-
Zhang EE, Liu AC, Hirota T, et al. A genome-wide RNAi screen for modifiers of the circadian clock in human cells. Cell. 2009;139:199-210.
-
(2009)
Cell
, vol.139
, pp. 199-210
-
-
Zhang, E.E.1
Liu, A.C.2
Hirota, T.3
-
23
-
-
84861908435
-
Real-time monitoring in three-dimensional hepatocytes reveals that insulin acts as a synchronizer for liver clock
-
Yamajuku D, Inagaki T, Haruma T, et al. Real-time monitoring in three-dimensional hepatocytes reveals that insulin acts as a synchronizer for liver clock. Sci. Rep. 2012;2:439.
-
(2012)
Sci. Rep.
, vol.2
, pp. 439
-
-
Yamajuku, D.1
Inagaki, T.2
Haruma, T.3
-
24
-
-
0032511229
-
A serum shock induces circadian gene expression in mammalian tissue culture cells
-
Balsalobre A, Damiola F, Schibler U. A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell. 1998;93:929-937.
-
(1998)
Cell
, vol.93
, pp. 929-937
-
-
Balsalobre, A.1
Damiola, F.2
Schibler, U.3
-
25
-
-
0036209094
-
CREB required for the stability of new and reactivated fear memories
-
Kida S, Josselyn SA, Peña de Ortiz S, et al. CREB required for the stability of new and reactivated fear memories. Nat. Neurosci. 2002;5:348-355.
-
(2002)
Nat. Neurosci.
, vol.5
, pp. 348-355
-
-
Kida, S.1
Josselyn, S.A.2
Peña De Ortiz, S.3
-
26
-
-
33645088922
-
Tight regulation of transgene expression by tetracycline-dependent activator and repressor in brain
-
Uchida S, Sakai S, Furuichi T, et al. Tight regulation of transgene expression by tetracycline-dependent activator and repressor in brain. Genes Brain Behav. 2006;5:96-106.
-
(2006)
Genes Brain Behav
, vol.5
, pp. 96-106
-
-
Uchida, S.1
Sakai, S.2
Furuichi, T.3
-
27
-
-
54049107769
-
Upregulation of calcium/calmodulin-dependent protein kinase IV improves memory formation and rescues memory loss with aging
-
Fukushima H, Maeda R, Suzuki R, et al. Upregulation of calcium/calmodulin-dependent protein kinase IV improves memory formation and rescues memory loss with aging. J. Neurosci. 2008;28:9910-9919.
-
(2008)
J. Neurosci.
, vol.28
, pp. 9910-9919
-
-
Fukushima, H.1
Maeda, R.2
Suzuki, R.3
-
28
-
-
65449154047
-
Transgenic up-regulation of alpha-CaMKII in forebrain leads to increased anxiety-like behaviors and aggression
-
Hasegawa S, Furuichi T, Yoshida T, et al. Transgenic up-regulation of alpha-CaMKII in forebrain leads to increased anxiety-like behaviors and aggression. Mol. Brain. 2009;2:6.
-
(2009)
Mol. Brain.
, vol.2
, pp. 6
-
-
Hasegawa, S.1
Furuichi, T.2
Yoshida, T.3
-
29
-
-
79959306968
-
Upregulation of CREB-mediated transcription enhances both short- and long-term memory
-
Suzuki A, Fukushima H, Mukawa T, et al. Upregulation of CREB-mediated transcription enhances both short- and long-term memory. J. Neurosci. 2011;31:8786-8802.
-
(2011)
J. Neurosci.
, vol.31
, pp. 8786-8802
-
-
Suzuki, A.1
Fukushima, H.2
Mukawa, T.3
-
30
-
-
84856602346
-
Dysfunction of the RAR/RXR signaling pathway in the forebrain impairs hippocampal memory and synaptic plasticity
-
Nomoto M, Takeda Y, Uchida S, et al. Dysfunction of the RAR/RXR signaling pathway in the forebrain impairs hippocampal memory and synaptic plasticity. Mol. Brain. 2012;5:8.
-
(2012)
Mol. Brain.
, vol.5
, pp. 8
-
-
Nomoto, M.1
Takeda, Y.2
Uchida, S.3
-
31
-
-
72449210271
-
CBP/p300 is a cell type-specific modulator of CLOCK/BMAL1-mediated transcription
-
Hosoda H, Kato K, Asano H, et al. CBP/p300 is a cell type-specific modulator of CLOCK/BMAL1-mediated transcription. Mol. Brain. 2009;2:34.
-
(2009)
Mol. Brain.
, vol.2
, pp. 34
-
-
Hosoda, H.1
Kato, K.2
Asano, H.3
-
32
-
-
26944474790
-
Chromatin remodeling is a key mechanism underlying cocaine-induced plasticity in striatum
-
Kumar A, Choi KH, Renthal W, et al. Chromatin remodeling is a key mechanism underlying cocaine-induced plasticity in striatum. Neuron. 2005;48:303-314.
-
(2005)
Neuron.
, vol.48
, pp. 303-314
-
-
Kumar, A.1
Choi, K.H.2
Renthal, W.3
-
33
-
-
33645357786
-
Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action
-
Tsankova NM, Berton O, Renthal W, et al. Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nat. Neurosci. 2006;9:519-525.
-
(2006)
Nat. Neurosci.
, vol.9
, pp. 519-525
-
-
Tsankova, N.M.1
Berton, O.2
Renthal, W.3
-
34
-
-
65549123471
-
HDAC2 negatively regulates memory formation and synaptic plasticity
-
Guan JS, Haggarty SJ, Giacometti E, et al. HDAC2 negatively regulates memory formation and synaptic plasticity. Nature. 2009;459:55-60.
-
(2009)
Nature
, vol.459
, pp. 55-60
-
-
Guan, J.S.1
Haggarty, S.J.2
Giacometti, E.3
-
35
-
-
78751689075
-
Epigenetic status of Gdnf in the ventral striatum determines susceptibility and adaptation to daily stressful events
-
Uchida S, Hara K, Kobayashi A, et al. Epigenetic status of Gdnf in the ventral striatum determines susceptibility and adaptation to daily stressful events. Neuron. 2011;69:359-372.
-
(2011)
Neuron.
, vol.69
, pp. 359-372
-
-
Uchida, S.1
Hara, K.2
Kobayashi, A.3
-
36
-
-
4143088113
-
A BMAL1 mutant with arginine 91 substituted with alanine acts as a dominant negative inhibitor
-
Hosoda H, Motohashi J, Kato H, et al. A BMAL1 mutant with arginine 91 substituted with alanine acts as a dominant negative inhibitor. Gene. 2004;338:235-241.
-
(2004)
Gene.
, vol.338
, pp. 235-241
-
-
Hosoda, H.1
Motohashi, J.2
Kato, H.3
-
37
-
-
33644617485
-
Rhythmic CLOCK-BMAL1 binding to multiple E-box motifs drives circadian Dbp transcription and chromatin transitions
-
Ripperger JA, Schibler U. Rhythmic CLOCK-BMAL1 binding to multiple E-box motifs drives circadian Dbp transcription and chromatin transitions. Nat. Genet. 2006;38:369-374.
-
(2006)
Nat. Genet.
, vol.38
, pp. 369-374
-
-
Ripperger, J.A.1
Schibler, U.2
-
38
-
-
84868097990
-
Circadian Dbp transcription relies on highly dynamic BMAL1-CLOCK interaction with E boxes and requires the proteasome
-
Stratmann M, Suter DM, Molina N, et al. Circadian Dbp transcription relies on highly dynamic BMAL1-CLOCK interaction with E boxes and requires the proteasome. Mol. Cell. 2012;48:277-287.
-
(2012)
Mol. Cell.
, vol.48
, pp. 277-287
-
-
Stratmann, M.1
Suter, D.M.2
Molina, N.3
-
41
-
-
0029587224
-
Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B
-
Cross DA, Alessi DR, Cohen P, et al. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature. 1995;378:785-789.
-
(1995)
Nature.
, vol.378
, pp. 785-789
-
-
Cross, D.A.1
Alessi, D.R.2
Cohen, P.3
-
42
-
-
0038538430
-
Phosphoinositide 3-kinase-dependent activation of Rac
-
Welch HC, Coadwell WJ, Stephens LR, et al. Phosphoinositide 3-kinase-dependent activation of Rac. FEBS Lett. 2003;546:93-97.
-
(2003)
FEBS Lett.
, vol.546
, pp. 93-97
-
-
Welch, H.C.1
Coadwell, W.J.2
Stephens, L.R.3
-
43
-
-
0029070887
-
Selective activation of the JNK signaling cascadeand c-Jun transcriptional activity by the small GTPases Rac and Cdc42Hs
-
Minden A, Lin A, Claret FX, et al. Selective activation of the JNK signaling cascadeand c-Jun transcriptional activity by the small GTPases Rac and Cdc42Hs. Cell. 1995;81:1147-1157.
-
(1995)
Cell.
, vol.81
, pp. 1147-1157
-
-
Minden, A.1
Lin, A.2
Claret, F.X.3
-
44
-
-
0037053314
-
The circadian regulatory proteins BMAL1 and cryptochromes are substrates of casein kinase I&epsi
-
Eide EJ, Vielhaber EL, Hinz WA, et al. The circadian regulatory proteins BMAL1 and cryptochromes are substrates of casein kinase I&epsi. J. Biol. Chem. 2002;277:17248-17254.
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 17248-17254
-
-
Eide, E.J.1
Vielhaber, E.L.2
Hinz, W.A.3
-
45
-
-
23944470712
-
Circadian clock control by SUMOylation of BMAL1
-
Cardone L, Hirayama J, Giordano F, et al. Circadian clock control by SUMOylation of BMAL1. Science. 2005;309:1390-1394.
-
(2005)
Science
, vol.309
, pp. 1390-1394
-
-
Cardone, L.1
Hirayama, J.2
Giordano, F.3
-
46
-
-
64049083872
-
CK2α phosphorylates BMAL1 to regulate the mammalian clock
-
Tamaru T, Hirayama J, Isojima Y, et al. CK2α phosphorylates BMAL1 to regulate the mammalian clock. Nat. Struct. Mol. Biol. 2009;16:446-448.
-
(2009)
Nat. Struct. Mol. Biol.
, vol.16
, pp. 446-448
-
-
Tamaru, T.1
Hirayama, J.2
Isojima, Y.3
-
47
-
-
67650094963
-
Roles of CLOCK phosphorylation in suppression of E-box-dependent transcription
-
Yoshitane H, Takao T, Satomi Y, et al. Roles of CLOCK phosphorylation in suppression of E-box-dependent transcription. Mol. Cell Biol. 2009;29:3675-3686.
-
(2009)
Mol. Cell Biol.
, vol.29
, pp. 3675-3686
-
-
Yoshitane, H.1
Takao, T.2
Satomi, Y.3
-
48
-
-
77649144065
-
Regulation of BMAL1 protein stability and circadian function by GSK3β-mediated phosphorylation
-
Sahar S, Zocchi L, Kinoshita C, et al. Regulation of BMAL1 protein stability and circadian function by GSK3β-mediated phosphorylation. PLoS One. 2010;5:e8561.
-
(2010)
PLoS One
, vol.5
-
-
Sahar, S.1
Zocchi, L.2
Kinoshita, C.3
-
49
-
-
84860489069
-
JNK regulates the photic response of the mammalian circadian clock
-
Yoshitane H, Honma S, Imamura K, et al. JNK regulates the photic response of the mammalian circadian clock. EMBO Rep. 2012;13:455-461.
-
(2012)
EMBO Rep.
, vol.13
, pp. 455-461
-
-
Yoshitane, H.1
Honma, S.2
Imamura, K.3
-
50
-
-
0025319528
-
DBP, a liver-enriched transcriptional activator, is expressed late in ontogeny and its tissue specificity is determined posttranscriptionally
-
Mueller CR, Maire P, Schibler U. DBP, a liver-enriched transcriptional activator, is expressed late in ontogeny and its tissue specificity is determined posttranscriptionally. Cell. 1990;61:279-291.
-
(1990)
Cell
, vol.61
, pp. 279-291
-
-
Mueller, C.R.1
Maire, P.2
Schibler, U.3
-
51
-
-
0034122094
-
Role of DBP in the Circadian Oscillatory Mechanism
-
Yamaguchi S, Mitsui S, Yan L, et al. Role of DBP in the Circadian Oscillatory Mechanism. Mol. Cell Biol. 2000;20:4773-4781.
-
(2000)
Mol. Cell Biol.
, vol.20
, pp. 4773-4781
-
-
Yamaguchi, S.1
Mitsui, S.2
Yan, L.3
-
52
-
-
79960357928
-
Cellular DBP and E4BP4 proteins are critical for determining the period length of the circadian oscillator
-
Yamajuku D, Shibata Y, Kitazawa M, et al. Cellular DBP and E4BP4 proteins are critical for determining the period length of the circadian oscillator. FEBS Lett. 2011;585:2217-2222.
-
(2011)
FEBS Lett.
, vol.585
, pp. 2217-2222
-
-
Yamajuku, D.1
Shibata, Y.2
Kitazawa, M.3
|