메뉴 건너뛰기




Volumn , Issue , 2014, Pages 320-327

Max-margin Boltzmann machines for object segmentation

Author keywords

Boltzmann Machines; Max Margin methods; Object Segmentation; Structured Output Prediction

Indexed keywords

PATTERN RECOGNITION;

EID: 84911438661     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2014.48     Document Type: Conference Paper
Times cited : (25)

References (28)
  • 1
    • 79953048649 scopus 로고    scopus 로고
    • Contour detection and hierarchical image segmentation
    • P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik. Contour detection and hierarchical image segmentation. PAMI, 33(5):898-916, 2011.
    • (2011) PAMI , vol.33 , Issue.5 , pp. 898-916
    • Arbelaez, P.1    Maire, M.2    Fowlkes, C.3    Malik, J.4
  • 2
    • 80052894155 scopus 로고    scopus 로고
    • Kernelized structural svm learning for supervised object segmentation
    • L. Bertelli, T. Yu, D. Vu, and B. Gokturk. Kernelized structural svm learning for supervised object segmentation. In CVPR, 2011.
    • (2011) CVPR
    • Bertelli, L.1    Yu, T.2    Vu, D.3    Gokturk, B.4
  • 4
    • 80052880727 scopus 로고    scopus 로고
    • Shape-based pedestrian parsing
    • Y. Bo and C. Fowlkes. Shape-based pedestrian parsing. In CVPR, 2011.
    • (2011) CVPR
    • Bo, Y.1    Fowlkes, C.2
  • 5
    • 0042004575 scopus 로고    scopus 로고
    • Class-specific, top-down segmentation
    • E. Borenstein and S. Ullman. Class-specific, top-down segmentation. In ECCV, 2002.
    • (2002) ECCV
    • Borenstein, E.1    Ullman, S.2
  • 6
    • 0034844730 scopus 로고    scopus 로고
    • Interactive graph cuts for optimal boundary & region segmentation of objects in n-d images
    • Y. Y. Boykov and M.-P. Jolly. Interactive graph cuts for optimal boundary & region segmentation of objects in n-d images. In ICCV, 2001.
    • (2001) ICCV
    • Boykov, Y.Y.1    Jolly, M.-P.2
  • 7
    • 84887344821 scopus 로고    scopus 로고
    • Deep learning shape priors for object segmentation
    • F. Chen, H. Yu, R. Hu, and X. Zeng. Deep learning shape priors for object segmentation. In CVPR, 2013.
    • (2013) CVPR
    • Chen, F.1    Yu, H.2    Hu, R.3    Zeng, X.4
  • 8
    • 84866707640 scopus 로고    scopus 로고
    • The shape Boltzmann machine: A strong model of object shape
    • S. M. A. Eslami, N. Heess, and J. Winn. The shape Boltzmann machine: a strong model of object shape. In CVPR, 2012.
    • (2012) CVPR
    • Eslami, S.M.A.1    Heess, N.2    Winn, J.3
  • 9
    • 84877746977 scopus 로고    scopus 로고
    • A generative model for parts-based object segmentation
    • S. M. A. Eslami and C. K. I. Williams. A generative model for parts-based object segmentation. In NIPS, 2012.
    • (2012) NIPS
    • Eslami, S.M.A.1    Williams, C.K.I.2
  • 10
    • 0013344078 scopus 로고    scopus 로고
    • Training products of experts by minimizing contrastive divergence
    • G. E. Hinton. Training products of experts by minimizing contrastive divergence. Neural Computation, 14(8):1771-1800, 2002.
    • (2002) Neural Computation , vol.14 , Issue.8 , pp. 1771-1800
    • Hinton, G.E.1
  • 11
    • 69549111057 scopus 로고    scopus 로고
    • Cutting-plane training of structural svms
    • T. Joachims, T. Finley, and C.-N. Yu. Cutting-plane training of structural svms. Machine Learning, 77(1):27-59, 2009.
    • (2009) Machine Learning , vol.77 , Issue.1 , pp. 27-59
    • Joachims, T.1    Finley, T.2    Yu, C.-N.3
  • 12
    • 84887349828 scopus 로고    scopus 로고
    • Augmenting CRFs with Boltzmann Machine shape priors for image labeling
    • A. Kae, K. Sohn, H. Lee, and E. Learned-Miller. Augmenting CRFs with Boltzmann Machine shape priors for image labeling. In CVPR, 2013.
    • (2013) CVPR
    • Kae, A.1    Sohn, K.2    Lee, H.3    Learned-Miller, E.4
  • 13
    • 51949098412 scopus 로고    scopus 로고
    • Robust higher order potentials for enforcing label consistency
    • P. Kohli, L. Ladicky, and P. H. S. Torr. Robust higher order potentials for enforcing label consistency. In CVPR, 2008.
    • (2008) CVPR
    • Kohli, P.1    Ladicky, L.2    Torr, P.H.S.3
  • 15
    • 0142192295 scopus 로고    scopus 로고
    • Conditional random fields: Probabilistic models for segmenting and labeling sequence data
    • J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In ICML, 2001.
    • (2001) ICML
    • Lafferty, J.1    McCallum, A.2    Pereira, F.3
  • 16
    • 84887360102 scopus 로고    scopus 로고
    • Exploring compositional high order pattern potentials for structured output learning
    • Y. Li, D. Tarlow, and R. Zemel. Exploring compositional high order pattern potentials for structured output learning. In CVPR, 2013.
    • (2013) CVPR
    • Li, Y.1    Tarlow, D.2    Zemel, R.3
  • 17
    • 78751690032 scopus 로고    scopus 로고
    • Large margin boltzmann machines
    • X. Miao and R. P. N. Rao. Large margin boltzmann machines. In IJCAI, 2009.
    • (2009) IJCAI
    • Miao, X.1    Rao, R.P.N.2
  • 18
    • 80053146489 scopus 로고    scopus 로고
    • Conditional restricted Boltzmann machines for structured output prediction
    • V. Mnih, H. Larochelle, and G. E. Hinton. Conditional restricted Boltzmann machines for structured output prediction. In UAI, 2011.
    • (2011) UAI
    • Mnih, V.1    Larochelle, H.2    Hinton, G.E.3
  • 19
    • 70450213193 scopus 로고    scopus 로고
    • Minimizing sparse higher order energy functions of discrete variables
    • C. Rother, P. Kohli, W. Feng, and J. Jia. Minimizing sparse higher order energy functions of discrete variables. In CVPR, 2009.
    • (2009) CVPR
    • Rother, C.1    Kohli, P.2    Feng, W.3    Jia, J.4
  • 21
    • 84911364354 scopus 로고    scopus 로고
    • Curvature prior for MRF-based segmentation and shape inpainting
    • A. Shekhovtsov, P. Kohli, and C. Rother. Curvature prior for MRF-based segmentation and shape inpainting. In DAGM, 2012.
    • (2012) DAGM
    • Shekhovtsov, A.1    Kohli, P.2    Rother, C.3
  • 22
    • 70049109461 scopus 로고    scopus 로고
    • Learning CRFs using graph cuts
    • M. Szummer, P. Kohli, and D. Hoiem. Learning CRFs using graph cuts. In ECCV, 2008.
    • (2008) ECCV
    • Szummer, M.1    Kohli, P.2    Hoiem, D.3
  • 24
    • 24944537843 scopus 로고    scopus 로고
    • Large margin methods for structured and interdependent output variables
    • I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun. Large margin methods for structured and interdependent output variables. JMLR, 6:1453-1484, 2005.
    • (2005) JMLR , vol.6 , pp. 1453-1484
    • Tsochantaridis, I.1    Joachims, T.2    Hofmann, T.3    Altun, Y.4
  • 25
    • 77955996870 scopus 로고    scopus 로고
    • Locality-constrained linear coding for image classification
    • J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong. Locality-constrained linear coding for image classification. In CVPR, 2010.
    • (2010) CVPR
    • Wang, J.1    Yang, J.2    Yu, K.3    Lv, F.4    Huang, T.5    Gong, Y.6
  • 26
    • 57849151524 scopus 로고    scopus 로고
    • Object detection combining recognition and segmentation
    • L. Wang, J. Shi, G. Song, and I.-F. Shen. Object detection combining recognition and segmentation. In ACCV, 2007.
    • (2007) ACCV
    • Wang, L.1    Shi, J.2    Song, G.3    Shen, I.-F.4
  • 28
    • 71149086466 scopus 로고    scopus 로고
    • Learning structural svms with latent variables
    • C.-N. J. Yu and T. Joachims. Learning structural svms with latent variables. In ICML, 2009.
    • (2009) ICML
    • Yu, C.-N.J.1    Joachims, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.