메뉴 건너뛰기




Volumn , Issue PART 3, 2013, Pages 2284-2292

Deep canonical correlation analysis

Author keywords

[No Author keywords available]

Indexed keywords

FEEDFORWARD NEURAL NETWORKS; LEARNING SYSTEMS; LINEAR TRANSFORMATIONS;

EID: 84897553529     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (880)

References (40)
  • 5
    • 46249124832 scopus 로고    scopus 로고
    • Consistency of trace norm minimization
    • June
    • Bach, F. R. Consistency of trace norm minimization. J. Mach. Learn. Res., 9:1019-1048, June 2008.
    • (2008) J. Mach. Learn. Res. , vol.9 , pp. 1019-1048
    • Bach, F.R.1
  • 6
    • 0011812771 scopus 로고    scopus 로고
    • Kernel independent component analysis
    • Bach, F. R. and Jordan, M. I. Kernel independent component analysis. J. Mach. Learn. Res., 3:1-48, 2002.
    • (2002) J. Mach. Learn. Res. , vol.3 , pp. 1-48
    • Bach, F.R.1    Jordan, M.I.2
  • 7
    • 67651049775 scopus 로고    scopus 로고
    • Justifying and generalizing contrastive divergence
    • Bengio, Y. and Delalleau, O. Justifying and generalizing contrastive divergence. Neural Computation, 21(6):1601-1621, 2009.
    • (2009) Neural Computation , vol.21 , Issue.6 , pp. 1601-1621
    • Bengio, Y.1    Delalleau, O.2
  • 8
    • 51949086515 scopus 로고    scopus 로고
    • Correlational spectral clustering
    • Blaschko, M. B. and Lampert, C. H. Correlational spectral clustering. In CVPR, 2008.
    • (2008) CVPR
    • Blaschko, M.B.1    Lampert, C.H.2
  • 9
  • 10
    • 84978542535 scopus 로고
    • Adaptation of automatic speech recognizers to new speakers using canonical correlation analysis techniques
    • Choukri, K. and Chollet, G. Adaptation of automatic speech recognizers to new speakers using canonical correlation analysis techniques. Speech Comm., 1:95-107, 1986.
    • (1986) Speech Comm. , vol.1 , pp. 95-107
    • Choukri, K.1    Chollet, G.2
  • 11
    • 0019053271 scopus 로고
    • COMPARISON OF PARAMETRIC REPRESENTATIONS FOR MONOSYLLABIC WORD RECOGNITION IN CONTINUOUSLY SPOKEN SENTENCES
    • Davis, S. B. and Mermelstein, P. Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentences. IEEE Trans. Acoustics, Speech, and Signal Proc., 28(4):357-366, 1980. (Pubitemid 11464930)
    • (1980) IEEE Transactions on Acoustics, Speech, and Signal Processing , vol.ASSP-28 , Issue.4 , pp. 357-366
    • Davis, S.B.1    Mermelstein, P.2
  • 13
    • 85162328823 scopus 로고    scopus 로고
    • Multi-view learning of word embeddings via CCA
    • Dhillon, P., Foster, D., and Ungar, L. Multi-view learning of word embeddings via CCA. In NIPS, 2011.
    • (2011) NIPS
    • Dhillon, P.1    Foster, D.2    Ungar, L.3
  • 14
    • 83055181498 scopus 로고    scopus 로고
    • Ambiguity modelling in latent spaces
    • Ek, C. H., Torr, P. H., and Lawrence, N. D. Ambiguity modelling in latent spaces. In MLMI, 2008.
    • (2008) MLMI
    • Ek, C.H.1    Torr, P.H.2    Lawrence, N.D.3
  • 16
    • 10044285992 scopus 로고    scopus 로고
    • Canonical correlation analysis: An overview with application to learning methods
    • DOI 10.1162/0899766042321814
    • Hardoon, D. R., Szedmák, S., and Shawe-Taylor, J. Canonical correlation analysis: An overview with application to learning methods. Neural Computation, 16(12):2639-2664, 2004. (Pubitemid 39604012)
    • (2004) Neural Computation , vol.16 , Issue.12 , pp. 2639-2664
    • Hardoon, D.R.1    Szedmak, S.2    Shawe-Taylor, J.3
  • 17
    • 34548537654 scopus 로고    scopus 로고
    • Unsupervised analysis of fMRI data using kernel canonical correlation
    • DOI 10.1016/j.neuroimage.2007.06.017, PII S1053811907005708
    • Hardoon, D. R., Mourao-Miranda, J., Brammer, M., and Shawe-Taylor, J. Unsupervised analysis of fMRI data using kernel canonical correlation. Neuroimage, 37(4):1250-1259, 2007. (Pubitemid 47385288)
    • (2007) NeuroImage , vol.37 , Issue.4 , pp. 1250-1259
    • Hardoon, D.R.1    Mourao-Miranda, J.2    Brammer, M.3    Shawe-Taylor, J.4
  • 18
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • DOI 10.1126/science.1127647
    • Hinton, G. E. and Salakhutdinov, R. R. Reducing the dimensionality of data with neural networks. Science, 313(5786):504-507, 2006. (Pubitemid 44148451)
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 19
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • DOI 10.1162/neco.2006.18.7.1527
    • Hinton, G. E., Osindero, S., and Teh, Y.-W. A fast learning algorithm for deep belief nets. Neural computation, 18 (7):1527-1554, 2006. (Pubitemid 44024729)
    • (2006) Neural Computation , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.-W.3
  • 20
    • 0000107975 scopus 로고
    • Relations between two sets of variates
    • Hotelling, H. Relations between two sets of variates. Biometrika, 28(3/4):321-377, 1936.
    • (1936) Biometrika , vol.28 , Issue.3-4 , pp. 321-377
    • Hotelling, H.1
  • 21
    • 70450148854 scopus 로고    scopus 로고
    • Multi-view regression via canonical correlation analysis
    • Kakade, S. M. and Foster, D. P. Multi-view regression via canonical correlation analysis. In COLT, 2007.
    • (2007) COLT
    • Kakade, S.M.1    Foster, D.P.2
  • 22
    • 34948833675 scopus 로고    scopus 로고
    • Tensor canonical correlation analysis for action classification
    • Kim, T. K., Wong, S. F., and Cipolla, R. Tensor canonical correlation analysis for action classification. In CVPR, 2007.
    • (2007) CVPR
    • Kim, T.K.1    Wong, S.F.2    Cipolla, R.3
  • 25
    • 0030205038 scopus 로고    scopus 로고
    • Derivatives of spectral functions
    • Lewis, A. S. Derivatives of spectral functions. Mathematics of Operations Research, 21(3):576-588, 1996.
    • (1996) Mathematics of Operations Research , vol.21 , Issue.3 , pp. 576-588
    • Lewis, A.S.1
  • 27
    • 85039168476 scopus 로고    scopus 로고
    • Nonlinear feature extraction using generalized canonical correlation analysis
    • Melzer, T., Reiter, M., and Bischof, H. Nonlinear feature extraction using generalized canonical correlation analysis. In ICANN, 2001.
    • (2001) ICANN
    • Melzer, T.1    Reiter, M.2    Bischof, H.3
  • 28
    • 70350280106 scopus 로고
    • Chemometric classification of some European wines using pyrolysis mass spectrometry
    • Montanarella, L., Bassami, M., and Breas, O. Chemometric classification of some European wines using pyrolysis mass spectrometry. Rapid Communications in Mass Spectrometry, 9(15):1589-1593, 1995.
    • (1995) Rapid Communications in Mass Spectrometry , vol.9 , Issue.15 , pp. 1589-1593
    • Montanarella, L.1    Bassami, M.2    Breas, O.3
  • 32
    • 84866095936 scopus 로고    scopus 로고
    • Adaptive kernel canonical correlation analysis for estimation of task dynamics from acoustics
    • Rudzicz, F. Adaptive kernel canonical correlation analysis for estimation of task dynamics from acoustics. In ICASSP, 2010.
    • (2010) ICASSP
    • Rudzicz, F.1
  • 34
    • 57549101447 scopus 로고    scopus 로고
    • Audiovisual synchronization and fusion using canonical correlation analysis
    • Sargin, M. E., Yemez, Y., and Tekalp, A. M. Audiovisual synchronization and fusion using canonical correlation analysis. IEEE. Trans. Multimedia, 9(7):1396-1403, 2007.
    • (2007) IEEE. Trans. Multimedia , vol.9 , Issue.7 , pp. 1396-1403
    • Sargin, M.E.1    Yemez, Y.2    Tekalp, A.M.3
  • 35
    • 2642557514 scopus 로고    scopus 로고
    • FaceSync: A linear operator for measuring synchronization of video facial images and audio tracks
    • Slaney, M. and Coveil, M. FaceSync: A linear operator for measuring synchronization of video facial images and audio tracks. In NIPS, 2000.
    • (2000) NIPS
    • Slaney, M.1    Coveil, M.2
  • 36
    • 84877724347 scopus 로고    scopus 로고
    • Multimodal learning with deep Boltzmann machines
    • Srivastava, N. and Salakhutdinov, R. Multimodal learning with deep Boltzmann machines. In NIPS, 2012.
    • (2012) NIPS
    • Srivastava, N.1    Salakhutdinov, R.2
  • 37
    • 85156254338 scopus 로고    scopus 로고
    • Graph-driven features extraction from microarray data using diffusion kernels and kernel CCA
    • Vert, J.-P. and Kanehisa, M. Graph-driven features extraction from microarray data using diffusion kernels and kernel CCA. In NIPS, 2002.
    • (2002) NIPS
    • Vert, J.-P.1    Kanehisa, M.2
  • 38
    • 56449089103 scopus 로고    scopus 로고
    • Extracting and composing robust features with denoising autoencoders
    • ACM
    • Vincent, P., Larochelle, H., Bengio, Y., and Manzagol, P.-A. Extracting and composing robust features with denoising autoencoders. In ICML. ACM, 2008.
    • (2008) ICML
    • Vincent, P.1    Larochelle, H.2    Bengio, Y.3    Manzagol, P.-A.4
  • 39
    • 84873588359 scopus 로고    scopus 로고
    • Inferring a semantic representation of text via cross-language correlation analysis
    • Vinokourov, A., Shawe-Taylor, J., and Cristianini, N. Inferring a semantic representation of text via cross-language correlation analysis. In NIPS, 2003.
    • (2003) NIPS
    • Vinokourov, A.1    Shawe-Taylor, J.2    Cristianini, N.3
  • 40
    • 0003652255 scopus 로고
    • Waisman Center on Mental Retardation & Human Development, U. Wisconsin, Madison, WI, version 1.0 edition, June
    • Westbury, J. R. X-ray microbeam speech production database user's handbook. Waisman Center on Mental Retardation & Human Development, U. Wisconsin, Madison, WI, version 1.0 edition, June 1994.
    • (1994) X-ray Microbeam Speech Production Database User's Handbook
    • Westbury, J.R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.