-
1
-
-
34250773451
-
Mechanisms of obesity-associated insulin resistance: Many choices on the menu
-
Qatanani, M., and Lazar, M. A. (2007) Mechanisms of obesity-associated insulin resistance: many choices on the menu. Genes Dev. 21, 1443-1455
-
(2007)
Genes Dev.
, vol.21
, pp. 1443-1455
-
-
Qatanani, M.1
Lazar, M.A.2
-
2
-
-
34250803903
-
Fat poetry: A kingdom for PPAR γ
-
Anghel, S. I., and Wahli, W. (2007) Fat poetry: a kingdom for PPAR γ. Cell Res. 17, 486-511
-
(2007)
Cell Res.
, vol.17
, pp. 486-511
-
-
Anghel, S.I.1
Wahli, W.2
-
3
-
-
42449097289
-
Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes
-
Guilherme, A., Virbasius, J. V., Puri, V., and Czech, M. P. (2008) Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat. Rev. Mol. Cell Biol. 9, 367-377
-
(2008)
Nat. Rev. Mol. Cell Biol.
, vol.9
, pp. 367-377
-
-
Guilherme, A.1
Virbasius, J.V.2
Puri, V.3
Czech, M.P.4
-
4
-
-
77949874469
-
Obesity, inflammation, and cardiovascular risk
-
Mathieu, P., Lemieux, I., and Després, J. P. (2010) Obesity, inflammation, and cardiovascular risk. Clin. Pharmacol. Ther. 87, 407-416
-
(2010)
Clin. Pharmacol. Ther.
, vol.87
, pp. 407-416
-
-
Mathieu, P.1
Lemieux, I.2
Després, J.P.3
-
5
-
-
79151484704
-
Adipokines in inflammation and metabolic disease
-
Ouchi, N., Parker, J. L., Lugus, J. J., and Walsh, K. (2011) Adipokines in inflammation and metabolic disease. Nat. Rev. Immunol. 11, 85-97
-
(2011)
Nat. Rev. Immunol.
, vol.11
, pp. 85-97
-
-
Ouchi, N.1
Parker, J.L.2
Lugus, J.J.3
Walsh, K.4
-
6
-
-
8844262660
-
Principles for modulation of the nuclear receptor superfamily
-
Gronemeyer, H., Gustafsson, J. A., and Laudet, V. (2004) Principles for modulation of the nuclear receptor superfamily. Nat. Rev. Drug. Discov. 3, 950-964
-
(2004)
Nat. Rev. Drug. Discov.
, vol.3
, pp. 950-964
-
-
Gronemeyer, H.1
Gustafsson, J.A.2
Laudet, V.3
-
7
-
-
0012473279
-
The nuclear receptor superfamily: The second decade
-
Mangelsdorf, D. J., Thummel, C., Beato, M., Herrlich, P., Schütz, G., Umesono, K., Blumberg, B., Kastner, P., Mark, M., Chambon, P., and Evans, R. M. (1995) The nuclear receptor superfamily: the second decade. Cell 83, 835-839
-
(1995)
Cell
, vol.83
, pp. 835-839
-
-
Mangelsdorf, D.J.1
Thummel, C.2
Beato, M.3
Herrlich, P.4
Schütz, G.5
Umesono, K.6
Blumberg, B.7
Kastner, P.8
Mark, M.9
Chambon, P.10
Evans, R.M.11
-
8
-
-
48249145719
-
Nuclear receptors, metabolism, and the circadian clock
-
Yang, X., Lamia, K. A., and Evans, R. M. (2007) Nuclear receptors, metabolism, and the circadian clock. Cold Spring Harbor Symp. Quant. Biol. 72, 387-394
-
(2007)
Cold Spring Harbor Symp. Quant. Biol.
, vol.72
, pp. 387-394
-
-
Yang, X.1
Lamia, K.A.2
Evans, R.M.3
-
9
-
-
0029150186
-
The monomer-binding orphan receptor Rev-Erb represses transcription as a dimer on a novel direct repeat
-
Harding, H. P., and Lazar, M. A. (1995) The monomer-binding orphan receptor Rev-Erb represses transcription as a dimer on a novel direct repeat. Mol. Cell. Biol. 15, 4791-4802
-
(1995)
Mol. Cell. Biol.
, vol.15
, pp. 4791-4802
-
-
Harding, H.P.1
Lazar, M.A.2
-
10
-
-
0042592941
-
The N-CoR/histone deacetylase 3 complex is required for repression by thyroid hormone receptor
-
Ishizuka, T., and Lazar, M. A. (2003) The N-CoR/histone deacetylase 3 complex is required for repression by thyroid hormone receptor. Mol. Cell. Biol. 23, 5122-5131
-
(2003)
Mol. Cell. Biol.
, vol.23
, pp. 5122-5131
-
-
Ishizuka, T.1
Lazar, M.A.2
-
11
-
-
0029837730
-
A nuclear hormone receptor corepressor mediates transcriptional silencing by receptors with distinct repression domains
-
Zamir, I., Harding, H. P., Atkins, G. B., Hörlein, A., Glass, C. K., Rosenfeld, M. G., and Lazar, M. A. (1996) A nuclear hormone receptor corepressor mediates transcriptional silencing by receptors with distinct repression domains. Mol. Cell. Biol. 16, 5458-5465
-
(1996)
Mol. Cell. Biol.
, vol.16
, pp. 5458-5465
-
-
Zamir, I.1
Harding, H.P.2
Atkins, G.B.3
Hörlein, A.4
Glass, C.K.5
Rosenfeld, M.G.6
Lazar, M.A.7
-
12
-
-
0037178787
-
The orphan nuclear receptor REV-ERBα controls circadian transcription within the positive limb of the mammalian circadian oscillator
-
Preitner, N., Damiola, F., Lopez-Molina, L., Zakany, J., Duboule, D., Albrecht, U., and Schibler, U. (2002) The orphan nuclear receptor REV-ERBα controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 110, 251-260
-
(2002)
Cell
, vol.110
, pp. 251-260
-
-
Preitner, N.1
Damiola, F.2
Lopez-Molina, L.3
Zakany, J.4
Duboule, D.5
Albrecht, U.6
Schibler, U.7
-
13
-
-
84859329911
-
Rev-erbα and Rev-erbβ coordinately protect the circadian clock and normal metabolic function
-
Bugge, A., Feng, D., Everett, L. J., Briggs, E. R., Mullican, S. E., Wang, F., Jager, J., and Lazar, M. A. (2012) Rev-erbα and Rev-erbβ coordinately protect the circadian clock and normal metabolic function. Genes Dev. 26, 657-667
-
(2012)
Genes Dev.
, vol.26
, pp. 657-667
-
-
Bugge, A.1
Feng, D.2
Everett, L.J.3
Briggs, E.R.4
Mullican, S.E.5
Wang, F.6
Jager, J.7
Lazar, M.A.8
-
14
-
-
77955152755
-
Nuclear receptors linking circadian rhythms and cardiometabolic control
-
Duez, H., and Staels, B. (2010) Nuclear receptors linking circadian rhythms and cardiometabolic control. Arterioscler. Thromb. Vasc. Biol. 30, 1529-1534
-
(2010)
Arterioscler. Thromb. Vasc. Biol.
, vol.30
, pp. 1529-1534
-
-
Duez, H.1
Staels, B.2
-
15
-
-
70349764508
-
REV-ERBα participates in circadian SREBP signaling and bile acid homeostasis
-
Le Martelot, G., Claudel, T., Gatfield, D., Schaad, O., Kornmann, B., Lo Sasso, G., Moschetta, A., and Schibler, U. (2009) REV-ERBα participates in circadian SREBP signaling and bile acid homeostasis. PLoS Biol. 7, e1000181
-
(2009)
PLoS Biol.
, vol.7
-
-
Le Martelot, G.1
Claudel, T.2
Gatfield, D.3
Schaad, O.4
Kornmann, B.5
Lo Sasso, G.6
Moschetta, A.7
Schibler, U.8
-
16
-
-
84856019342
-
The nuclear receptor REV-ERBα mediates circadian regulation of innate immunity through selective regulation of inflammatory cytokines
-
Gibbs, J. E., Blaikley, J., Beesley, S., Matthews, L., Simpson, K. D., Boyce, S. H., Farrow, S. N., Else, K. J., Singh, D., Ray, D. W., and Loudon, A. S. (2012) The nuclear receptor REV-ERBα mediates circadian regulation of innate immunity through selective regulation of inflammatory cytokines. Proc. Natl. Acad. Sci. U.S.A. 109, 582-587
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
, pp. 582-587
-
-
Gibbs, J.E.1
Blaikley, J.2
Beesley, S.3
Matthews, L.4
Simpson, K.D.5
Boyce, S.H.6
Farrow, S.N.7
Else, K.J.8
Singh, D.9
Ray, D.W.10
Loudon, A.S.11
-
17
-
-
84882255392
-
Rev-erb-α modulates skeletal muscle oxidative capacity by regulating mitochondrial biogenesis and autophagy
-
Woldt, E., Sebti, Y., Solt, L. A., Duhem, C., Lancel, S., Eeckhoute, J., Hesselink, M. K., Paquet, C., Delhaye, S., Shin, Y., Kamenecka, T. M., Schaart, G., Lefebvre, P., Nevière, R., Burris, T. P., Schrauwen, P., Staels, B., and Duez, H. (2013) Rev-erb-α modulates skeletal muscle oxidative capacity by regulating mitochondrial biogenesis and autophagy. Nat. Med. 19, 1039-1046
-
(2013)
Nat. Med.
, vol.19
, pp. 1039-1046
-
-
Woldt, E.1
Sebti, Y.2
Solt, L.A.3
Duhem, C.4
Lancel, S.5
Eeckhoute, J.6
Hesselink, M.K.7
Paquet, C.8
Delhaye, S.9
Shin, Y.10
Kamenecka, T.M.11
Schaart, G.12
Lefebvre, P.13
Nevière, R.14
Burris, T.P.15
Schrauwen, P.16
Staels, B.17
Duez, H.18
-
18
-
-
84888042813
-
The nuclear receptor Rev-erbα controls circadian thermogenic plasticity
-
Gerhart-Hines, Z., Feng, D., Emmett, M. J., Everett, L. J., Loro, E., Briggs, E. R., Bugge, A., Hou, C., Ferrara, C., Seale, P., Pryma, D. A., Khurana, T. S., and Lazar, M. A. (2013) The nuclear receptor Rev-erbα controls circadian thermogenic plasticity. Nature 503, 410-413
-
(2013)
Nature
, vol.503
, pp. 410-413
-
-
Gerhart-Hines, Z.1
Feng, D.2
Emmett, M.J.3
Everett, L.J.4
Loro, E.5
Briggs, E.R.6
Bugge, A.7
Hou, C.8
Ferrara, C.9
Seale, P.10
Pryma, D.A.11
Khurana, T.S.12
Lazar, M.A.13
-
19
-
-
84897941566
-
Behavioral changes and dopaminergic dysregulation in mice lacking the nuclear receptor Rev-erbα
-
Jager, J., O'Brien, W. T., Manlove, J., Krizman, E. N., Fang, B., Gerhart-Hines, Z., Robinson, M. B., Klein, P. S., and Lazar, M. A. (2014) Behavioral changes and dopaminergic dysregulation in mice lacking the nuclear receptor Rev-erbα. Mol. Endocrinol. 28, 490-498
-
(2014)
Mol. Endocrinol.
, vol.28
, pp. 490-498
-
-
Jager, J.1
O'Brien, W.T.2
Manlove, J.3
Krizman, E.N.4
Fang, B.5
Gerhart-Hines, Z.6
Robinson, M.B.7
Klein, P.S.8
Lazar, M.A.9
-
20
-
-
84857185764
-
Endocrine fibroblast growth factors 15/19 and 21: From feast to famine
-
Potthoff, M. J., Kliewer, S. A., and Mangelsdorf, D. J. (2012) Endocrine fibroblast growth factors 15/19 and 21: from feast to famine. Genes Dev. 26, 312-324
-
(2012)
Genes Dev.
, vol.26
, pp. 312-324
-
-
Potthoff, M.J.1
Kliewer, S.A.2
Mangelsdorf, D.J.3
-
21
-
-
84897109882
-
Inventing new medicines: The FGF21 story
-
Kharitonenkov, A., and Adams, A. C. (2014) Inventing new medicines: the FGF21 story. Mol. Metab. 3, 221-229
-
(2014)
Mol. Metab.
, vol.3
, pp. 221-229
-
-
Kharitonenkov, A.1
Adams, A.C.2
-
22
-
-
20444435873
-
FGF-21 as a novel metabolic regulator
-
Kharitonenkov, A., Shiyanova, T. L., Koester, A., Ford, A. M., Micanovic, R., Galbreath, E. J., Sandusky, G. E., Hammond, L. J., Moyers, J. S., Owens, R. A., Gromada, J., Brozinick, J. T., Hawkins, E. D., Wroblewski, V. J., Li, D. S., Mehrbod, F., Jaskunas, S. R., and Shanafelt, A. B. (2005) FGF-21 as a novel metabolic regulator. J. Clin. Invest. 115, 1627-1635
-
(2005)
J. Clin. Invest.
, vol.115
, pp. 1627-1635
-
-
Kharitonenkov, A.1
Shiyanova, T.L.2
Koester, A.3
Ford, A.M.4
Micanovic, R.5
Galbreath, E.J.6
Sandusky, G.E.7
Hammond, L.J.8
Moyers, J.S.9
Owens, R.A.10
Gromada, J.11
Brozinick, J.T.12
Hawkins, E.D.13
Wroblewski, V.J.14
Li, D.S.15
Mehrbod, F.16
Jaskunas, S.R.17
Shanafelt, A.B.18
-
23
-
-
57349098220
-
Fibroblast growth factor 21 corrects obesity in mice
-
Coskun, T., Bina, H. A., Schneider, M. A., Dunbar, J. D., Hu, C. C., Chen, Y., Moller, D. E., and Kharitonenkov, A. (2008) Fibroblast growth factor 21 corrects obesity in mice. Endocrinology 149, 6018-6027
-
(2008)
Endocrinology
, vol.149
, pp. 6018-6027
-
-
Coskun, T.1
Bina, H.A.2
Schneider, M.A.3
Dunbar, J.D.4
Hu, C.C.5
Chen, Y.6
Moller, D.E.7
Kharitonenkov, A.8
-
24
-
-
33846418834
-
The metabolic state of diabetic monkeys is regulated by fibroblast growth factor-21
-
Kharitonenkov, A., Wroblewski, V. J., Koester, A., Chen, Y. F., Clutinger, C. K., Tigno, X. T., Hansen, B. C., Shanafelt, A. B., and Etgen, G. J. (2007) The metabolic state of diabetic monkeys is regulated by fibroblast growth factor-21. Endocrinology 148, 774-781
-
(2007)
Endocrinology
, vol.148
, pp. 774-781
-
-
Kharitonenkov, A.1
Wroblewski, V.J.2
Koester, A.3
Chen, Y.F.4
Clutinger, C.K.5
Tigno, X.T.6
Hansen, B.C.7
Shanafelt, A.B.8
Etgen, G.J.9
-
25
-
-
33750587755
-
Fibroblast growth factor-21 improves pancreatic β-cell function and survival by activation of extracellular signal-regulated kinase 1/2 and Akt signaling pathways
-
Wente, W., Efanov, A. M., Brenner, M., Kharitonenkov, A., Köster, A., Sandusky, G. E., Sewing, S., Treinies, I., Zitzer, H., and Gromada, J. (2006) Fibroblast growth factor-21 improves pancreatic β-cell function and survival by activation of extracellular signal-regulated kinase 1/2 and Akt signaling pathways. Diabetes 55, 2470-2478
-
(2006)
Diabetes
, vol.55
, pp. 2470-2478
-
-
Wente, W.1
Efanov, A.M.2
Brenner, M.3
Kharitonenkov, A.4
Köster, A.5
Sandusky, G.E.6
Sewing, S.7
Treinies, I.8
Zitzer, H.9
Gromada, J.10
-
26
-
-
69249093921
-
Fibroblast growth factor 21 controls glycemia via regulation of hepatic glucose flux and insulin sensitivity
-
Berglund, E. D., Li, C. Y., Bina, H. A., Lynes, S. E., Michael, M. D., Shanafelt, A. B., Kharitonenkov, A., and Wasserman, D. H. (2009) Fibroblast growth factor 21 controls glycemia via regulation of hepatic glucose flux and insulin sensitivity. Endocrinology 150, 4084-4093
-
(2009)
Endocrinology
, vol.150
, pp. 4084-4093
-
-
Berglund, E.D.1
Li, C.Y.2
Bina, H.A.3
Lynes, S.E.4
Michael, M.D.5
Shanafelt, A.B.6
Kharitonenkov, A.7
Wasserman, D.H.8
-
27
-
-
84863012022
-
FGF21 regulates PGC-1alpha and browning of white adipose tissues in adaptive thermogenesis
-
Fisher, F. M., Kleiner, S., Douris, N., Fox, E. C., Mepani, R. J., Verdeguer, F., Wu, J., Kharitonenkov, A., Flier, J. S., Maratos-Flier, E., and Spiegelman, B. M. (2012) FGF21 regulates PGC-1alpha and browning of white adipose tissues in adaptive thermogenesis. Genes Dev. 26, 271-281
-
(2012)
Genes Dev.
, vol.26
, pp. 271-281
-
-
Fisher, F.M.1
Kleiner, S.2
Douris, N.3
Fox, E.C.4
Mepani, R.J.5
Verdeguer, F.6
Wu, J.7
Kharitonenkov, A.8
Flier, J.S.9
Maratos-Flier, E.10
Spiegelman, B.M.11
-
28
-
-
39149091423
-
FGF-21/FGF-21 receptor interaction and activation is determined by βklotho
-
Kharitonenkov, A., Dunbar, J. D., Bina, H. A., Bright, S., Moyers, J. S., Zhang, C., Ding, L., Micanovic, R., Mehrbod, S. F., Knierman, M. D., Hale, J. E., Coskun, T., and Shanafelt, A. B. (2008) FGF-21/FGF-21 receptor interaction and activation is determined by βKlotho. J. Cell. Physiol. 215, 1-7
-
(2008)
J. Cell. Physiol.
, vol.215
, pp. 1-7
-
-
Kharitonenkov, A.1
Dunbar, J.D.2
Bina, H.A.3
Bright, S.4
Moyers, J.S.5
Zhang, C.6
Ding, L.7
Micanovic, R.8
Mehrbod, S.F.9
Knierman, M.D.10
Hale, J.E.11
Coskun, T.12
Shanafelt, A.B.13
-
29
-
-
34249697012
-
βklotho is required for metabolic activity of fibroblast growth factor 21
-
Ogawa, Y., Kurosu, H., Yamamoto, M., Nandi, A., Rosenblatt, K. P., Goetz, R., Eliseenkova, A. V., Mohammadi, M., and Kuro-o, M. (2007) βKlotho is required for metabolic activity of fibroblast growth factor 21. Proc. Natl. Acad. Sci. U.S.A. 104, 7432-7437
-
(2007)
Proc. Natl. Acad. Sci. U.S.A.
, vol.104
, pp. 7432-7437
-
-
Ogawa, Y.1
Kurosu, H.2
Yamamoto, M.3
Nandi, A.4
Rosenblatt, K.P.5
Goetz, R.6
Eliseenkova, A.V.7
Mohammadi, M.8
Kuro-O, M.9
-
30
-
-
41649109108
-
βklotho is required for fibroblast growth factor (FGF) 21 signaling through FGF receptor (FGFR) 1c and FGFR3c
-
Suzuki, M., Uehara, Y., Motomura-Matsuzaka, K., Oki, J., Koyama, Y., Kimura, M., Asada, M., Komi-Kuramochi, A., Oka, S., and Imamura, T. (2008) βKlotho is required for fibroblast growth factor (FGF) 21 signaling through FGF receptor (FGFR) 1c and FGFR3c. Mol. Endocrinol. 22, 1006-1014
-
(2008)
Mol. Endocrinol.
, vol.22
, pp. 1006-1014
-
-
Suzuki, M.1
Uehara, Y.2
Motomura-Matsuzaka, K.3
Oki, J.4
Koyama, Y.5
Kimura, M.6
Asada, M.7
Komi-Kuramochi, A.8
Oka, S.9
Imamura, T.10
-
31
-
-
77957376253
-
Research resource: Comprehensive expression atlas of the fibroblast growth factor system in adult mouse
-
Fon Tacer, K., Bookout, A. L., Ding, X., Kurosu, H., John, G. B., Wang, L., Goetz, R., Mohammadi, M., Kuro-o, M., Mangelsdorf, D. J., and Kliewer, S. A. (2010) Research resource: comprehensive expression atlas of the fibroblast growth factor system in adult mouse. Mol. Endocrinol. 24, 2050-2064
-
(2010)
Mol. Endocrinol.
, vol.24
, pp. 2050-2064
-
-
Fon Tacer, K.1
Bookout, A.L.2
Ding, X.3
Kurosu, H.4
John, G.B.5
Wang, L.6
Goetz, R.7
Mohammadi, M.8
Kuro-O, M.9
Mangelsdorf, D.J.10
Kliewer, S.A.11
-
32
-
-
84865741904
-
βklotho is required for fibroblast growth factor 21 effects on growth and metabolism
-
Ding, X., Boney-Montoya, J., Owen, B. M., Bookout, A. L., Coate, K. C., Mangelsdorf, D. J., and Kliewer, S. A. (2012) βKlotho is required for fibroblast growth factor 21 effects on growth and metabolism. Cell Metab. 16, 387-393
-
(2012)
Cell Metab.
, vol.16
, pp. 387-393
-
-
Ding, X.1
Boney-Montoya, J.2
Owen, B.M.3
Bookout, A.L.4
Coate, K.C.5
Mangelsdorf, D.J.6
Kliewer, S.A.7
-
33
-
-
84905679771
-
The breadth of FGF21's metabolic actions are governed by FGFR1 in adipose tissue
-
Adams, A. C., Yang, C., Coskun, T., Cheng, C. C., Gimeno, R. E., Luo, Y., and Kharitonenkov, A. (2012) The breadth of FGF21's metabolic actions are governed by FGFR1 in adipose tissue. Mol. Metab. 2, 31-37
-
(2012)
Mol. Metab.
, vol.2
, pp. 31-37
-
-
Adams, A.C.1
Yang, C.2
Coskun, T.3
Cheng, C.C.4
Gimeno, R.E.5
Luo, Y.6
Kharitonenkov, A.7
-
34
-
-
83655165300
-
Amelioration of type 2 diabetes by antibody-mediated activation of fibroblast growth factor receptor 1
-
Wu, A. L., Kolumam, G., Stawicki, S., Chen, Y., Li, J., Zavala-Solorio, J., Phamluong, K., Feng, B., Li, L., Marsters, S., Kates, L., van Bruggen, N., Leabman, M., Wong, A., West, D., Stern, H., Luis, E., Kim, H. S., Yansura, D., Peterson, A. S., Filvaroff, E., Wu, Y., and Sonoda, J. (2011) Amelioration of type 2 diabetes by antibody-mediated activation of fibroblast growth factor receptor 1. Sci. Transl. Med. 3, 113ra126
-
(2011)
Sci. Transl. Med.
, vol.3
, pp. 113ra126
-
-
Wu, A.L.1
Kolumam, G.2
Stawicki, S.3
Chen, Y.4
Li, J.5
Zavala-Solorio, J.6
Phamluong, K.7
Feng, B.8
Li, L.9
Marsters, S.10
Kates, L.11
Van Bruggen, N.12
Leabman, M.13
Wong, A.14
West, D.15
Stern, H.16
Luis, E.17
Kim, H.S.18
Yansura, D.19
Peterson, A.S.20
Filvaroff, E.21
Wu, Y.22
Sonoda, J.23
more..
-
35
-
-
66149127299
-
Re-expression of GATA2 cooperates with peroxisome proliferator-activated receptor-γ depletion to revert the adipocyte phenotype
-
Schupp, M., Cristancho, A. G., Lefterova, M. I., Hanniman, E. A., Briggs, E. R., Steger, D. J., Qatanani, M., Curtin, J. C., Schug, J., Ochsner, S. A., McKenna, N. J., and Lazar, M. A. (2009) Re-expression of GATA2 cooperates with peroxisome proliferator-activated receptor-γ depletion to revert the adipocyte phenotype. J. Biol. Chem. 284, 9458-9464
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 9458-9464
-
-
Schupp, M.1
Cristancho, A.G.2
Lefterova, M.I.3
Hanniman, E.A.4
Briggs, E.R.5
Steger, D.J.6
Qatanani, M.7
Curtin, J.C.8
Schug, J.9
Ochsner, S.A.10
McKenna, N.J.11
Lazar, M.A.12
-
36
-
-
62349130698
-
Ultrafast and memory-efficient alignment of short DNA sequences to the human genome
-
Langmead, B., Trapnell, C., Pop, M., and Salzberg, S. L. (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25
-
(2009)
Genome Biol.
, vol.10
, pp. R25
-
-
Langmead, B.1
Trapnell, C.2
Pop, M.3
Salzberg, S.L.4
-
37
-
-
77952567987
-
Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities
-
Heinz, S., Benner, C., Spann, N., Bertolino, E., Lin, Y. C., Laslo, P., Cheng, J. X., Murre, C., Singh, H., and Glass, C. K. (2010) Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576-589
-
(2010)
Mol. Cell
, vol.38
, pp. 576-589
-
-
Heinz, S.1
Benner, C.2
Spann, N.3
Bertolino, E.4
Lin, Y.C.5
Laslo, P.6
Cheng, J.X.7
Murre, C.8
Singh, H.9
Glass, C.K.10
-
38
-
-
80052022462
-
Cistrome: An integrative platform for transcriptional regulation studies
-
Liu, T., Ortiz, J. A., Taing, L., Meyer, C. A., Lee, B., Zhang, Y., Shin, H., Wong, S. S., Ma, J., Lei, Y., Pape, U. J., Poidinger, M., Chen, Y., Yeung, K., Brown, M., Turpaz, Y., and Liu, X. S. (2011) Cistrome: an integrative platform for transcriptional regulation studies. Genome Biol. 12, R83
-
(2011)
Genome Biol.
, vol.12
, pp. R83
-
-
Liu, T.1
Ortiz, J.A.2
Taing, L.3
Meyer, C.A.4
Lee, B.5
Zhang, Y.6
Shin, H.7
Wong, S.S.8
Ma, J.9
Lei, Y.10
Pape, U.J.11
Poidinger, M.12
Chen, Y.13
Yeung, K.14
Brown, M.15
Turpaz, Y.16
Liu, X.S.17
-
39
-
-
79952529158
-
A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism
-
Feng, D., Liu, T., Sun, Z., Bugge, A., Mullican, S. E., Alenghat, T., Liu, X. S., and Lazar, M. A. (2011) A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism. Science 331, 1315-1319
-
(2011)
Science
, vol.331
, pp. 1315-1319
-
-
Feng, D.1
Liu, T.2
Sun, Z.3
Bugge, A.4
Mullican, S.E.5
Alenghat, T.6
Liu, X.S.7
Lazar, M.A.8
-
40
-
-
79952700353
-
Cross species comparison of C/EBPα and PPARβ profiles in mouse and human adipocytes reveals interdependent retention of binding sites
-
Schmidt, S. F., Jørgensen, M., Chen, Y., Nielsen, R., Sandelin, A., and Mandrup, S. (2011) Cross species comparison of C/EBPα and PPARβ profiles in mouse and human adipocytes reveals interdependent retention of binding sites. BMC Genomics 12, 152
-
(2011)
BMC Genomics
, vol.12
, pp. 152
-
-
Schmidt, S.F.1
Jørgensen, M.2
Chen, Y.3
Nielsen, R.4
Sandelin, A.5
Mandrup, S.6
-
41
-
-
84934325147
-
Genetic variation determines PPARγ function and anti-diabetic drug response in vivo
-
Soccio, R. E., Chen, E. R., Rajapurkar, S. R., Safabakhsh, P., Marinis, J. M., Dispirito, J. R., Emmett, M. J., Briggs, E. R., Fang, B., Everett, L. J., Lim, H. W., Won, K. J., Steger, D. J., Wu, Y., Civelek, M., Voight, B. F., and Lazar, M. A. (2015) Genetic variation determines PPARγ function and anti-diabetic drug response in vivo. Cell 162, 33-44
-
(2015)
Cell
, vol.162
, pp. 33-44
-
-
Soccio, R.E.1
Chen, E.R.2
Rajapurkar, S.R.3
Safabakhsh, P.4
Marinis, J.M.5
Dispirito, J.R.6
Emmett, M.J.7
Briggs, E.R.8
Fang, B.9
Everett, L.J.10
Lim, H.W.11
Won, K.J.12
Steger, D.J.13
Wu, Y.14
Civelek, M.15
Voight, B.F.16
Lazar, M.A.17
-
42
-
-
84923031534
-
Nutrient-sensing nuclear receptors coordinate autophagy
-
Lee, J. M., Wagner, M., Xiao, R., Kim, K. H., Feng, D., Lazar, M. A., and Moore, D. D. (2014) Nutrient-sensing nuclear receptors coordinate autophagy. Nature 516, 112-115
-
(2014)
Nature
, vol.516
, pp. 112-115
-
-
Lee, J.M.1
Wagner, M.2
Xiao, R.3
Kim, K.H.4
Feng, D.5
Lazar, M.A.6
Moore, D.D.7
-
43
-
-
84944180425
-
PRDM16 binds MED1 and controls chromatin architecture to determine a brown fat transcriptional program
-
Harms, M. J., Lim, H. W., Ho, Y., Shapira, S. N., Ishibashi, J., Rajakumari, S., Steger, D. J., Lazar, M. A., Won, K. J., and Seale, P. (2015) PRDM16 binds MED1 and controls chromatin architecture to determine a brown fat transcriptional program. Genes Dev. 29, 298-307
-
(2015)
Genes Dev.
, vol.29
, pp. 298-307
-
-
Harms, M.J.1
Lim, H.W.2
Ho, Y.3
Shapira, S.N.4
Ishibashi, J.5
Rajakumari, S.6
Steger, D.J.7
Lazar, M.A.8
Won, K.J.9
Seale, P.10
-
44
-
-
84911865436
-
Circadian enhancers coordinate multiple phases of rhythmic gene transcription in vivo
-
Fang, B., Everett, L. J., Jager, J., Briggs, E., Armour, S. M., Feng, D., Roy, A., Gerhart-Hines, Z., Sun, Z., and Lazar, M. A. (2014) Circadian enhancers coordinate multiple phases of rhythmic gene transcription in vivo. Cell 159, 1140-1152
-
(2014)
Cell
, vol.159
, pp. 1140-1152
-
-
Fang, B.1
Everett, L.J.2
Jager, J.3
Briggs, E.4
Armour, S.M.5
Feng, D.6
Roy, A.7
Gerhart-Hines, Z.8
Sun, Z.9
Lazar, M.A.10
-
45
-
-
78651271733
-
Integrative genomics viewer
-
Robinson, J. T., Thorvaldsdóttir, H., Winckler, W., Guttman, M., Lander, E. S., Getz, G., and Mesirov, J. P. (2011) Integrative genomics viewer. Nat. Biotechnol. 29, 24-26
-
(2011)
Nat. Biotechnol.
, vol.29
, pp. 24-26
-
-
Robinson, J.T.1
Thorvaldsdóttir, H.2
Winckler, W.3
Guttman, M.4
Lander, E.S.5
Getz, G.6
Mesirov, J.P.7
-
46
-
-
84899710827
-
Anti-diabetic rosiglitazone remodels the adipocyte transcriptome by redistributing transcription to PPARγ-driven enhancers
-
Step, S. E., Lim, H. W., Marinis, J. M., Prokesch, A., Steger, D. J., You, S. H., Won, K. J., and Lazar, M. A. (2014) Anti-diabetic rosiglitazone remodels the adipocyte transcriptome by redistributing transcription to PPARγ-driven enhancers. Genes Dev. 28, 1018-1028
-
(2014)
Genes Dev.
, vol.28
, pp. 1018-1028
-
-
Step, S.E.1
Lim, H.W.2
Marinis, J.M.3
Prokesch, A.4
Steger, D.J.5
You, S.H.6
Won, K.J.7
Lazar, M.A.8
-
47
-
-
84870272334
-
FGF21 requires βklotho to act in vivo
-
Adams, A. C., Cheng, C. C., Coskun, T., and Kharitonenkov, A. (2012) FGF21 requires βklotho to act in vivo. PLoS ONE 7, e49977
-
(2012)
PLoS ONE
, vol.7
-
-
Adams, A.C.1
Cheng, C.C.2
Coskun, T.3
Kharitonenkov, A.4
-
48
-
-
84933557747
-
Gene regulation: Discrete functions of nuclear receptor Rev-erbα couple metabolism to the clock
-
Zhang, Y., Fang, B., Emmett, M. J., Damle, M., Sun, Z., Feng, D., Armour, S. M., Remsberg, J. R., Jager, J., Soccio, R. E., Steger, D. J., and Lazar, M. A. (2015) Gene regulation: discrete functions of nuclear receptor Rev-erbα couple metabolism to the clock. Science 348, 1488-1492
-
(2015)
Science
, vol.348
, pp. 1488-1492
-
-
Zhang, Y.1
Fang, B.2
Emmett, M.J.3
Damle, M.4
Sun, Z.5
Feng, D.6
Armour, S.M.7
Remsberg, J.R.8
Jager, J.9
Soccio, R.E.10
Steger, D.J.11
Lazar, M.A.12
-
49
-
-
57849109058
-
Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters
-
Core, L. J., Waterfall, J. J., and Lis, J. T. (2008) Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters. Science 322, 1845-1848
-
(2008)
Science
, vol.322
, pp. 1845-1848
-
-
Core, L.J.1
Waterfall, J.J.2
Lis, J.T.3
-
50
-
-
84881171344
-
Enhancer transcripts mark active estrogen receptor binding sites
-
Hah, N., Murakami, S., Nagari, A., Danko, C. G., and Kraus, W. L. (2013) Enhancer transcripts mark active estrogen receptor binding sites. Genome Res. 23, 1210-1223
-
(2013)
Genome Res.
, vol.23
, pp. 1210-1223
-
-
Hah, N.1
Murakami, S.2
Nagari, A.3
Danko, C.G.4
Kraus, W.L.5
-
51
-
-
77952367798
-
Widespread transcription at neuronal activityregulated enhancers
-
Kim, T. K., Hemberg, M., Gray, J. M., Costa, A. M., Bear, D. M., Wu, J., Harmin, D. A., Laptewicz, M., Barbara-Haley, K., Kuersten, S., Markenscoff-Papadimitriou, E., Kuhl, D., Bito, H., Worley, P. F., Kreiman, G., and Greenberg, M. E. (2010) Widespread transcription at neuronal activityregulated enhancers. Nature 465, 182-187
-
(2010)
Nature
, vol.465
, pp. 182-187
-
-
Kim, T.K.1
Hemberg, M.2
Gray, J.M.3
Costa, A.M.4
Bear, D.M.5
Wu, J.6
Harmin, D.A.7
Laptewicz, M.8
Barbara-Haley, K.9
Kuersten, S.10
Markenscoff-Papadimitriou, E.11
Kuhl, D.12
Bito, H.13
Worley, P.F.14
Kreiman, G.15
Greenberg, M.E.16
-
52
-
-
78650758676
-
Histone H3K27ac separates active from poised enhancers and predicts developmental state
-
Creyghton, M. P., Cheng, A. W., Welstead, G. G., Kooistra, T., Carey, B. W., Steine, E. J., Hanna, J., Lodato, M. A., Frampton, G. M., Sharp, P. A., Boyer, L. A., Young, R. A., and Jaenisch, R. (2010) Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc. Natl. Acad. Sci. U.S.A. 107, 21931-21936
-
(2010)
Proc. Natl. Acad. Sci. U.S.A.
, vol.107
, pp. 21931-21936
-
-
Creyghton, M.P.1
Cheng, A.W.2
Welstead, G.G.3
Kooistra, T.4
Carey, B.W.5
Steine, E.J.6
Hanna, J.7
Lodato, M.A.8
Frampton, G.M.9
Sharp, P.A.10
Boyer, L.A.11
Young, R.A.12
Jaenisch, R.13
-
53
-
-
0028015713
-
Peroxisome proliferator-activated receptor (PPAR) γ: Adipose-predominant expression and induction early in adipocyte differentiation
-
Chawla, A., Schwarz, E. J., Dimaculangan, D. D., and Lazar, M. A. (1994) Peroxisome proliferator-activated receptor (PPAR) γ: adipose-predominant expression and induction early in adipocyte differentiation. Endocrinology 135, 798-800
-
(1994)
Endocrinology
, vol.135
, pp. 798-800
-
-
Chawla, A.1
Schwarz, E.J.2
Dimaculangan, D.D.3
Lazar, M.A.4
-
54
-
-
0028180070
-
MPPAR γ 2: Tissue-specific regulator of an adipocyte enhancer
-
Tontonoz, P., Hu, E., Graves, R. A., Budavari, A. I., and Spiegelman, B. M. (1994) mPPAR γ 2: tissue-specific regulator of an adipocyte enhancer. Genes Dev. 8, 1224-1234
-
(1994)
Genes Dev.
, vol.8
, pp. 1224-1234
-
-
Tontonoz, P.1
Hu, E.2
Graves, R.A.3
Budavari, A.I.4
Spiegelman, B.M.5
-
55
-
-
0028641559
-
Stimulation of adipogenesis in fibroblasts by PPAR γ 2, a lipid-activated transcription factor
-
Tontonoz, P., Hu, E., and Spiegelman, B. M. (1994) Stimulation of adipogenesis in fibroblasts by PPAR γ 2, a lipid-activated transcription factor. Cell 79, 1147-1156
-
(1994)
Cell
, vol.79
, pp. 1147-1156
-
-
Tontonoz, P.1
Hu, E.2
Spiegelman, B.M.3
-
56
-
-
84864755952
-
The nuclear receptor REV-ERBα is required for the daily balance of carbohydrate and lipid metabolism
-
Delezie, J., Dumont, S., Dardente, H., Oudart, H., Gréchez-Cassiau, A., Klosen, P., Teboul, M., Delaunay, F., Pévet, P., and Challet, E. (2012) The nuclear receptor REV-ERBα is required for the daily balance of carbohydrate and lipid metabolism. FASEB J. 26, 3321-3335
-
(2012)
FASEB J.
, vol.26
, pp. 3321-3335
-
-
Delezie, J.1
Dumont, S.2
Dardente, H.3
Oudart, H.4
Gréchez-Cassiau, A.5
Klosen, P.6
Teboul, M.7
Delaunay, F.8
Pévet, P.9
Challet, E.10
-
57
-
-
84879694221
-
Rev-Erbs repress macrophage gene expression by inhibiting enhancerdirected transcription
-
Lam, M. T., Cho, H., Lesch, H. P., Gosselin, D., Heinz, S., Tanaka-Oishi, Y., Benner, C., Kaikkonen, M. U., Kim, A. S., Kosaka, M., Lee, C. Y., Watt, A., Grossman, T. R., Rosenfeld, M. G., Evans, R. M., and Glass, C. K. (2013) Rev-Erbs repress macrophage gene expression by inhibiting enhancerdirected transcription. Nature 498, 511-515
-
(2013)
Nature
, vol.498
, pp. 511-515
-
-
Lam, M.T.1
Cho, H.2
Lesch, H.P.3
Gosselin, D.4
Heinz, S.5
Tanaka-Oishi, Y.6
Benner, C.7
Kaikkonen, M.U.8
Kim, A.S.9
Kosaka, M.10
Lee, C.Y.11
Watt, A.12
Grossman, T.R.13
Rosenfeld, M.G.14
Evans, R.M.15
Glass, C.K.16
-
58
-
-
84883260199
-
Fibroblast growth factor 21 is not required for the antidiabetic actions of the thiazoladinediones
-
Adams, A. C., Coskun, T., Cheng, C. C., O'Farrell, L. S., Dubois, S. L., and Kharitonenkov, A. (2013) Fibroblast growth factor 21 is not required for the antidiabetic actions of the thiazoladinediones. Mol. Metab. 2, 205-214
-
(2013)
Mol. Metab.
, vol.2
, pp. 205-214
-
-
Adams, A.C.1
Coskun, T.2
Cheng, C.C.3
O'Farrell, L.S.4
Dubois, S.L.5
Kharitonenkov, A.6
-
59
-
-
33845407972
-
Molecular determinants of FGF-21 activity-synergy and cross-talk with PPARβ signaling
-
Moyers, J. S., Shiyanova, T. L., Mehrbod, F., Dunbar, J. D., Noblitt, T. W., Otto, K. A., Reifel-Miller, A., and Kharitonenkov, A. (2007) Molecular determinants of FGF-21 activity-synergy and cross-talk with PPARβ signaling. J. Cell. Physiol. 210, 1-6
-
(2007)
J. Cell. Physiol.
, vol.210
, pp. 1-6
-
-
Moyers, J.S.1
Shiyanova, T.L.2
Mehrbod, F.3
Dunbar, J.D.4
Noblitt, T.W.5
Otto, K.A.6
Reifel-Miller, A.7
Kharitonenkov, A.8
-
60
-
-
78449244924
-
Transcriptional repressor E4-binding protein 4 (E4BP4) regulates metabolic hormone fibroblast growth factor 21 (FGF21) during circadian cycles and feeding
-
Tong, X., Muchnik, M., Chen, Z., Patel, M., Wu, N., Joshi, S., Rui, L., Lazar, M. A., and Yin, L. (2010) Transcriptional repressor E4-binding protein 4 (E4BP4) regulates metabolic hormone fibroblast growth factor 21 (FGF21) during circadian cycles and feeding. J. Biol. Chem. 285, 36401-36409
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 36401-36409
-
-
Tong, X.1
Muchnik, M.2
Chen, Z.3
Patel, M.4
Wu, N.5
Joshi, S.6
Rui, L.7
Lazar, M.A.8
Yin, L.9
-
61
-
-
77952334180
-
Regulation of FGF21 expression and secretion by retinoic acid receptor-related orphan receptor α
-
Wang, Y., Solt, L. A., and Burris, T. P. (2010) Regulation of FGF21 expression and secretion by retinoic acid receptor-related orphan receptor α. J. Biol. Chem. 285, 15668-15673
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 15668-15673
-
-
Wang, Y.1
Solt, L.A.2
Burris, T.P.3
-
62
-
-
76049093949
-
PGC-1α negatively regulates hepatic FGF21 expression by modulating the heme/Rev-Erbα axis
-
Estall, J. L., Ruas, J. L., Choi, C. S., Laznik, D., Badman, M., Maratos-Flier, E., Shulman, G. I., and Spiegelman, B. M. (2009) PGC-1α negatively regulates hepatic FGF21 expression by modulating the heme/Rev-Erbα axis. Proc. Natl. Acad. Sci. U.S.A. 106, 22510-22515
-
(2009)
Proc. Natl. Acad. Sci. U.S.A.
, vol.106
, pp. 22510-22515
-
-
Estall, J.L.1
Ruas, J.L.2
Choi, C.S.3
Laznik, D.4
Badman, M.5
Maratos-Flier, E.6
Shulman, G.I.7
Spiegelman, B.M.8
-
63
-
-
84863637593
-
FGF21 promotes metabolic homeostasis via white adipose and leptin in mice
-
Véniant, M. M., Hale, C., Helmering, J., Chen, M. M., Stanislaus, S., Busby, J., Vonderfecht, S., Xu, J., and Lloyd, D. J. (2012) FGF21 promotes metabolic homeostasis via white adipose and leptin in mice. PLoS ONE 7, e40164
-
(2012)
PLoS ONE
, vol.7
-
-
Véniant, M.M.1
Hale, C.2
Helmering, J.3
Chen, M.M.4
Stanislaus, S.5
Busby, J.6
Vonderfecht, S.7
Xu, J.8
Lloyd, D.J.9
|