메뉴 건너뛰기




Volumn , Issue , 2013, Pages 2019-2026

Augmenting crfs with boltzmann machine shape priors for image labeling

Author keywords

attributes; deep learning; face processing; segmentation

Indexed keywords

ATTRIBUTES; BOLTZMANN MACHINES; CONDITIONAL RANDOM FIELDS(CRFS); DEEP LEARNING; FACE PROCESSING; LOCAL INTERACTIONS; RESTRICTED BOLTZMANN MACHINE; SEGMENTATION MODELS;

EID: 84887349828     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2013.263     Document Type: Conference Paper
Times cited : (190)

References (32)
  • 1
    • 84887344152 scopus 로고    scopus 로고
    • vis-www. cs. umass. edu/GLOC/.
  • 2
    • 84887347690 scopus 로고    scopus 로고
    • vis-www. cs. umass. edu/lfw/part
  • 5
    • 84866707640 scopus 로고    scopus 로고
    • The shape Boltzmann machine: A strong model of object shape
    • S. M. A. Eslami, N. Heess, and J. Winn. The shape Boltzmann machine: A strong model of object shape. In CVPR, 2012.
    • (2012) CVPR
    • Eslami, S.M.A.1    Heess, N.2    Winn, J.3
  • 6
    • 84877746977 scopus 로고    scopus 로고
    • A generative model for parts-based object segmentation
    • S. M. A. Eslami and C. K. I. Williams. A generative model for parts-based object segmentation. In NIPS, 2012.
    • (2012) NIPS
    • Eslami, S.M.A.1    Williams, C.K.I.2
  • 7
    • 5044223520 scopus 로고    scopus 로고
    • Multiscale conditional random fields for image labeling
    • X. He, R. Zemel, and M. Carreira-Perpinán. Multiscale conditional random fields for image labeling. In CVPR, 2004.
    • (2004) CVPR
    • He, X.1    Zemel, R.2    Carreira-Perpinán, M.3
  • 8
    • 34948885292 scopus 로고    scopus 로고
    • Learning and incorporating top-down cues in image segmentation
    • X. He, R. Zemel, and D. Ray. Learning and incorporating top-down cues in image segmentation. In ECCV, 2006.
    • (2006) ECCV
    • He, X.1    Zemel, R.2    Ray, D.3
  • 9
    • 0013344078 scopus 로고    scopus 로고
    • Training products of experts by minimizing contrastive divergence
    • G. E. Hinton. Training products of experts by minimizing contrastive divergence. Neural Computation, 14(8):1771-1800, 2002.
    • (2002) Neural Computation , vol.14 , Issue.8 , pp. 1771-1800
    • Hinton, G.E.1
  • 10
    • 50649108337 scopus 로고    scopus 로고
    • Unsupervised joint alignment of complex images
    • G. B. Huang, V. Jain, and E. Learned-Miller. Unsupervised joint alignment of complex images. In ICCV, 2007.
    • (2007) ICCV
    • Huang, G.B.1    Jain, V.2    Learned-Miller, E.3
  • 11
    • 84866691616 scopus 로고    scopus 로고
    • Learning hierarchical representations for face verification with convolutional deep belief networks
    • G. B. Huang, H. Lee, and E. Learned-Miller. Learning hierarchical representations for face verification with convolutional deep belief networks. In CVPR, 2012.
    • (2012) CVPR
    • Huang, G.B.1    Lee, H.2    Learned-Miller, E.3
  • 15
    • 77953185711 scopus 로고    scopus 로고
    • Attribute and simile classifiers for face verification
    • N. Kumar, A. C. Berg, P. N. Belhumeur, and S. K. Nayar. Attribute and simile classifiers for face verification. In ICCV, 2009.
    • (2009) ICCV
    • Kumar, N.1    Berg, A.C.2    Belhumeur, P.N.3    Nayar, S.K.4
  • 16
    • 0142192295 scopus 로고    scopus 로고
    • Conditional random fields: Probabilistic models for segmenting and labeling sequence data
    • J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In ICML, 2001.
    • (2001) ICML
    • Lafferty, J.1    McCallum, A.2    Pereira, F.3
  • 18
    • 35148893484 scopus 로고    scopus 로고
    • A tutorial on energy-based learning
    • G. Bakir, T. Hofman, B. Schölkopf, A. Smola, and B. Taskar, editors, MIT Press
    • Y. LeCun, S. Chopra, R. Hadsell, M. Ranzato, and F. Huang. A tutorial on energy-based learning. In G. Bakir, T. Hofman, B. Schölkopf, A. Smola, and B. Taskar, editors, Predicting Structured Data. MIT Press, 2006.
    • (2006) Predicting Structured Data
    • Lecun, Y.1    Chopra, S.2    Hadsell, R.3    Ranzato, M.4    Huang, F.5
  • 19
    • 67650691096 scopus 로고    scopus 로고
    • Markov random field models for hair and face segmentation
    • K. Lee, D. Anguelov, B. Sumengen, and S. Gokturk. Markov random field models for hair and face segmentation. In FG, 2008.
    • (2008) FG
    • Lee, K.1    Anguelov, D.2    Sumengen, B.3    Gokturk, S.4
  • 20
    • 0033284490 scopus 로고    scopus 로고
    • Textons, contours and regions: Cue integration in image segmentation
    • J. Malik, S. Belongie, J. Shi, and T. Leung. Textons, contours and regions: Cue integration in image segmentation. In ICCV, 1999.
    • (1999) ICCV
    • Malik, J.1    Belongie, S.2    Shi, J.3    Leung, T.4
  • 21
    • 84939652549 scopus 로고    scopus 로고
    • Learning to detect natural image boundaries using brightness and texture
    • D. Martin, C. Fowlkes, and J. Malik. Learning to detect natural image boundaries using brightness and texture. In NIPS, 2002.
    • (2002) NIPS
    • Martin, D.1    Fowlkes, C.2    Malik, J.3
  • 22
    • 80053146489 scopus 로고    scopus 로고
    • Conditional restricted boltzmann machines for structured output prediction
    • V. Mnih, H. Larochelle, and G. Hinton. Conditional restricted boltzmann machines for structured output prediction. In UAI, 2011.
    • (2011) UAI
    • Mnih, V.1    Larochelle, H.2    Hinton, G.3
  • 23
    • 0002425879 scopus 로고    scopus 로고
    • Loopy belief propagation for approximate inference: An empirical study
    • K. P. Murphy, Y. Weiss, and M. I. Jordan. Loopy belief propagation for approximate inference: An empirical study. In UAI, 1999.
    • (1999) UAI
    • Murphy, K.P.1    Weiss, Y.2    Jordan, M.I.3
  • 24
    • 84887356933 scopus 로고    scopus 로고
    • Attribute discovery via predictable discriminative binary codes
    • M. Rastegari, A. Farhadi, and D. Forsyth. Attribute discovery via predictable discriminative binary codes. In ECCV, 2012.
    • (2012) ECCV
    • Rastegari, M.1    Farhadi, A.2    Forsyth, D.3
  • 27
    • 84898486229 scopus 로고    scopus 로고
    • Joint adaptive colour modelling and skin, hair and clothing segmentation using coherent probabilistic index maps
    • C. Scheffler, J. Odobez, and R. Marconi. Joint adaptive colour modelling and skin, hair and clothing segmentation using coherent probabilistic index maps. In BMVC, 2011.
    • (2011) BMVC
    • Scheffler, C.1    Odobez, J.2    Marconi, R.3
  • 29
    • 84862849415 scopus 로고    scopus 로고
    • A compositional exemplarbased model for hair segmentation
    • N. Wang, H. Ai, and S. Lao. A compositional exemplarbased model for hair segmentation. In ACCV, 2011.
    • (2011) ACCV
    • Wang, N.1    Ai, H.2    Lao, S.3
  • 30
    • 84866674574 scopus 로고    scopus 로고
    • What are good parts for hair shape modeling
    • N. Wang, H. Ai, and F. Tang. What are good parts for hair shape modeling? In CVPR, 2012.
    • (2012) CVPR
    • Wang, N.1    Ai, H.2    Tang, F.3
  • 31
    • 80051961576 scopus 로고    scopus 로고
    • Effective unconstrained face recognition by combining multiple descriptors and learned background statistics
    • L. Wolf, T. Hassner, and Y. Taigman. Effective unconstrained face recognition by combining multiple descriptors and learned background statistics. IEEE-TPAMI, 33(10):1978-1990, 2011.
    • (2011) IEEE-TPAMI , vol.33 , Issue.10 , pp. 1978-1990
    • Wolf, L.1    Hassner, T.2    Taigman, Y.3
  • 32
    • 33746469628 scopus 로고    scopus 로고
    • Detection and analysis of hair
    • Y. Yacoob and L. Davis. Detection and analysis of hair. IEEE-PAMI, 28(7):1164-1169, 2006.
    • (2006) IEEE-PAMI , vol.28 , Issue.7 , pp. 1164-1169
    • Yacoob, Y.1    Davis, L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.