-
1
-
-
84887344152
-
-
vis-www. cs. umass. edu/GLOC/.
-
-
-
-
2
-
-
84887347690
-
-
vis-www. cs. umass. edu/lfw/part
-
-
-
-
3
-
-
84866677439
-
Semantic segmentation using regions and parts
-
P. Arbeláez, B. Hariharan, C. Gu, S. Gupta, L. Bourdev, and J. Malik. Semantic segmentation using regions and parts. In CVPR, 2012.
-
(2012)
CVPR
-
-
Arbeláez, P.1
Hariharan, B.2
Gu, C.3
Gupta, S.4
Bourdev, L.5
Malik, J.6
-
5
-
-
84866707640
-
The shape Boltzmann machine: A strong model of object shape
-
S. M. A. Eslami, N. Heess, and J. Winn. The shape Boltzmann machine: A strong model of object shape. In CVPR, 2012.
-
(2012)
CVPR
-
-
Eslami, S.M.A.1
Heess, N.2
Winn, J.3
-
6
-
-
84877746977
-
A generative model for parts-based object segmentation
-
S. M. A. Eslami and C. K. I. Williams. A generative model for parts-based object segmentation. In NIPS, 2012.
-
(2012)
NIPS
-
-
Eslami, S.M.A.1
Williams, C.K.I.2
-
7
-
-
5044223520
-
Multiscale conditional random fields for image labeling
-
X. He, R. Zemel, and M. Carreira-Perpinán. Multiscale conditional random fields for image labeling. In CVPR, 2004.
-
(2004)
CVPR
-
-
He, X.1
Zemel, R.2
Carreira-Perpinán, M.3
-
8
-
-
34948885292
-
Learning and incorporating top-down cues in image segmentation
-
X. He, R. Zemel, and D. Ray. Learning and incorporating top-down cues in image segmentation. In ECCV, 2006.
-
(2006)
ECCV
-
-
He, X.1
Zemel, R.2
Ray, D.3
-
9
-
-
0013344078
-
Training products of experts by minimizing contrastive divergence
-
G. E. Hinton. Training products of experts by minimizing contrastive divergence. Neural Computation, 14(8):1771-1800, 2002.
-
(2002)
Neural Computation
, vol.14
, Issue.8
, pp. 1771-1800
-
-
Hinton, G.E.1
-
10
-
-
50649108337
-
Unsupervised joint alignment of complex images
-
G. B. Huang, V. Jain, and E. Learned-Miller. Unsupervised joint alignment of complex images. In ICCV, 2007.
-
(2007)
ICCV
-
-
Huang, G.B.1
Jain, V.2
Learned-Miller, E.3
-
11
-
-
84866691616
-
Learning hierarchical representations for face verification with convolutional deep belief networks
-
G. B. Huang, H. Lee, and E. Learned-Miller. Learning hierarchical representations for face verification with convolutional deep belief networks. In CVPR, 2012.
-
(2012)
CVPR
-
-
Huang, G.B.1
Lee, H.2
Learned-Miller, E.3
-
14
-
-
51849117118
-
-
Technical Report 07-49, University of Massachusetts, Amherst
-
G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller. Labeled faces in the wild: A database for studying face recognition in unconstrained environments. Technical Report 07-49, University of Massachusetts, Amherst, 2007.
-
(2007)
Labeled Faces in the Wild: A Database for Studying Face Recognition in Unconstrained Environments
-
-
Huang, G.B.1
Ramesh, M.2
Berg, T.3
Learned-Miller, E.4
-
16
-
-
0142192295
-
Conditional random fields: Probabilistic models for segmenting and labeling sequence data
-
J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In ICML, 2001.
-
(2001)
ICML
-
-
Lafferty, J.1
McCallum, A.2
Pereira, F.3
-
17
-
-
84867135575
-
Building high-level features using large scale unsupervised learning
-
Q. V. Le, M. A. Ranzato, R. Monga, M. Devin, K. Chen, G. S. Corrado, J. Dean, and A. Y. Ng. Building high-level features using large scale unsupervised learning. In ICML, 2012.
-
(2012)
ICML
-
-
Le, Q.V.1
Ranzato, M.A.2
Monga, R.3
Devin, M.4
Chen, K.5
Corrado, G.S.6
Dean, J.7
Ng, A.Y.8
-
18
-
-
35148893484
-
A tutorial on energy-based learning
-
G. Bakir, T. Hofman, B. Schölkopf, A. Smola, and B. Taskar, editors, MIT Press
-
Y. LeCun, S. Chopra, R. Hadsell, M. Ranzato, and F. Huang. A tutorial on energy-based learning. In G. Bakir, T. Hofman, B. Schölkopf, A. Smola, and B. Taskar, editors, Predicting Structured Data. MIT Press, 2006.
-
(2006)
Predicting Structured Data
-
-
Lecun, Y.1
Chopra, S.2
Hadsell, R.3
Ranzato, M.4
Huang, F.5
-
19
-
-
67650691096
-
Markov random field models for hair and face segmentation
-
K. Lee, D. Anguelov, B. Sumengen, and S. Gokturk. Markov random field models for hair and face segmentation. In FG, 2008.
-
(2008)
FG
-
-
Lee, K.1
Anguelov, D.2
Sumengen, B.3
Gokturk, S.4
-
20
-
-
0033284490
-
Textons, contours and regions: Cue integration in image segmentation
-
J. Malik, S. Belongie, J. Shi, and T. Leung. Textons, contours and regions: Cue integration in image segmentation. In ICCV, 1999.
-
(1999)
ICCV
-
-
Malik, J.1
Belongie, S.2
Shi, J.3
Leung, T.4
-
21
-
-
84939652549
-
Learning to detect natural image boundaries using brightness and texture
-
D. Martin, C. Fowlkes, and J. Malik. Learning to detect natural image boundaries using brightness and texture. In NIPS, 2002.
-
(2002)
NIPS
-
-
Martin, D.1
Fowlkes, C.2
Malik, J.3
-
22
-
-
80053146489
-
Conditional restricted boltzmann machines for structured output prediction
-
V. Mnih, H. Larochelle, and G. Hinton. Conditional restricted boltzmann machines for structured output prediction. In UAI, 2011.
-
(2011)
UAI
-
-
Mnih, V.1
Larochelle, H.2
Hinton, G.3
-
23
-
-
0002425879
-
Loopy belief propagation for approximate inference: An empirical study
-
K. P. Murphy, Y. Weiss, and M. I. Jordan. Loopy belief propagation for approximate inference: An empirical study. In UAI, 1999.
-
(1999)
UAI
-
-
Murphy, K.P.1
Weiss, Y.2
Jordan, M.I.3
-
24
-
-
84887356933
-
Attribute discovery via predictable discriminative binary codes
-
M. Rastegari, A. Farhadi, and D. Forsyth. Attribute discovery via predictable discriminative binary codes. In ECCV, 2012.
-
(2012)
ECCV
-
-
Rastegari, M.1
Farhadi, A.2
Forsyth, D.3
-
27
-
-
84898486229
-
Joint adaptive colour modelling and skin, hair and clothing segmentation using coherent probabilistic index maps
-
C. Scheffler, J. Odobez, and R. Marconi. Joint adaptive colour modelling and skin, hair and clothing segmentation using coherent probabilistic index maps. In BMVC, 2011.
-
(2011)
BMVC
-
-
Scheffler, C.1
Odobez, J.2
Marconi, R.3
-
29
-
-
84862849415
-
A compositional exemplarbased model for hair segmentation
-
N. Wang, H. Ai, and S. Lao. A compositional exemplarbased model for hair segmentation. In ACCV, 2011.
-
(2011)
ACCV
-
-
Wang, N.1
Ai, H.2
Lao, S.3
-
30
-
-
84866674574
-
What are good parts for hair shape modeling
-
N. Wang, H. Ai, and F. Tang. What are good parts for hair shape modeling? In CVPR, 2012.
-
(2012)
CVPR
-
-
Wang, N.1
Ai, H.2
Tang, F.3
-
31
-
-
80051961576
-
Effective unconstrained face recognition by combining multiple descriptors and learned background statistics
-
L. Wolf, T. Hassner, and Y. Taigman. Effective unconstrained face recognition by combining multiple descriptors and learned background statistics. IEEE-TPAMI, 33(10):1978-1990, 2011.
-
(2011)
IEEE-TPAMI
, vol.33
, Issue.10
, pp. 1978-1990
-
-
Wolf, L.1
Hassner, T.2
Taigman, Y.3
-
32
-
-
33746469628
-
Detection and analysis of hair
-
Y. Yacoob and L. Davis. Detection and analysis of hair. IEEE-PAMI, 28(7):1164-1169, 2006.
-
(2006)
IEEE-PAMI
, vol.28
, Issue.7
, pp. 1164-1169
-
-
Yacoob, Y.1
Davis, L.2
|