-
1
-
-
84897504134
-
Essential functional modules for pathogenic and defensive mechanisms in Candida albicans infections
-
24757665
-
Y.C.Wang, I.C.Tsai, C.Lin, W.P.Hsieh, C.Y.Lan, Y.J.Chuang, B.S.Chen. Essential functional modules for pathogenic and defensive mechanisms in Candida albicans infections. BioMed Res Int 2014; 2014:136130; PMID:24757665
-
(2014)
BioMed Res Int
, vol.2014
, pp. 136130
-
-
Wang, Y.C.1
Tsai, I.C.2
Lin, C.3
Hsieh, W.P.4
Lan, C.Y.5
Chuang, Y.J.6
Chen, B.S.7
-
2
-
-
79953062342
-
Innate antifungal immunity: the key role of phagocytes
-
20936972
-
G.D.Brown. Innate antifungal immunity: the key role of phagocytes. Annu Rev Immunol 2011; 29:1-21; PMID:20936972; http://dx.doi.org/10.1146/annurev-immunol-030409-101229
-
(2011)
Annu Rev Immunol
, vol.29
, pp. 1-21
-
-
Brown, G.D.1
-
3
-
-
0036895608
-
Candida Albicans: a molecular revolution built on lessons from budding yeast
-
12459722
-
J.Berman, P.E.Sudbery. Candida Albicans: a molecular revolution built on lessons from budding yeast. Nat Rev Genet 2002; 3:918-30; PMID:12459722; http://dx.doi.org/10.1038/nrg948
-
(2002)
Nat Rev Genet
, vol.3
, pp. 918-930
-
-
Berman, J.1
Sudbery, P.E.2
-
4
-
-
0033956316
-
Mechanisms of the proinflammatory response of endothelial cells to Candida albicans infection
-
10678917
-
A.S.Orozco, X.Zhou, S.G.Filler. Mechanisms of the proinflammatory response of endothelial cells to Candida albicans infection. Infect Immun 2000; 68:1134-41; PMID:10678917; http://dx.doi.org/10.1128/IAI.68.3.1134-1141.2000
-
(2000)
Infect Immun
, vol.68
, pp. 1134-1141
-
-
Orozco, A.S.1
Zhou, X.2
Filler, S.G.3
-
5
-
-
0026543598
-
Fungal adherence to the vascular compartment: a critical step in the pathogenesis of disseminated candidiasis
-
1571448
-
S.A.Klotz. Fungal adherence to the vascular compartment: a critical step in the pathogenesis of disseminated candidiasis. Clin Infect Dis: Off Publ Infect Dis Soc America 1992; 14:340-7; PMID:1571448; http://dx.doi.org/10.1093/clinids/14.1.340
-
(1992)
Clin Infect Dis: Off Publ Infect Dis Soc America
, vol.14
, pp. 340-347
-
-
Klotz, S.A.1
-
6
-
-
84860244125
-
Interplay between Candida albicans and the Mammalian Innate Host Defense
-
22252867
-
S.C.Cheng, L.A.B.Joosten, B.J.Kullberg, M.G.Netea. Interplay between Candida albicans and the Mammalian Innate Host Defense. Infect Immun 2012; 80:1304-13; PMID:22252867; http://dx.doi.org/10.1128/IAI.06146-11
-
(2012)
Infect Immun
, vol.80
, pp. 1304-1313
-
-
Cheng, S.C.1
Joosten, L.A.B.2
Kullberg, B.J.3
Netea, M.G.4
-
7
-
-
84860789699
-
Tackling human fungal infections
-
22582229
-
G.D.Brown, D.W.Denning, S.M.Levitz. Tackling human fungal infections. Science 2012; 336:647; PMID:22582229; http://dx.doi.org/10.1126/science.1222236
-
(2012)
Science
, vol.336
, pp. 647
-
-
Brown, G.D.1
Denning, D.W.2
Levitz, S.M.3
-
8
-
-
79956338548
-
Immune escape of the human facultative pathogenic yeast Candida albicans: the many faces of the Candida Pra1 protein
-
21565550
-
P.F.Zipfel, C.Skerka, D.Kupka, S.Luo. Immune escape of the human facultative pathogenic yeast Candida albicans: the many faces of the Candida Pra1 protein. Int J Med Microbiol: Indian J Med Microbiol 2011; 301:423-30; PMID:21565550; http://dx.doi.org/10.1016/j.ijmm.2011.04.010
-
(2011)
Int J Med Microbiol: Indian J Med Microbiol
, vol.301
, pp. 423-430
-
-
Zipfel, P.F.1
Skerka, C.2
Kupka, D.3
Luo, S.4
-
9
-
-
84865307122
-
Importance of the Candida albicans cell wall during commensalism and infection
-
22609181
-
N.A.Gow, B.Hube. Importance of the Candida albicans cell wall during commensalism and infection. Curr Opin Microbiol 2012; 15:406-12; PMID:22609181; http://dx.doi.org/10.1016/j.mib.2012.04.005
-
(2012)
Curr Opin Microbiol
, vol.15
, pp. 406-412
-
-
Gow, N.A.1
Hube, B.2
-
10
-
-
84890116565
-
Mannosylation in Candida albicans: role in cell wall function and immune recognition
-
24125554
-
R.A.Hall, N.A.Gow. Mannosylation in Candida albicans: role in cell wall function and immune recognition. Mol Microbiol 2013; 90:1147-61; PMID:24125554; http://dx.doi.org/10.1111/mmi.12426
-
(2013)
Mol Microbiol
, vol.90
, pp. 1147-1161
-
-
Hall, R.A.1
Gow, N.A.2
-
11
-
-
79956300649
-
Toll-like receptors and their crosstalk with other innate receptors in infection and immunity
-
21616434
-
T.Kawai, S.Akira. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 2011; 34:637-50; PMID:21616434; http://dx.doi.org/10.1016/j.immuni.2011.05.006
-
(2011)
Immunity
, vol.34
, pp. 637-650
-
-
Kawai, T.1
Akira, S.2
-
12
-
-
84865411904
-
C-type lectin receptors orchestrate antifungal immunity
-
22910394
-
S.E.Hardison, G.D.Brown. C-type lectin receptors orchestrate antifungal immunity. Nat Immunol 2012; 13:817-22; PMID:22910394; http://dx.doi.org/10.1038/ni.2369
-
(2012)
Nat Immunol
, vol.13
, pp. 817-822
-
-
Hardison, S.E.1
Brown, G.D.2
-
13
-
-
84868554611
-
Cutting edge: Nlrp10 is essential for protective antifungal adaptive immunity against Candida albicans
-
23071280
-
S.Joly, S.C.Eisenbarth, A.K.Olivier, A.Williams, D.H.Kaplan, S.L.Cassel, R.A.Flavell, F.S.Sutterwala. Cutting edge: Nlrp10 is essential for protective antifungal adaptive immunity against Candida albicans. J Immunol 2012; 189:4713-7; PMID:23071280; http://dx.doi.org/10.4049/jimmunol.1201715
-
(2012)
J Immunol
, vol.189
, pp. 4713-4717
-
-
Joly, S.1
Eisenbarth, S.C.2
Olivier, A.K.3
Williams, A.4
Kaplan, D.H.5
Cassel, S.L.6
Flavell, R.A.7
Sutterwala, F.S.8
-
14
-
-
32944464648
-
Pathogen recognition and innate immunity
-
16497588
-
S.Akira, S.Uematsu, O.Takeuchi. Pathogen recognition and innate immunity. Cell 2006; 124:783-801; PMID:16497588; http://dx.doi.org/10.1016/j.cell.2006.02.015
-
(2006)
Cell
, vol.124
, pp. 783-801
-
-
Akira, S.1
Uematsu, S.2
Takeuchi, O.3
-
15
-
-
0037560071
-
Candida albicans phospholipomannan is sensed through toll-like receptors
-
12825186
-
T.Jouault, S.Ibata-Ombetta, O.Takeuchi, P.-A.Trinel, P.Sacchetti, P.Lefebvre, S.Akira, D.Poulain. Candida albicans phospholipomannan is sensed through toll-like receptors. J Infect Dis 2003; 188:165-72; PMID:12825186; http://dx.doi.org/10.1086/375784
-
(2003)
J Infect Dis
, vol.188
, pp. 165-172
-
-
Jouault, T.1
Ibata-Ombetta, S.2
Takeuchi, O.3
Trinel, P.-A.4
Sacchetti, P.5
Lefebvre, P.6
Akira, S.7
Poulain, D.8
-
16
-
-
33745207594
-
Immune sensing of Candida albicans requires cooperative recognition of mannans and glucans by lectin and Toll-like receptors
-
16710478
-
M.G.Netea, N.A.Gow, C.A.Munro, S.Bates, C.Collins, G.Ferwerda, R.P.Hobson, G.Bertram, H.B.Hughes, T.Jansen, et al. Immune sensing of Candida albicans requires cooperative recognition of mannans and glucans by lectin and Toll-like receptors. J Clin Investigat 2006; 116:1642-50; PMID:16710478; http://dx.doi.org/10.1172/JCI27114
-
(2006)
J Clin Investigat
, vol.116
, pp. 1642-1650
-
-
Netea, M.G.1
Gow, N.A.2
Munro, C.A.3
Bates, S.4
Collins, C.5
Ferwerda, G.6
Hobson, R.P.7
Bertram, G.8
Hughes, H.B.9
Jansen, T.10
-
17
-
-
67650082672
-
Toll-like receptor 9-dependent activation of myeloid dendritic cells by deoxynucleic acids from Candida albicans
-
19433551
-
A.Miyazato, K.Nakamura, N.Yamamoto, H.M.Mora-Montes, M.Tanaka, Y.Abe, D.Tanno, K.Inden, X.Gang, K.Ishii, et al. Toll-like receptor 9-dependent activation of myeloid dendritic cells by deoxynucleic acids from Candida albicans. Infect Immun 2009; 77:3056-64; PMID:19433551; http://dx.doi.org/10.1128/IAI.00840-08
-
(2009)
Infect Immun
, vol.77
, pp. 3056-3064
-
-
Miyazato, A.1
Nakamura, K.2
Yamamoto, N.3
Mora-Montes, H.M.4
Tanaka, M.5
Abe, Y.6
Tanno, D.7
Inden, K.8
Gang, X.9
Ishii, K.10
-
18
-
-
84895740264
-
Clustering of pattern recognition receptors for fungal detection
-
24586145
-
M.Inoue, M.L.Shinohara. Clustering of pattern recognition receptors for fungal detection. PLoS Pathogens 2014; 10:e1003873; PMID:24586145; http://dx.doi.org/10.1371/journal.ppat.1003873
-
(2014)
PLoS Pathogens
, vol.10
, pp. e1003873
-
-
Inoue, M.1
Shinohara, M.L.2
-
19
-
-
77956185307
-
Innate immune mechanisms for recognition and uptake of Candida species
-
20705510
-
M.G.Netea, L.Marodi. Innate immune mechanisms for recognition and uptake of Candida species. Trends Immunol 2010; 31:346-53; PMID:20705510; http://dx.doi.org/10.1016/j.it.2010.06.007
-
(2010)
Trends Immunol
, vol.31
, pp. 346-353
-
-
Netea, M.G.1
Marodi, L.2
-
20
-
-
77349120714
-
Syk-coupled C-type lectin receptors that mediate cellular activation via single tyrosine based activation motifs
-
20193029
-
A.M.Kerrigan, G.D.Brown. Syk-coupled C-type lectin receptors that mediate cellular activation via single tyrosine based activation motifs. Immunolog Rev 2010; 234:335-52; PMID:20193029; http://dx.doi.org/10.1111/j.0105-2896.2009.00882.x
-
(2010)
Immunolog Rev
, vol.234
, pp. 335-352
-
-
Kerrigan, A.M.1
Brown, G.D.2
-
21
-
-
80051795590
-
The role of Dectin-1 in the host defence against fungal infections
-
21803640
-
R.A.Drummond, G.D.Brown. The role of Dectin-1 in the host defence against fungal infections. Curr Opin Microbiol 2011; 14:392-9; PMID:21803640; http://dx.doi.org/10.1016/j.mib.2011.07.001
-
(2011)
Curr Opin Microbiol
, vol.14
, pp. 392-399
-
-
Drummond, R.A.1
Brown, G.D.2
-
22
-
-
84876848564
-
Differential adaptation of Candida albicans in vivo modulates immune recognition by dectin-1
-
23637604
-
M.J.Marakalala, S.Vautier, J.Potrykus, L.A.Walker, K.M.Shepardson, A.Hopke, H.M.Mora-Montes, A.Kerrigan, M.G.Netea, G.I.Murray, et al. Differential adaptation of Candida albicans in vivo modulates immune recognition by dectin-1. PLoS Pathogens 2013; 9:e1003315; PMID:23637604; http://dx.doi.org/10.1371/journal.ppat.1003315
-
(2013)
PLoS Pathogens
, vol.9
, pp. e1003315
-
-
Marakalala, M.J.1
Vautier, S.2
Potrykus, J.3
Walker, L.A.4
Shepardson, K.M.5
Hopke, A.6
Mora-Montes, H.M.7
Kerrigan, A.8
Netea, M.G.9
Murray, G.I.10
-
23
-
-
84882714745
-
C-type lectin receptors Dectin-3 and Dectin-2 form a heterodimeric pattern-recognition receptor for host defense against fungal infection
-
23911656
-
L.-L.Zhu, X.-Q.Zhao, C.Jiang, Y.You, X.-P.Chen, Y.-Y.Jiang, X.M.Jia, X.Lin. C-type lectin receptors Dectin-3 and Dectin-2 form a heterodimeric pattern-recognition receptor for host defense against fungal infection. Immunity 2013; 39:324-34; PMID:23911656; http://dx.doi.org/10.1016/j.immuni.2013.05.017
-
(2013)
Immunity
, vol.39
, pp. 324-334
-
-
Zhu, L.-L.1
Zhao, X.-Q.2
Jiang, C.3
You, Y.4
Chen, X.-P.5
Jiang, Y.-Y.6
Jia, X.M.7
Lin, X.8
-
24
-
-
33646126940
-
The carbohydrate-recognition domain of Dectin-2 is a C-type lectin with specificity for high mannose
-
16423983
-
E.P.McGreal, M.Rosas, G.D.Brown, S.Zamze, S.Y.Wong, S.Gordon, L.Martinez-Pomares, P.R.Taylor. The carbohydrate-recognition domain of Dectin-2 is a C-type lectin with specificity for high mannose. Glycobiology 2006; 16:422-30; PMID:16423983; http://dx.doi.org/10.1093/glycob/cwj077
-
(2006)
Glycobiology
, vol.16
, pp. 422-430
-
-
McGreal, E.P.1
Rosas, M.2
Brown, G.D.3
Zamze, S.4
Wong, S.Y.5
Gordon, S.6
Martinez-Pomares, L.7
Taylor, P.R.8
-
25
-
-
77953289487
-
Dectin-2 recognition of alpha-mannans and induction of Th17 cell differentiation is essential for host defense against Candida albicans
-
20493731
-
S.Saijo, S.Ikeda, K.Yamabe, S.Kakuta, H.Ishigame, A.Akitsu, N.Fujikado, T.Kusaka, S.Kubo, S.H.Chung, et al. Dectin-2 recognition of alpha-mannans and induction of Th17 cell differentiation is essential for host defense against Candida albicans. Immunity 2010; 32:681-91; PMID:20493731; http://dx.doi.org/10.1016/j.immuni.2010.05.001
-
(2010)
Immunity
, vol.32
, pp. 681-691
-
-
Saijo, S.1
Ikeda, S.2
Yamabe, K.3
Kakuta, S.4
Ishigame, H.5
Akitsu, A.6
Fujikado, N.7
Kusaka, T.8
Kubo, S.9
Chung, S.H.10
-
26
-
-
79960731378
-
Dectin-1 and Dectin-2 in innate immunity against fungi
-
21677049
-
S.Saijo, Y.Iwakura. Dectin-1 and Dectin-2 in innate immunity against fungi. Int Immunol 2011; 23:467-72; PMID:21677049; http://dx.doi.org/10.1093/intimm/dxr046
-
(2011)
Int Immunol
, vol.23
, pp. 467-472
-
-
Saijo, S.1
Iwakura, Y.2
-
27
-
-
79956292569
-
Myeloid C-type lectin receptors in pathogen recognition and host defense
-
21616435
-
F.Osorio, C.Reis e Sousa. Myeloid C-type lectin receptors in pathogen recognition and host defense. Immunity 2011; 34:651-64; PMID:21616435; http://dx.doi.org/10.1016/j.immuni.2011.05.001
-
(2011)
Immunity
, vol.34
, pp. 651-664
-
-
Osorio, F.1
Reis e Sousa, C.2
-
28
-
-
47249089542
-
The macrophage-inducible C-type lectin, Mincle, is an essential component of the innate immune response to Candida albicans
-
18490740
-
C.A.Wells, J.A.Salvage-Jones, X.Li, K.Hitchens, S.Butcher, R.Z.Murray, A.G.Beckhouse, Y.L.Lo, S.Manzanero, C.Cobbold, et al. The macrophage-inducible C-type lectin, Mincle, is an essential component of the innate immune response to Candida albicans. J Immunol 2008; 180:7404-13; PMID:18490740; http://dx.doi.org/10.4049/jimmunol.180.11.7404
-
(2008)
J Immunol
, vol.180
, pp. 7404-7413
-
-
Wells, C.A.1
Salvage-Jones, J.A.2
Li, X.3
Hitchens, K.4
Butcher, S.5
Murray, R.Z.6
Beckhouse, A.G.7
Lo, Y.L.8
Manzanero, S.9
Cobbold, C.10
-
29
-
-
52549125928
-
Mincle is an ITAM-coupled activating receptor that senses damaged cells
-
18776906
-
S.Yamasaki, E.Ishikawa, M.Sakuma, H.Hara, K.Ogata, T.Saito. Mincle is an ITAM-coupled activating receptor that senses damaged cells. Nat Immunol 2008; 9:1179-88; PMID:18776906; http://dx.doi.org/10.1038/ni.1651
-
(2008)
Nat Immunol
, vol.9
, pp. 1179-1188
-
-
Yamasaki, S.1
Ishikawa, E.2
Sakuma, M.3
Hara, H.4
Ogata, K.5
Saito, T.6
-
30
-
-
0041349292
-
Mannose receptor contribution to Candida albicans phagocytosis by murine E-clone J774 macrophages
-
12885937
-
I.Porcaro, M.Vidal, S.Jouvert, P.D.Stahl, J.Giaimis. Mannose receptor contribution to Candida albicans phagocytosis by murine E-clone J774 macrophages. J Leukocyte Biol 2003; 74:206-15; PMID:12885937; http://dx.doi.org/10.1189/jlb.1202608
-
(2003)
J Leukocyte Biol
, vol.74
, pp. 206-215
-
-
Porcaro, I.1
Vidal, M.2
Jouvert, S.3
Stahl, P.D.4
Giaimis, J.5
-
31
-
-
4143145195
-
Candida albicans cell wall glycans, host receptors and responses: elements for a decisive crosstalk
-
15358252
-
D.Poulain, T.Jouault. Candida albicans cell wall glycans, host receptors and responses: elements for a decisive crosstalk. Curr Opin Microbiol 2004; 7:342-9; PMID:15358252; http://dx.doi.org/10.1016/j.mib.2004.06.011
-
(2004)
Curr Opin Microbiol
, vol.7
, pp. 342-349
-
-
Poulain, D.1
Jouault, T.2
-
32
-
-
77950252783
-
Contribution of Candida albicans cell wall components to recognition by and escape from murine macrophages
-
20123707
-
C.G.McKenzie, U.Koser, L.E.Lewis, J.M.Bain, H.M.Mora-Montes, R.N.Barker, N.A.Gow, L.P.Erwig. Contribution of Candida albicans cell wall components to recognition by and escape from murine macrophages. Infect Immun 2010; 78:1650-8; PMID:20123707; http://dx.doi.org/10.1128/IAI.00001-10
-
(2010)
Infect Immun
, vol.78
, pp. 1650-1658
-
-
McKenzie, C.G.1
Koser, U.2
Lewis, L.E.3
Bain, J.M.4
Mora-Montes, H.M.5
Barker, R.N.6
Gow, N.A.7
Erwig, L.P.8
-
33
-
-
57149097072
-
Stage-specific sampling by pattern recognition receptors during Candida albicans phagocytosis
-
19043561
-
S.E.Heinsbroek, P.R.Taylor, F.O.Martinez, L.Martinez-Pomares, G.D.Brown, S.Gordon. Stage-specific sampling by pattern recognition receptors during Candida albicans phagocytosis. PLoS Pathogens 2008; 4:e1000218; PMID:19043561; http://dx.doi.org/10.1371/journal.ppat.1000218
-
(2008)
PLoS Pathogens
, vol.4
, pp. e1000218
-
-
Heinsbroek, S.E.1
Taylor, P.R.2
Martinez, F.O.3
Martinez-Pomares, L.4
Brown, G.D.5
Gordon, S.6
-
34
-
-
84880308194
-
Galectin-3 plays an important role in protection against disseminated candidiasis
-
23488971
-
J.R.Linden, M.E.De Paepe, S.S.Laforce-Nesbitt, J.M.Bliss. Galectin-3 plays an important role in protection against disseminated candidiasis. Med Mycol 2013; 51:641-51; PMID:23488971; http://dx.doi.org/10.3109/13693786.2013.770607
-
(2013)
Med Mycol
, vol.51
, pp. 641-651
-
-
Linden, J.R.1
De Paepe, M.E.2
Laforce-Nesbitt, S.S.3
Bliss, J.M.4
-
35
-
-
84927731456
-
The NLRP1 inflammasomes
-
25879281
-
J.Chavarria-Smith, R.E.Vance. The NLRP1 inflammasomes. Immunol Rev 2015; 265:22-34; PMID:25879281; http://dx.doi.org/10.1111/imr.12283
-
(2015)
Immunol Rev
, vol.265
, pp. 22-34
-
-
Chavarria-Smith, J.1
Vance, R.E.2
-
36
-
-
77950362382
-
The inflammasomes
-
20303873
-
K.Schroder, J.Tschopp. The inflammasomes. Cell 2010; 140:821-32; PMID:20303873; http://dx.doi.org/10.1016/j.cell.2010.01.040
-
(2010)
Cell
, vol.140
, pp. 821-832
-
-
Schroder, K.1
Tschopp, J.2
-
37
-
-
65549154784
-
An essential role for the NLRP3 inflammasome in host defense against the human fungal pathogen Candida albicans
-
19454352
-
A.G.Hise, J.Tomalka, S.Ganesan, K.Patel, B.A.Hall, G.D.Brown, K.A.Fitzgerald. An essential role for the NLRP3 inflammasome in host defense against the human fungal pathogen Candida albicans. Cell Host Microbe 2009; 5:487-97; PMID:19454352; http://dx.doi.org/10.1016/j.chom.2009.05.002
-
(2009)
Cell Host Microbe
, vol.5
, pp. 487-497
-
-
Hise, A.G.1
Tomalka, J.2
Ganesan, S.3
Patel, K.4
Hall, B.A.5
Brown, G.D.6
Fitzgerald, K.A.7
-
38
-
-
84855296038
-
A novel role for the NLRC4 inflammasome in mucosal defenses against the fungal pathogen Candida albicans
-
J.Tomalka, S.Ganesan, E.Azodi, K.Patel, P.Majmudar, B.A.Hall, K.A.Fitzgerald, A.G.Hise. A novel role for the NLRC4 inflammasome in mucosal defenses against the fungal pathogen Candida albicans. PLoS Pathogens 2011; 7:e1002379
-
(2011)
PLoS Pathogens
, vol.7
, pp. e1002379
-
-
Tomalka, J.1
Ganesan, S.2
Azodi, E.3
Patel, K.4
Majmudar, P.5
Hall, B.A.6
Fitzgerald, K.A.7
Hise, A.G.8
-
39
-
-
84865284927
-
Adhesins on opportunistic fungal pathogens
-
Washington, DC: ASM Press
-
R.Zordan, B.Cormack. Adhesins on opportunistic fungal pathogens. Candida and Candidiasis: Washington, DC: ASM Press, 2012:243-59.
-
(2012)
Candida and Candidiasis
, pp. 243-259
-
-
Zordan, R.1
Cormack, B.2
-
40
-
-
84892613008
-
Niche-Specific Requirement for Hyphal Wall protein 1 in Virulence of Candida albicans
-
J.F.Staab, K.Datta, P.Rhee. Niche-Specific Requirement for Hyphal Wall protein 1 in Virulence of Candida albicans. PloS One 2013; 8:e80842
-
(2013)
PloS One
, vol.8
, pp. e80842
-
-
Staab, J.F.1
Datta, K.2
Rhee, P.3
-
41
-
-
0345391036
-
Adhesive and mammalian transglutaminase substrate properties of Candida albicans Hwp1
-
10066176
-
J.F.Staab, S.D.Bradway, P.L.Fidel, P.Sundstrom. Adhesive and mammalian transglutaminase substrate properties of Candida albicans Hwp1. Science 1999; 283:1535-8; PMID:10066176; http://dx.doi.org/10.1126/science.283.5407.1535
-
(1999)
Science
, vol.283
, pp. 1535-1538
-
-
Staab, J.F.1
Bradway, S.D.2
Fidel, P.L.3
Sundstrom, P.4
-
42
-
-
0037083242
-
Essential role of the Candida albicans transglutaminase substrate, hyphal wall protein 1, in lethal oroesophageal candidiasis in immunodeficient mice
-
11865405
-
P.Sundstrom, E.Balish, C.M.Allen. Essential role of the Candida albicans transglutaminase substrate, hyphal wall protein 1, in lethal oroesophageal candidiasis in immunodeficient mice. J Infect Dis 2002; 185:521-30; PMID:11865405; http://dx.doi.org/10.1086/338836
-
(2002)
J Infect Dis
, vol.185
, pp. 521-530
-
-
Sundstrom, P.1
Balish, E.2
Allen, C.M.3
-
43
-
-
0347694653
-
EAP1, a Candida albicans gene involved in binding human epithelial cells
-
14665461
-
F.Li, S.P.Palecek. EAP1, a Candida albicans gene involved in binding human epithelial cells. Eukaryotic Cell 2003; 2:1266-73; PMID:14665461; http://dx.doi.org/10.1128/EC.2.6.1266-1273.2003
-
(2003)
Eukaryotic Cell
, vol.2
, pp. 1266-1273
-
-
Li, F.1
Palecek, S.P.2
-
44
-
-
44349116190
-
Distinct domains of the Candida albicans adhesin Eap1p mediate cell-cell and cell-substrate interactions
-
18375812
-
F.Li, S.P.Palecek. Distinct domains of the Candida albicans adhesin Eap1p mediate cell-cell and cell-substrate interactions. Microbiology 2008; 154:1193-203; PMID:18375812; http://dx.doi.org/10.1099/mic.0.2007/013789-0
-
(2008)
Microbiology
, vol.154
, pp. 1193-1203
-
-
Li, F.1
Palecek, S.P.2
-
45
-
-
69249220369
-
Disruption of the GPI protein-encoding gene IFF4 of Candida albicans results in decreased adherence and virulence
-
19347602
-
M.Kempf, J.Cottin, P.Licznar, C.Lefrançois, R.Robert, V.Apaire-Marchais. Disruption of the GPI protein-encoding gene IFF4 of Candida albicans results in decreased adherence and virulence. Mycopathologia 2009; 168:73-7; PMID:19347602; http://dx.doi.org/10.1007/s11046-009-9201-0
-
(2009)
Mycopathologia
, vol.168
, pp. 73-77
-
-
Kempf, M.1
Cottin, J.2
Licznar, P.3
Lefrançois, C.4
Robert, R.5
Apaire-Marchais, V.6
-
46
-
-
34250647903
-
Disruption of Candida albicans IFF4 gene involves modifications of the cell electrical surface properties
-
17481864
-
M.Kempf, V.Apaire-Marchais, P.Saulnier, P.Licznar, C.Lefrancois, R.Robert, J.Cottin. Disruption of Candida albicans IFF4 gene involves modifications of the cell electrical surface properties. Colloid Surface B 2007; 58:250-5; PMID:17481864; http://dx.doi.org/10.1016/j.colsurfb.2007.03.017
-
(2007)
Colloid Surface B
, vol.58
, pp. 250-255
-
-
Kempf, M.1
Apaire-Marchais, V.2
Saulnier, P.3
Licznar, P.4
Lefrancois, C.5
Robert, R.6
Cottin, J.7
-
47
-
-
79251482757
-
Host cell invasion and virulence mediated by Candida albicans Ssa1
-
21085601
-
J.N.Sun, N.V.Solis, Q.T.Phan, J.S.Bajwa, H.Kashleva, A.Thompson, Y.Liu, A.Dongari-Bagtzoglou, M.Edgerton, S.G.Filler. Host cell invasion and virulence mediated by Candida albicans Ssa1. PLoS Pathog 2010; 6:e1001181; PMID:21085601
-
(2010)
PLoS Pathog
, vol.6
, pp. e1001181
-
-
Sun, J.N.1
Solis, N.V.2
Phan, Q.T.3
Bajwa, J.S.4
Kashleva, H.5
Thompson, A.6
Liu, Y.7
Dongari-Bagtzoglou, A.8
Edgerton, M.9
Filler, S.G.10
-
49
-
-
0142011066
-
Allelic variation in the contiguous loci encoding Candida albicans ALS5, ALS1 and ALS9
-
14523127
-
X.Zhao, C.Pujol, D.R.Soll, L.L.Hoyer. Allelic variation in the contiguous loci encoding Candida albicans ALS5, ALS1 and ALS9. Microbiology 2003; 149:2947-60; PMID:14523127; http://dx.doi.org/10.1099/mic.0.26495-0
-
(2003)
Microbiology
, vol.149
, pp. 2947-2960
-
-
Zhao, X.1
Pujol, C.2
Soll, D.R.3
Hoyer, L.L.4
-
50
-
-
79951490058
-
Candida albicans Als3, a multifunctional adhesin and invasin
-
21115738
-
Y.Liu, S.G.Filler. Candida albicans Als3, a multifunctional adhesin and invasin. Eukaryotic Cell 2011; 10:168-73; PMID:21115738; http://dx.doi.org/10.1128/EC.00279-10
-
(2011)
Eukaryotic Cell
, vol.10
, pp. 168-173
-
-
Liu, Y.1
Filler, S.G.2
-
51
-
-
3142677978
-
Functional and structural diversity in the Als protein family of Candida albicans
-
15128742
-
D.C.Sheppard, M.R.Yeaman, W.H.Welch, Q.T.Phan, Y.Fu, A.S.Ibrahim, S.G.Filler, M.Zhang, A.J.Waring, J.E.EdwardsJr. Functional and structural diversity in the Als protein family of Candida albicans. J Biol Chem 2004; 279:30480-9; PMID:15128742; http://dx.doi.org/10.1074/jbc.M401929200
-
(2004)
J Biol Chem
, vol.279
, pp. 30480-30489
-
-
Sheppard, D.C.1
Yeaman, M.R.2
Welch, W.H.3
Phan, Q.T.4
Fu, Y.5
Ibrahim, A.S.6
Filler, S.G.7
Zhang, M.8
Waring, A.J.9
Edwards, J.E.10
-
52
-
-
33947273030
-
Als3 is a Candida albicans invasin that binds to cadherins and induces endocytosis by host cells
-
17311474
-
Q.T.Phan, C.L.Myers, Y.Fu, D.C.Sheppard, M.R.Yeaman, W.H.Welch, A.S.Ibrahim, J.E.EdwardsJr, S.G.Filler. Als3 is a Candida albicans invasin that binds to cadherins and induces endocytosis by host cells. Plos Biol 2007; 5:543-57; PMID:17311474; http://dx.doi.org/10.1371/journal.pbio.0050064
-
(2007)
Plos Biol
, vol.5
, pp. 543-557
-
-
Phan, Q.T.1
Myers, C.L.2
Fu, Y.3
Sheppard, D.C.4
Yeaman, M.R.5
Welch, W.H.6
Ibrahim, A.S.7
Edwards, J.E.8
Filler, S.G.9
-
53
-
-
67549111257
-
-
7th ed, New York: McGraw-Hill
-
S.Verma, M.Heffernan. Superficial fungal infection: Dermatophytosis, onychomycosis, tinea nigra, piedra. Fitzpatrick's dermatology in general medicine 7th ed New York: McGraw-Hill 2008; 1815.
-
(2008)
Superficial fungal infection: Dermatophytosis, onychomycosis, tinea nigra, piedra. Fitzpatrick's dermatology in general medicine
, pp. 1815
-
-
Verma, S.1
Heffernan, M.2
-
54
-
-
77649229368
-
Cellular interactions of Candida albicans with human oral epithelial cells and enterocytes
-
19863559
-
F.Dalle, B.Wachtler, C.L'Ollivier, G.Holland, N.Bannert, D.Wilson, C.Labruère, A.Bonnin, B.Hube. Cellular interactions of Candida albicans with human oral epithelial cells and enterocytes. Cell Microbiol 2010; 12:248-71; PMID:19863559; http://dx.doi.org/10.1111/j.1462-5822.2009.01394.x
-
(2010)
Cell Microbiol
, vol.12
, pp. 248-271
-
-
Dalle, F.1
Wachtler, B.2
L'Ollivier, C.3
Holland, G.4
Bannert, N.5
Wilson, D.6
Labruère, C.7
Bonnin, A.8
Hube, B.9
-
55
-
-
77950609407
-
Interactions of Candida albicans with epithelial cells
-
19919567
-
W.Zhu, S.G.Filler. Interactions of Candida albicans with epithelial cells. Cell Microbiol 2010; 12:273-82; PMID:19919567; http://dx.doi.org/10.1111/j.1462-5822.2009.01412.x
-
(2010)
Cell Microbiol
, vol.12
, pp. 273-282
-
-
Zhu, W.1
Filler, S.G.2
-
56
-
-
34248370072
-
Mucosal tissue invasion by Candida albicans is associated with E-cadherin degradation, mediated by transcription factor Rim101p and protease Sap5p
-
17339363
-
C.C.Villar, H.Kashleva, C.J.Nobile, A.P.Mitchell, A.Dongari-Bagtzoglou. Mucosal tissue invasion by Candida albicans is associated with E-cadherin degradation, mediated by transcription factor Rim101p and protease Sap5p. Infect Immun 2007; 75:2126-35; PMID:17339363; http://dx.doi.org/10.1128/IAI.00054-07
-
(2007)
Infect Immun
, vol.75
, pp. 2126-2135
-
-
Villar, C.C.1
Kashleva, H.2
Nobile, C.J.3
Mitchell, A.P.4
Dongari-Bagtzoglou, A.5
-
57
-
-
84878749300
-
Candida albicans secreted aspartic proteases 4–6 induce apoptosis of epithelial cells by a novel Trojan horse mechanism
-
23430844
-
H.Wu, D.Downs, K.Ghosh, A.K.Ghosh, P.Staib, M.Monod, J.Tang. Candida albicans secreted aspartic proteases 4–6 induce apoptosis of epithelial cells by a novel Trojan horse mechanism. FASEB J 2013; 27:2132-44; PMID:23430844; http://dx.doi.org/10.1096/fj.12-214353
-
(2013)
FASEB J
, vol.27
, pp. 2132-2144
-
-
Wu, H.1
Downs, D.2
Ghosh, K.3
Ghosh, A.K.4
Staib, P.5
Monod, M.6
Tang, J.7
-
58
-
-
84865278725
-
Recent progress in vaccines against fungal diseases
-
22564747
-
A.Cassone, A.Casadevall. Recent progress in vaccines against fungal diseases. Curr Opin Microbiol 2012; 15:427-33; PMID:22564747; http://dx.doi.org/10.1016/j.mib.2012.04.004
-
(2012)
Curr Opin Microbiol
, vol.15
, pp. 427-433
-
-
Cassone, A.1
Casadevall, A.2
-
59
-
-
84944449715
-
Vaccines in the treatment of invasive candidiasis
-
25559739
-
X.J.Wang, X.Sui, L.Yan, Y.Wang, Y.B.Cao, Y.Y.Jiang. Vaccines in the treatment of invasive candidiasis. Virulence 2015; 6:309-15; PMID:25559739; http://dx.doi.org/10.1080/21505594.2014.1000752
-
(2015)
Virulence
, vol.6
, pp. 309-315
-
-
Wang, X.J.1
Sui, X.2
Yan, L.3
Wang, Y.4
Cao, Y.B.5
Jiang, Y.Y.6
-
60
-
-
84936970609
-
Secretory aspartyl proteinases cause vaginitis and can mediate vaginitis caused by Candida albicans in mice
-
26037125
-
E.Pericolini, E.Gabrielli, M.Amacker, L.Kasper, E.Roselletti, E.Luciano, S.Sabbatini, M.Kaeser, C.Moser, B.Hube, et al. Secretory aspartyl proteinases cause vaginitis and can mediate vaginitis caused by Candida albicans in mice. MBio 2015; 6:e00724-15; PMID:26037125; http://dx.doi.org/10.1128/mBio.00724-15
-
(2015)
MBio
, vol.6
, pp. 715-00724
-
-
Pericolini, E.1
Gabrielli, E.2
Amacker, M.3
Kasper, L.4
Roselletti, E.5
Luciano, E.6
Sabbatini, S.7
Kaeser, M.8
Moser, C.9
Hube, B.10
-
61
-
-
84862020845
-
A virosomal vaccine against candidal vaginitis: immunogenicity, efficacy and safety profile in animal models
-
22561143
-
F.De Bernardis, M.Amacker, S.Arancia, S.Sandini, C.Gremion, R.Zurbriggen, C.Moser, A.Cassone. A virosomal vaccine against candidal vaginitis: immunogenicity, efficacy and safety profile in animal models. Vaccine 2012; 30:4490-8; PMID:22561143; http://dx.doi.org/10.1016/j.vaccine.2012.04.069
-
(2012)
Vaccine
, vol.30
, pp. 4490-4498
-
-
De Bernardis, F.1
Amacker, M.2
Arancia, S.3
Sandini, S.4
Gremion, C.5
Zurbriggen, R.6
Moser, C.7
Cassone, A.8
-
62
-
-
84982959965
-
-
B.J.Spellberg, V.Ibrahim As Fau-Avenissian, V.Avenissian, S.G.Fau-Filler, C.L.Filler Sg Fau-Myers, Y.Myers Cl Fau-Fu, Y.Fu, J.E.Fau-EdwardsJr. The anti-Candida albicans vaccine composed of the recombinant N terminus of Als1p reduces fungal burden and improves survival in both immunocompetent and immunocompromised mice.
-
The anti-Candida albicans vaccine composed of the recombinant N terminus of Als1p reduces fungal burden and improves survival in both immunocompetent and immunocompromised mice
-
-
Spellberg, B.J.1
Ibrahim As Fau-Avenissian, V.2
Avenissian, V.3
Fau-Filler, S.G.4
Filler Sg Fau-Myers, C.L.5
Myers Cl Fau-Fu, Y.6
Fu, Y.7
Fau-Edwards, J.E.8
-
63
-
-
74549186432
-
Th1-Th17 cells mediate protective adaptive immunity against Staphylococcus aureus and Candida albicans infection in mice
-
20041174
-
L.Lin, A.S.Ibrahim, X.Xu, J.M.Farber, V.Avanesian, B.Baquir, Y.Fu, S.W.French, J.E.EdwardsJr, B.Spellberg. Th1-Th17 cells mediate protective adaptive immunity against Staphylococcus aureus and Candida albicans infection in mice. PLoS Pathogens 2009; 5:e1000703; PMID:20041174; http://dx.doi.org/10.1371/journal.ppat.1000703
-
(2009)
PLoS Pathogens
, vol.5
, pp. e1000703
-
-
Lin, L.1
Ibrahim, A.S.2
Xu, X.3
Farber, J.M.4
Avanesian, V.5
Baquir, B.6
Fu, Y.7
French, S.W.8
Edwards, J.E.9
Spellberg, B.10
-
64
-
-
33746124945
-
Efficacy of the anti-Candida rAls3p-N or rAls1p-N vaccines against disseminated and mucosal candidiasis
-
16779733
-
B.J.Spellberg, A.S.Ibrahim, V.Avanesian, Y.Fu, C.Myers, Q.T.Phan, S.G.Filler, M.R.Yeaman, J.E.EdwardsJr. Efficacy of the anti-Candida rAls3p-N or rAls1p-N vaccines against disseminated and mucosal candidiasis. J Infect Dis 2006; 194:256-60; PMID:16779733; http://dx.doi.org/10.1086/504691
-
(2006)
J Infect Dis
, vol.194
, pp. 256-260
-
-
Spellberg, B.J.1
Ibrahim, A.S.2
Avanesian, V.3
Fu, Y.4
Myers, C.5
Phan, Q.T.6
Filler, S.G.7
Yeaman, M.R.8
Edwards, J.E.9
-
65
-
-
84870505993
-
NDV-3, a recombinant alum-adjuvanted vaccine for Candida and Staphylococcus aureus, is safe and immunogenic in healthy adults
-
23099329
-
C.S.Schmidt, C.J.White, A.S.Ibrahim, S.G.Filler, Y.Fu, M.R.Yeaman, J.E.EdwardsJr, J.P.HennesseyJr. NDV-3, a recombinant alum-adjuvanted vaccine for Candida and Staphylococcus aureus, is safe and immunogenic in healthy adults. Vaccine 2012; 30:7594-600; PMID:23099329; http://dx.doi.org/10.1016/j.vaccine.2012.10.038
-
(2012)
Vaccine
, vol.30
, pp. 7594-7600
-
-
Schmidt, C.S.1
White, C.J.2
Ibrahim, A.S.3
Filler, S.G.4
Fu, Y.5
Yeaman, M.R.6
Edwards, J.E.7
Hennessey, J.P.8
-
66
-
-
84886799653
-
NDV-3 protects mice from vulvovaginal candidiasis through T- and B-cell immune response
-
24063977
-
A.S.Ibrahim, G.P.S.Luo, T.Gebremariam, H.Lee, C.S.Schmidt, J.P.Hennessey, S.W.French, M.R.Yeaman, S.G.Filler, J.E.EdwardsJr. NDV-3 protects mice from vulvovaginal candidiasis through T- and B-cell immune response. Vaccine 2013; 31:5549-56; PMID:24063977; http://dx.doi.org/10.1016/j.vaccine.2013.09.016
-
(2013)
Vaccine
, vol.31
, pp. 5549-5556
-
-
Ibrahim, A.S.1
Luo, G.P.S.2
Gebremariam, T.3
Lee, H.4
Schmidt, C.S.5
Hennessey, J.P.6
French, S.W.7
Yeaman, M.R.8
Filler, S.G.9
Edwards, J.E.10
-
67
-
-
79954576530
-
Epithelial cell innate response to Candida albicans
-
21441481
-
J.Naglik, D.Moyes. Epithelial cell innate response to Candida albicans. Adv Dental Res 2011; 23:50-5; PMID:21441481; http://dx.doi.org/10.1177/0022034511399285
-
(2011)
Adv Dental Res
, vol.23
, pp. 50-55
-
-
Naglik, J.1
Moyes, D.2
-
68
-
-
33846064340
-
Toll-like receptors and their role in periodontal health and disease
-
17214834
-
R.Mahanonda, S.Pichyangkul. Toll-like receptors and their role in periodontal health and disease. Periodontol 2000 2007; 43:41-55; PMID:17214834
-
(2007)
Periodontol 2000
, vol.43
, pp. 41-55
-
-
Mahanonda, R.1
Pichyangkul, S.2
-
69
-
-
77953744556
-
Epithelial cells and innate antifungal defense
-
20395411
-
G.Weindl, J.Wagener, M.Schaller. Epithelial cells and innate antifungal defense. J Dental Res 2010; 89:666-75; PMID:20395411; http://dx.doi.org/10.1177/0022034510368784
-
(2010)
J Dental Res
, vol.89
, pp. 666-675
-
-
Weindl, G.1
Wagener, J.2
Schaller, M.3
-
70
-
-
33745389961
-
Toll-like receptors, NOD1, and NOD2 in oral epithelial cells
-
16723649
-
Y.Sugawara, A.Uehara, Y.Fujimoto, S.Kusumoto, K.Fukase, K.Shibata, S.Sugawara, T.Sasano, H.Takada. Toll-like receptors, NOD1, and NOD2 in oral epithelial cells. J Dent Res 2006; 85:524-9; PMID:16723649; http://dx.doi.org/10.1177/154405910608500609
-
(2006)
J Dent Res
, vol.85
, pp. 524-529
-
-
Sugawara, Y.1
Uehara, A.2
Fujimoto, Y.3
Kusumoto, S.4
Fukase, K.5
Shibata, K.6
Sugawara, S.7
Sasano, T.8
Takada, H.9
-
71
-
-
84892963558
-
Vaginal epithelial cell-derived S100 alarmins induced by Candida albicans via pattern recognition receptor interactions are sufficient but not necessary for the acute neutrophil response during experimental vaginal candidiasis
-
24478092
-
J.Yano, G.E.Palmer, K.E.Eberle, B.M.Peters, T.Vogl, A.N.McKenzie, P.L.FidelJr. Vaginal epithelial cell-derived S100 alarmins induced by Candida albicans via pattern recognition receptor interactions are sufficient but not necessary for the acute neutrophil response during experimental vaginal candidiasis. Infect Immun 2014; 82:783-92; PMID:24478092; http://dx.doi.org/10.1128/IAI.00861-13
-
(2014)
Infect Immun
, vol.82
, pp. 783-792
-
-
Yano, J.1
Palmer, G.E.2
Eberle, K.E.3
Peters, B.M.4
Vogl, T.5
McKenzie, A.N.6
Fidel, P.L.7
-
72
-
-
36849088141
-
Human epithelial cells establish direct antifungal defense through TLR4-mediated signaling
-
17992260
-
G.Weindl, J.R.Naglik, S.Kaesler, T.Biedermann, B.Hube, H.C.Korting, M.Schaller. Human epithelial cells establish direct antifungal defense through TLR4-mediated signaling. J Clin Invest 2007; 117:3664-72; PMID:17992260
-
(2007)
J Clin Invest
, vol.117
, pp. 3664-3672
-
-
Weindl, G.1
Naglik, J.R.2
Kaesler, S.3
Biedermann, T.4
Hube, B.5
Korting, H.C.6
Schaller, M.7
-
73
-
-
77956583415
-
A biphasic innate immune MAPK response discriminates between the yeast and hyphal forms of Candida albicans in epithelial cells
-
20833374
-
D.L.Moyes, M.Runglall, C.Murciano, C.Shen, D.Nayar, S.Thavaraj, A.Kohli, A.Islam, H.Mora-Montes, S.J.Challacombe, et al. A biphasic innate immune MAPK response discriminates between the yeast and hyphal forms of Candida albicans in epithelial cells. Cell Host Microbe 2010; 8:225-35; PMID:20833374; http://dx.doi.org/10.1016/j.chom.2010.08.002
-
(2010)
Cell Host Microbe
, vol.8
, pp. 225-235
-
-
Moyes, D.L.1
Runglall, M.2
Murciano, C.3
Shen, C.4
Nayar, D.5
Thavaraj, S.6
Kohli, A.7
Islam, A.8
Mora-Montes, H.9
Challacombe, S.J.10
-
74
-
-
80555129533
-
Candida albicans yeast and hyphae are discriminated by MAPK signaling in vaginal epithelial cells
-
22087232
-
D.L.Moyes, C.Murciano, M.Runglall, A.Islam, S.Thavaraj, J.R.Naglik. Candida albicans yeast and hyphae are discriminated by MAPK signaling in vaginal epithelial cells. Plos One 2011; 6:e26580; PMID:22087232; http://dx.doi.org/10.1371/journal.pone.0026580
-
(2011)
Plos One
, vol.6
, pp. e26580
-
-
Moyes, D.L.1
Murciano, C.2
Runglall, M.3
Islam, A.4
Thavaraj, S.5
Naglik, J.R.6
-
75
-
-
84900536186
-
Protection against epithelial damage during Candida albicans infection is mediated by PI3K/Akt and mammalian target of rapamycin signaling
-
24357630
-
D.L.Moyes, C.G.Shen, C.Murciano, M.Runglall, J.P.Richardson, M.Arno, E.Aldecoa-Otalora, J.R.Naglik. Protection against epithelial damage during Candida albicans infection is mediated by PI3K/Akt and mammalian target of rapamycin signaling. J Infect Dis 2014; 209:1816-26; PMID:24357630; http://dx.doi.org/10.1093/infdis/jit824
-
(2014)
J Infect Dis
, vol.209
, pp. 1816-1826
-
-
Moyes, D.L.1
Shen, C.G.2
Murciano, C.3
Runglall, M.4
Richardson, J.P.5
Arno, M.6
Aldecoa-Otalora, E.7
Naglik, J.R.8
-
76
-
-
84982878677
-
Oropharyngeal candidiasis in HIV infection: analysis of impaired mucosal immune response to Candida albicans in mice expressing the HIV-1 transgene
-
26110288
-
L.de Repentigny, M.Goupil, P.Jolicoeur. Oropharyngeal candidiasis in HIV infection: analysis of impaired mucosal immune response to Candida albicans in mice expressing the HIV-1 transgene. Pathogens 2015; 4:406-21; PMID:26110288; http://dx.doi.org/10.3390/pathogens4020406
-
(2015)
Pathogens
, vol.4
, pp. 406-421
-
-
de Repentigny, L.1
Goupil, M.2
Jolicoeur, P.3
-
77
-
-
0036229750
-
Infection of human oral epithelia with Candida species induces cytokine expression correlated to the degree of virulence
-
11918712
-
M.Schaller, R.Mailhammer, G.Grassl, C.A.Sander, B.Hube, H.C.Korting. Infection of human oral epithelia with Candida species induces cytokine expression correlated to the degree of virulence. J Investigat Dermatol 2002; 118:652-7; PMID:11918712; http://dx.doi.org/10.1046/j.1523-1747.2002.01699.x
-
(2002)
J Investigat Dermatol
, vol.118
, pp. 652-657
-
-
Schaller, M.1
Mailhammer, R.2
Grassl, G.3
Sander, C.A.4
Hube, B.5
Korting, H.C.6
-
78
-
-
84907958959
-
Oral candidosis in relation to oral immunity
-
24118267
-
L.Feller, R.A.Khammissa, R.Chandran, M.Altini, J.Lemmer. Oral candidosis in relation to oral immunity. J Oral Pathol Med: Off Pub Int Assoc Oral Pathologists Am Acad Oral Pathol 2014; 43:563-9; PMID:24118267; http://dx.doi.org/10.1111/jop.12120
-
(2014)
J Oral Pathol Med: Off Pub Int Assoc Oral Pathologists Am Acad Oral Pathol
, vol.43
, pp. 563-569
-
-
Feller, L.1
Khammissa, R.A.2
Chandran, R.3
Altini, M.4
Lemmer, J.5
-
79
-
-
0036156138
-
Cytokine and chemokine production by human oral and vaginal epithelial cells in response to Candida albicans
-
11796585
-
C.Steele, P.L.Fidel, Jr. Cytokine and chemokine production by human oral and vaginal epithelial cells in response to Candida albicans. Infect Immun 2002; 70:577-83; PMID:11796585; http://dx.doi.org/10.1128/IAI.70.2.577-583.2002
-
(2002)
Infect Immun
, vol.70
, pp. 577-583
-
-
Steele, C.1
Fidel, P.L.2
-
80
-
-
58149252357
-
Host defense peptides in the oral cavity and the lung: similarities and differences
-
18809744
-
G.Diamond, N.Beckloff, L.K.Ryan. Host defense peptides in the oral cavity and the lung: similarities and differences. J Dental Res 2008; 87:915-27; PMID:18809744; http://dx.doi.org/10.1177/154405910808701011
-
(2008)
J Dental Res
, vol.87
, pp. 915-927
-
-
Diamond, G.1
Beckloff, N.2
Ryan, L.K.3
-
81
-
-
63049138176
-
Th17 cells and IL-17 receptor signaling are essential for mucosal host defense against oral candidiasis
-
19204111
-
H.R.Conti, F.Shen, N.Nayyar, E.Stocum, J.N.Sun, M.J.Lindemann, A.W.Ho, J.H.Hai, J.J.Yu, J.W.Jung, et al. Th17 cells and IL-17 receptor signaling are essential for mucosal host defense against oral candidiasis. J Exp Med 2009; 206:299-311; PMID:19204111; http://dx.doi.org/10.1084/jem.20081463
-
(2009)
J Exp Med
, vol.206
, pp. 299-311
-
-
Conti, H.R.1
Shen, F.2
Nayyar, N.3
Stocum, E.4
Sun, J.N.5
Lindemann, M.J.6
Ho, A.W.7
Hai, J.H.8
Yu, J.J.9
Jung, J.W.10
-
82
-
-
77953802446
-
IL-22 defines a novel immune pathway of antifungal resistance
-
20445503
-
A.De Luca, T.Zelante, C.D'Angelo, S.Zagarella, F.Fallarino, A.Spreca, R.G.Iannitti, P.Bonifazi, J.C.Renauld, F.Bistoni, et al. IL-22 defines a novel immune pathway of antifungal resistance. Mucosal Immunol 2010; 3:361-73; PMID:20445503; http://dx.doi.org/10.1038/mi.2010.22
-
(2010)
Mucosal Immunol
, vol.3
, pp. 361-373
-
-
De Luca, A.1
Zelante, T.2
D'Angelo, C.3
Zagarella, S.4
Fallarino, F.5
Spreca, A.6
Iannitti, R.G.7
Bonifazi, P.8
Renauld, J.C.9
Bistoni, F.10
-
83
-
-
75849163516
-
Hgc1 mediates dynamic Candida albicans-endothelium adhesion events during circulation
-
20023069
-
D.Wilson, B.Hube. Hgc1 mediates dynamic Candida albicans-endothelium adhesion events during circulation. Eukaryotic Cell 2010; 9:278-87; PMID:20023069; http://dx.doi.org/10.1128/EC.00307-09
-
(2010)
Eukaryotic Cell
, vol.9
, pp. 278-287
-
-
Wilson, D.1
Hube, B.2
-
84
-
-
34547911396
-
Extra-and intracellular innate immune recognition in endothelial cells
-
17721613
-
B.Opitz, S.Hippenstiel, J.Eitel, N.Suttorp. Extra-and intracellular innate immune recognition in endothelial cells. Thromb Haemost 2007; 98:319; PMID:17721613
-
(2007)
Thromb Haemost
, vol.98
, pp. 319
-
-
Opitz, B.1
Hippenstiel, S.2
Eitel, J.3
Suttorp, N.4
-
85
-
-
0034646695
-
Bacterial lipopolysaccharide activates NF-κB through toll-like receptor 4 (TLR-4) in cultured human dermal endothelial cells differential expression of TLR-4 and TLR-2 in endothelial cells
-
10753909
-
E.Faure, O.Equils, P.A.Sieling, L.Thomas, F.X.Zhang, C.J.Kirschning, N.Polentarutti, M.Muzio, M.Arditi. Bacterial lipopolysaccharide activates NF-κB through toll-like receptor 4 (TLR-4) in cultured human dermal endothelial cells differential expression of TLR-4 and TLR-2 in endothelial cells. J Biolog Chem 2000; 275:11058-63; PMID:10753909; http://dx.doi.org/10.1074/jbc.275.15.11058
-
(2000)
J Biolog Chem
, vol.275
, pp. 11058-11063
-
-
Faure, E.1
Equils, O.2
Sieling, P.A.3
Thomas, L.4
Zhang, F.X.5
Kirschning, C.J.6
Polentarutti, N.7
Muzio, M.8
Arditi, M.9
-
86
-
-
84898762485
-
Candida albicans uses the surface protein Gpm1 to attach to human endothelial cells and to keratinocytes via the adhesive protein vitronectin
-
24625558
-
C.M.Lopez, R.Wallich, K.Riesbeck, C.Skerka, P.F.Zipfel. Candida albicans uses the surface protein Gpm1 to attach to human endothelial cells and to keratinocytes via the adhesive protein vitronectin. PloS One 2014; 9:e90796; PMID:24625558; http://dx.doi.org/10.1371/journal.pone.0090796
-
(2014)
PloS One
, vol.9
, pp. e90796
-
-
Lopez, C.M.1
Wallich, R.2
Riesbeck, K.3
Skerka, C.4
Zipfel, P.F.5
-
87
-
-
15444376000
-
N-cadherin mediates endocytosis of Candida albicans by endothelial cells
-
15632157
-
Q.T.Phan, R.A.Fratti, N.V.Prasadarao, J.E.Edwards, S.G.Filler. N-cadherin mediates endocytosis of Candida albicans by endothelial cells. J Biol Chem 2005; 280:10455-61; PMID:15632157; http://dx.doi.org/10.1074/jbc.M412592200
-
(2005)
J Biol Chem
, vol.280
, pp. 10455-10461
-
-
Phan, Q.T.1
Fratti, R.A.2
Prasadarao, N.V.3
Edwards, J.E.4
Filler, S.G.5
-
88
-
-
84891609530
-
Role of endothelial cell septin 7 in the endocytosis of Candida albicans
-
24345743
-
Q.T.Phan, D.K.Eng, S.Mostowy, H.Park, P.Cossart, S.G.Filler. Role of endothelial cell septin 7 in the endocytosis of Candida albicans. MBio 2013; 4:e00542-13; PMID:24345743; http://dx.doi.org/10.1128/mBio.00542-13
-
(2013)
MBio
, vol.4
, pp. 513-00542
-
-
Phan, Q.T.1
Eng, D.K.2
Mostowy, S.3
Park, H.4
Cossart, P.5
Filler, S.G.6
-
89
-
-
84891597639
-
Altered dynamics of Candida albicans phagocytosis by macrophages and PMNs when both phagocyte subsets are present
-
24169578
-
F.M.Rudkin, J.M.Bain, C.Walls, L.E.Lewis, N.A.R.Gow, L.P.Erwig. Altered dynamics of Candida albicans phagocytosis by macrophages and PMNs when both phagocyte subsets are present. MBio 2013; 4:e00810-13; PMID:24169578; http://dx.doi.org/10.1128/mBio.00810-13
-
(2013)
MBio
, vol.4
, pp. e00810-e813
-
-
Rudkin, F.M.1
Bain, J.M.2
Walls, C.3
Lewis, L.E.4
Gow, N.A.R.5
Erwig, L.P.6
-
90
-
-
73649099522
-
Neutrophil extracellular traps contain calprotectin, a cytosolic protein complex involved in host defense against Candida albicans
-
19876394
-
C.F.Urban, D.Ermert, M.Schmid, U.Abu-Abed, C.Goosmann, W.Nacken, V.Brinkmann, P.R.Jungblut, A.Zychlinsky. Neutrophil extracellular traps contain calprotectin, a cytosolic protein complex involved in host defense against Candida albicans. PLoS Pathogens 2009; 5:e1000639; PMID:19876394; http://dx.doi.org/10.1371/journal.ppat.1000639
-
(2009)
PLoS Pathogens
, vol.5
, pp. e1000639
-
-
Urban, C.F.1
Ermert, D.2
Schmid, M.3
Abu-Abed, U.4
Goosmann, C.5
Nacken, W.6
Brinkmann, V.7
Jungblut, P.R.8
Zychlinsky, A.9
-
91
-
-
84871372741
-
Cellular responses of Candida albicans to phagocytosis and the extracellular activities of neutrophils are critical to counteract carbohydrate starvation, oxidative and nitrosative stress
-
23285201
-
P.Miramon, C.Dunker, H.Windecker, I.M.Bohovych, A.J.Brown, O.Kurzai, B.Hube. Cellular responses of Candida albicans to phagocytosis and the extracellular activities of neutrophils are critical to counteract carbohydrate starvation, oxidative and nitrosative stress. Plos One 2012; 7:e52850; PMID:23285201; http://dx.doi.org/10.1371/journal.pone.0052850
-
(2012)
Plos One
, vol.7
, pp. e52850
-
-
Miramon, P.1
Dunker, C.2
Windecker, H.3
Bohovych, I.M.4
Brown, A.J.5
Kurzai, O.6
Hube, B.7
-
92
-
-
33748121115
-
Interleukin-6 and chronic inflammation
-
16899107
-
C.Gabay. Interleukin-6 and chronic inflammation. Arthritis Res Ther 2006; 8:S3; PMID:16899107; http://dx.doi.org/10.1186/ar1917
-
(2006)
Arthritis Res Ther
, vol.8
, pp. S3
-
-
Gabay, C.1
-
93
-
-
0032994870
-
Mucosal and systemic candidiasis in IL-8Rh-/-BALB/c mice
-
E.Balish, R.D.Wagner, A.Vazquez-Torres, J.Jones-Carson, C.Pierson, T.Warner. Mucosal and systemic candidiasis in IL-8Rh-/-BALB/c mice. J Leukocyte Biol 1999; 66:144-50
-
(1999)
J Leukocyte Biol
, vol.66
, pp. 144-150
-
-
Balish, E.1
Wagner, R.D.2
Vazquez-Torres, A.3
Jones-Carson, J.4
Pierson, C.5
Warner, T.6
-
94
-
-
3242814586
-
Requirement of interleukin-17A for systemic anti-Candida albicans host defense in mice
-
15243941
-
W.Huang, L.Na, P.L.Fidel, P.Schwarzenberger. Requirement of interleukin-17A for systemic anti-Candida albicans host defense in mice. J Infect Dis 2004; 190:624-31; PMID:15243941; http://dx.doi.org/10.1086/422329
-
(2004)
J Infect Dis
, vol.190
, pp. 624-631
-
-
Huang, W.1
Na, L.2
Fidel, P.L.3
Schwarzenberger, P.4
-
95
-
-
4844224005
-
Polymorphonuclear leukocytes (PMNs) induce protective Th1-type cytokine epithelial responses in an in vitro model of oral candidosis
-
15347740
-
M.Schaller, U.Boeld, S.Oberbauer, G.Hamm, B.Hube, H.C.Korting. Polymorphonuclear leukocytes (PMNs) induce protective Th1-type cytokine epithelial responses in an in vitro model of oral candidosis. Microbiology 2004; 150:2807-13; PMID:15347740; http://dx.doi.org/10.1099/mic.0.27169-0
-
(2004)
Microbiology
, vol.150
, pp. 2807-2813
-
-
Schaller, M.1
Boeld, U.2
Oberbauer, S.3
Hamm, G.4
Hube, B.5
Korting, H.C.6
-
96
-
-
0026740918
-
Granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor
-
1375975
-
A.J.Wood, G.J.Lieschke, A.W.Burgess. Granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor. New Engl J Med 1992; 327:28-35; PMID:1375975; http://dx.doi.org/10.1056/NEJM199207023270106
-
(1992)
New Engl J Med
, vol.327
, pp. 28-35
-
-
Wood, A.J.1
Lieschke, G.J.2
Burgess, A.W.3
-
98
-
-
84868575830
-
Neutrophil-mediated inhibition of proinflammatory cytokine responses
-
23053514
-
M.S.Gresnigt, L.A.Joosten, I.Verschueren, J.W.van der Meer, M.G.Netea, C.A.Dinarello, F.L.van de Veerdonk. Neutrophil-mediated inhibition of proinflammatory cytokine responses. J Immunol 2012; 189:4806-15; PMID:23053514; http://dx.doi.org/10.4049/jimmunol.1103551
-
(2012)
J Immunol
, vol.189
, pp. 4806-4815
-
-
Gresnigt, M.S.1
Joosten, L.A.2
Verschueren, I.3
van der Meer, J.W.4
Netea, M.G.5
Dinarello, C.A.6
van de Veerdonk, F.L.7
-
99
-
-
32944463724
-
Neutrophil extracellular traps capture and kill Candida albicans yeast and hyphal forms
-
16548892
-
C.F.Urban, U.Reichard, V.Brinkmann, A.Zychlinsky. Neutrophil extracellular traps capture and kill Candida albicans yeast and hyphal forms. Cell Microbiol 2006; 8:668-76; PMID:16548892; http://dx.doi.org/10.1111/j.1462-5822.2005.00659.x
-
(2006)
Cell Microbiol
, vol.8
, pp. 668-676
-
-
Urban, C.F.1
Reichard, U.2
Brinkmann, V.3
Zychlinsky, A.4
-
100
-
-
84896802125
-
Rab27a is essential for the formation of neutrophil extracellular traps (NETs) in neutrophil-like differentiated HL60 cells
-
24404184
-
T.Kawakami, J.He, H.Morita, K.Yokoyama, H.Kaji, C.Tanaka, S.Suemori, K.Tohyama, Y.Tohyama. Rab27a is essential for the formation of neutrophil extracellular traps (NETs) in neutrophil-like differentiated HL60 cells. PloS One 2014; 9:e84704; PMID:24404184; http://dx.doi.org/10.1371/journal.pone.0084704
-
(2014)
PloS One
, vol.9
, pp. e84704
-
-
Kawakami, T.1
He, J.2
Morita, H.3
Yokoyama, K.4
Kaji, H.5
Tanaka, C.6
Suemori, S.7
Tohyama, K.8
Tohyama, Y.9
-
101
-
-
84859387081
-
Neutrophil function: from mechanisms to disease
-
22224774
-
B.Amulic, C.Cazalet, G.L.Hayes, K.D.Metzler, A.Zychlinsky. Neutrophil function: from mechanisms to disease. Ann Rev Immunol 2012; 30:459-89; PMID:22224774; http://dx.doi.org/10.1146/annurev-immunol-020711-074942
-
(2012)
Ann Rev Immunol
, vol.30
, pp. 459-489
-
-
Amulic, B.1
Cazalet, C.2
Hayes, G.L.3
Metzler, K.D.4
Zychlinsky, A.5
-
102
-
-
84902136675
-
Proteomic characterization of human proinflammatory M1 and anti-inflammatory M2 macrophages and their response to Candida albicans
-
24687989
-
J.A.Reales-Calderon, N.Aguilera-Montilla, A.L.Corbi, G.Molero, C.Gil. Proteomic characterization of human proinflammatory M1 and anti-inflammatory M2 macrophages and their response to Candida albicans. Proteomics 2014; 14:1503-18; PMID:24687989; http://dx.doi.org/10.1002/pmic.201300508
-
(2014)
Proteomics
, vol.14
, pp. 1503-1518
-
-
Reales-Calderon, J.A.1
Aguilera-Montilla, N.2
Corbi, A.L.3
Molero, G.4
Gil, C.5
-
103
-
-
37349015349
-
An integrated model of the recognition of Candida albicans by the innate immune system
-
18079743
-
M.G.Netea, G.D.Brown, B.J.Kullberg, N.A.Gow. An integrated model of the recognition of Candida albicans by the innate immune system. Nat Rev Microbiol 2008; 6:67-78; PMID:18079743; http://dx.doi.org/10.1038/nrmicro1815
-
(2008)
Nat Rev Microbiol
, vol.6
, pp. 67-78
-
-
Netea, M.G.1
Brown, G.D.2
Kullberg, B.J.3
Gow, N.A.4
-
104
-
-
84865119423
-
Candida albicans infection affords protection against reinfection via functional reprogramming of monocytes
-
22901542
-
J.Quintin, S.Saeed, J.H.A.Fau-Martens, J.MartensJh, E.J.Fau-Giamarellos-Bourboulis, E.Giamarellos-BourboulisEj, D.C.Fau-Ifrim, D.IfrimDc, C.Fau-Logie, C.Logie, et al. Candida albicans infection affords protection against reinfection via functional reprogramming of monocytes. Cell Host Microbe 2012; 12:223-32; PMID:22901542; http://dx.doi.org/10.1016/j.chom.2012.06.006
-
(2012)
Cell Host Microbe
, vol.12
, pp. 223-232
-
-
Quintin, J.1
Saeed, S.2
Fau-Martens, J.H.A.3
Martens, J.4
Fau-Giamarellos-Bourboulis, E.J.5
Giamarellos-Bourboulis, E.6
Fau-Ifrim, D.C.7
Ifrim, D.8
Fau-Logie, C.9
Logie, C.10
-
105
-
-
84895780697
-
Innate immune memory: towards a better understanding of host defense mechanisms
-
24637148
-
J.Quintin, S.C.Cheng, J.W.M.van der Meer, M.G.Netea. Innate immune memory: towards a better understanding of host defense mechanisms. Curr Opin Immunol 2014; 29:1-7; PMID:24637148; http://dx.doi.org/10.1016/j.coi.2014.02.006
-
(2014)
Curr Opin Immunol
, vol.29
, pp. 1-7
-
-
Quintin, J.1
Cheng, S.C.2
van der Meer, J.W.M.3
Netea, M.G.4
-
106
-
-
36749022208
-
Macrophage receptors implicated in the “adaptive” form of innate immunity
-
18023392
-
D.M.Bowdish, M.S.Loffredo, S.Mukhopadhyay, A.Mantovani, S.Gordon. Macrophage receptors implicated in the “adaptive” form of innate immunity. Microbes Infect / Institut Pasteur 2007; 9:1680-7; PMID:18023392; http://dx.doi.org/10.1016/j.micinf.2007.09.002
-
(2007)
Microbes Infect / Institut Pasteur
, vol.9
, pp. 1680-1687
-
-
Bowdish, D.M.1
Loffredo, M.S.2
Mukhopadhyay, S.3
Mantovani, A.4
Gordon, S.5
-
107
-
-
17144370549
-
Dectin-1 mediates macrophage recognition of Candida albicans yeast but not filaments
-
15729357
-
B.N.Gantner, R.M.Simmons, D.M.Underhill. Dectin-1 mediates macrophage recognition of Candida albicans yeast but not filaments. EMBO J 2005; 24:1277-86; PMID:15729357; http://dx.doi.org/10.1038/sj.emboj.7600594
-
(2005)
EMBO J
, vol.24
, pp. 1277-1286
-
-
Gantner, B.N.1
Simmons, R.M.2
Underhill, D.M.3
-
108
-
-
84879532977
-
Bruton's Tyrosine Kinase (BTK) and Vav1 contribute to Dectin1-dependent phagocytosis of Candida albicans in macrophages
-
23825946
-
K.Strijbis, F.G.Tafesse, G.D.Fairn, M.D.Witte, S.K.Dougan, N.Watson, E.Spooner, A.Esteban, V.K.Vyas, G.R.Fink, et al. Bruton's Tyrosine Kinase (BTK) and Vav1 contribute to Dectin1-dependent phagocytosis of Candida albicans in macrophages. PLoS Pathogens 2013; 9:e1003446; PMID:23825946; http://dx.doi.org/10.1371/journal.ppat.1003446
-
(2013)
PLoS Pathogens
, vol.9
, pp. e1003446
-
-
Strijbis, K.1
Tafesse, F.G.2
Fairn, G.D.3
Witte, M.D.4
Dougan, S.K.5
Watson, N.6
Spooner, E.7
Esteban, A.8
Vyas, V.K.9
Fink, G.R.10
-
109
-
-
33847418504
-
Dectin-1 stimulation by Candida albicans yeast or zymosan triggers NFAT activation in macrophages and dendritic cells
-
17312158
-
H.S.Goodridge, R.M.Simmons, D.M.Underhill. Dectin-1 stimulation by Candida albicans yeast or zymosan triggers NFAT activation in macrophages and dendritic cells. J Immunol 2007; 178:3107-15; PMID:17312158; http://dx.doi.org/10.4049/jimmunol.178.5.3107
-
(2007)
J Immunol
, vol.178
, pp. 3107-3115
-
-
Goodridge, H.S.1
Simmons, R.M.2
Underhill, D.M.3
-
110
-
-
84903436778
-
Catching fire: Candida albicans, macrophages, and pyroptosis
-
24967821
-
D.J.Krysan, F.S.Sutterwala, M.Wellington. Catching fire: Candida albicans, macrophages, and pyroptosis. PLoS Pathogens 2014; 10:e1004139; PMID:24967821
-
(2014)
PLoS Pathogens
, vol.10
, pp. e1004139
-
-
Krysan, D.J.1
Sutterwala, F.S.2
Wellington, M.3
-
111
-
-
20244363662
-
Syk-dependent cytokine induction by Dectin-1 reveals a novel pattern recognition pathway for C type lectins
-
15845454
-
N.C.Rogers, E.C.Slack, A.D.Edwards, M.A.Nolte, O.Schulz, E.Schweighoffer, D.L.Williams, S.Gordon, V.L.Tybulewicz, G.D.Brown, et al. Syk-dependent cytokine induction by Dectin-1 reveals a novel pattern recognition pathway for C type lectins. Immunity 2005; 22:507-17; PMID:15845454; http://dx.doi.org/10.1016/j.immuni.2005.03.004
-
(2005)
Immunity
, vol.22
, pp. 507-517
-
-
Rogers, N.C.1
Slack, E.C.2
Edwards, A.D.3
Nolte, M.A.4
Schulz, O.5
Schweighoffer, E.6
Williams, D.L.7
Gordon, S.8
Tybulewicz, V.L.9
Brown, G.D.10
-
112
-
-
27144521657
-
Dectin-1 activates Syk tyrosine kinase in a dynamic subset of macrophages for reactive oxygen production
-
15956283
-
D.M.Underhill, E.Rossnagle, C.A.Lowell, R.M.Simmons. Dectin-1 activates Syk tyrosine kinase in a dynamic subset of macrophages for reactive oxygen production. Blood 2005; 106:2543-50; PMID:15956283; http://dx.doi.org/10.1182/blood-2005-03-1239
-
(2005)
Blood
, vol.106
, pp. 2543-2550
-
-
Underhill, D.M.1
Rossnagle, E.2
Lowell, C.A.3
Simmons, R.M.4
-
113
-
-
20644466433
-
NFAT proteins: key regulators of T-cell development and function
-
15928679
-
F.Macian. NFAT proteins: key regulators of T-cell development and function. Nat Rev Immunol 2005; 5:472-84; PMID:15928679; http://dx.doi.org/10.1038/nri1632
-
(2005)
Nat Rev Immunol
, vol.5
, pp. 472-484
-
-
Macian, F.1
-
114
-
-
58149136353
-
Candida albicans cell surface superoxide dismutases degrade host-derived reactive oxygen species to escape innate immune surveillance
-
19019164
-
I.E.Frohner, C.Bourgeois, K.Yatsyk, O.Majer, K.Kuchler. Candida albicans cell surface superoxide dismutases degrade host-derived reactive oxygen species to escape innate immune surveillance. Mol Microbiol 2009; 71:240-52; PMID:19019164; http://dx.doi.org/10.1111/j.1365-2958.2008.06528.x
-
(2009)
Mol Microbiol
, vol.71
, pp. 240-252
-
-
Frohner, I.E.1
Bourgeois, C.2
Yatsyk, K.3
Majer, O.4
Kuchler, K.5
-
115
-
-
84899891795
-
Candida albicans suppresses nitric oxide generation from macrophages via a secreted molecule
-
J.R.Collette, H.Zhou, M.C.Lorenz. Candida albicans suppresses nitric oxide generation from macrophages via a secreted molecule. PloS One 2014; 9:e96203
-
(2014)
PloS One
, vol.9
, pp. e96203
-
-
Collette, J.R.1
Zhou, H.2
Lorenz, M.C.3
-
116
-
-
84899731243
-
The pathogen Candida albicans hijacks pyroptosis for escape from macrophages
-
24667705
-
N.Uwamahoro, J.Verma-Gaur, H.H.Shen, Y.Qu, R.Lewis, J.Lu, K.Bambery, S.L.Masters, J.E.Vince, T.Naderer, et al. The pathogen Candida albicans hijacks pyroptosis for escape from macrophages. MBio 2014; 5:e00003-14; PMID:24667705; http://dx.doi.org/10.1128/mBio.00003-14
-
(2014)
MBio
, vol.5
, pp. e00003-e14
-
-
Uwamahoro, N.1
Verma-Gaur, J.2
Shen, H.H.3
Qu, Y.4
Lewis, R.5
Lu, J.6
Bambery, K.7
Masters, S.L.8
Vince, J.E.9
Naderer, T.10
-
117
-
-
84893354236
-
Candida albicans triggers NLRP3-mediated pyroptosis in macrophages
-
24376002
-
M.Wellington, K.Koselny, F.S.Sutterwala, D.J.Krysan. Candida albicans triggers NLRP3-mediated pyroptosis in macrophages. Eukaryotic Cell 2014; 13:329-40; PMID:24376002; http://dx.doi.org/10.1128/EC.00336-13
-
(2014)
Eukaryotic Cell
, vol.13
, pp. 329-340
-
-
Wellington, M.1
Koselny, K.2
Sutterwala, F.S.3
Krysan, D.J.4
-
118
-
-
84866518496
-
Distinct licensing of IL-18 and IL-1β secretion in response to NLRP3 inflammasome activation
-
R.L.Schmidt, L.L.Lenz. Distinct licensing of IL-18 and IL-1β secretion in response to NLRP3 inflammasome activation. PloS One 2012; 7:e45186
-
(2012)
PloS One
, vol.7
, pp. e45186
-
-
Schmidt, R.L.1
Lenz, L.L.2
-
119
-
-
70350012444
-
Polymorphonuclear neutrophils and T lymphocytes: strange bedfellows or brothers in arms?
-
19775938
-
I.Müller, M.Munder, P.Kropf, G.M.Hänsch. Polymorphonuclear neutrophils and T lymphocytes: strange bedfellows or brothers in arms? Trends Immunol 2009; 30:522-30; PMID:19775938; http://dx.doi.org/10.1016/j.it.2009.07.007
-
(2009)
Trends Immunol
, vol.30
, pp. 522-530
-
-
Müller, I.1
Munder, M.2
Kropf, P.3
Hänsch, G.M.4
-
120
-
-
84870946492
-
The role of dendritic cells in the innate recognition of pathogenic fungi (A. fumigatus, C. neoformans and C. albicans)
-
23076328
-
Z.G.Ramirez-Ortiz, T.K.Means. The role of dendritic cells in the innate recognition of pathogenic fungi (A. fumigatus, C. neoformans and C. albicans). Virulence 2012; 3:635-46; PMID:23076328; http://dx.doi.org/10.4161/viru.22295
-
(2012)
Virulence
, vol.3
, pp. 635-646
-
-
Ramirez-Ortiz, Z.G.1
Means, T.K.2
-
121
-
-
84879602096
-
Interferon-beta production via Dectin-1-Syk-IRF5 signaling in dendritic cells is crucial for immunity to C. albicans
-
23770228
-
C.del Fresno, D.Soulat, S.Roth, K.Blazek, I.Udalova, D.Sancho, J.Ruland, C.Ardavín. Interferon-beta production via Dectin-1-Syk-IRF5 signaling in dendritic cells is crucial for immunity to C. albicans. Immunity 2013; 38:1176-86; PMID:23770228; http://dx.doi.org/10.1016/j.immuni.2013.05.010
-
(2013)
Immunity
, vol.38
, pp. 1176-1186
-
-
del Fresno, C.1
Soulat, D.2
Roth, S.3
Blazek, K.4
Udalova, I.5
Sancho, D.6
Ruland, J.7
Ardavín, C.8
-
122
-
-
50649113319
-
Dendritic cell interaction with Candida albicans critically depends on N-linked mannan
-
18482990
-
A.Cambi, M.G.Netea, H.M.Mora-Montes, N.A.Gow, S.V.Hato, D.W.Lowman, B.J.Kullberg, R.Torensma, D.L.Williams, C.G.Figdor. Dendritic cell interaction with Candida albicans critically depends on N-linked mannan. J Biolog Chem 2008; 283:20590-9; PMID:18482990; http://dx.doi.org/10.1074/jbc.M709334200
-
(2008)
J Biolog Chem
, vol.283
, pp. 20590-20599
-
-
Cambi, A.1
Netea, M.G.2
Mora-Montes, H.M.3
Gow, N.A.4
Hato, S.V.5
Lowman, D.W.6
Kullberg, B.J.7
Torensma, R.8
Williams, D.L.9
Figdor, C.G.10
-
123
-
-
0037331548
-
The C-type lectin DC-SIGN (CD209) is an antigen-uptake receptor for Candida albicans on dendritic cells
-
12645952
-
A.Cambi, K.Gijzen, R.de Vries IJM, Torensma, B.Joosten, G.J.Adema, M.G.Netea, B.J.Kullberg, L.Romani, C.G.Figdor. The C-type lectin DC-SIGN (CD209) is an antigen-uptake receptor for Candida albicans on dendritic cells. Euro J Immunol 2003; 33:532-8; PMID:12645952; http://dx.doi.org/10.1002/immu.200310029
-
(2003)
Euro J Immunol
, vol.33
, pp. 532-538
-
-
Cambi, A.1
Gijzen, K.2
de Vries IJM, Torensma, R.3
Joosten, B.4
Adema, G.J.5
Netea, M.G.6
Kullberg, B.J.7
Romani, L.8
Figdor, C.G.9
-
124
-
-
34250314883
-
NADPH oxidase of human dendritic cells: role in Candida albicans killing and regulation by interferons, dectin-1 and CD206
-
17407098
-
M.Donini, E.Zenaro, N.Tamassia, S.Dusi. NADPH oxidase of human dendritic cells: role in Candida albicans killing and regulation by interferons, dectin-1 and CD206. Euro J Immunol 2007; 37:1194-203; PMID:17407098; http://dx.doi.org/10.1002/eji.200636532
-
(2007)
Euro J Immunol
, vol.37
, pp. 1194-1203
-
-
Donini, M.1
Zenaro, E.2
Tamassia, N.3
Dusi, S.4
-
125
-
-
33747036397
-
Card9 controls a non-TLR signalling pathway for innate anti-fungal immunity
-
16862125
-
O.Gross, A.Gewies, K.Finger, M.Schäfer, T.Sparwasser, C.Peschel, I.Förster, J.Ruland. Card9 controls a non-TLR signalling pathway for innate anti-fungal immunity. Nature 2006; 442:651-6; PMID:16862125; http://dx.doi.org/10.1038/nature04926
-
(2006)
Nature
, vol.442
, pp. 651-656
-
-
Gross, O.1
Gewies, A.2
Finger, K.3
Schäfer, M.4
Sparwasser, T.5
Peschel, C.6
Förster, I.7
Ruland, J.8
-
126
-
-
77349120714
-
Syk-coupled C-type lectin receptors that mediate cellular activation via single tyrosine based activation motifs
-
20193029
-
A.M.Kerrigan, G.D.Brown. Syk-coupled C-type lectin receptors that mediate cellular activation via single tyrosine based activation motifs. Immunol Rev 2010; 234:335-52; PMID:20193029; http://dx.doi.org/10.1111/j.0105-2896.2009.00882.x
-
(2010)
Immunol Rev
, vol.234
, pp. 335-352
-
-
Kerrigan, A.M.1
Brown, G.D.2
-
127
-
-
59449099141
-
Natural killer cells in immunodefense against infective agents
-
19053900
-
N.Zucchini, K.Crozat, T.Fau - Baranek, T.Baranek, S.H.Fau-Robbins, M.Robbins Sh Fau-Altfeld, M.Altfeld, M.Fau-Dalod, M.Dalod. Natural killer cells in immunodefense against infective agents. Expert Rev Anti Infect Ther 2008; 6:867-85; PMID:19053900; http://dx.doi.org/10.1586/14787210.6.6.867
-
(2008)
Expert Rev Anti Infect Ther
, vol.6
, pp. 867-885
-
-
Zucchini, N.1
Crozat, K.2
Fau - Baranek, T.3
Baranek, T.4
Fau-Robbins, S.H.5
Robbins Sh Fau-Altfeld, M.6
Altfeld, M.7
Fau-Dalod, M.8
Dalod, M.9
-
128
-
-
0020042622
-
In vitro reactivity of natural killer (NK) cells against Cryptococcus neoformans
-
6120974
-
J.Murphy, D.McDaniel. In vitro reactivity of natural killer (NK) cells against Cryptococcus neoformans. J Immunol 1982; 128:1577-83; PMID:6120974
-
(1982)
J Immunol
, vol.128
, pp. 1577-1583
-
-
Murphy, J.1
McDaniel, D.2
-
129
-
-
84893259804
-
Human natural killer cells acting as phagocytes against Candida albicans and mounting an inflammatory response that modulates neutrophil antifungal activity
-
24163416
-
J.Voigt, K.Hunniger, M.Bouzani, I.D.Jacobsen, D.Barz, B.Hube, J.Löffler, O.Kurzai. Human natural killer cells acting as phagocytes against Candida albicans and mounting an inflammatory response that modulates neutrophil antifungal activity. J Infect Dis 2014; 209:616-26; PMID:24163416; http://dx.doi.org/10.1093/infdis/jit574
-
(2014)
J Infect Dis
, vol.209
, pp. 616-626
-
-
Voigt, J.1
Hunniger, K.2
Bouzani, M.3
Jacobsen, I.D.4
Barz, D.5
Hube, B.6
Löffler, J.7
Kurzai, O.8
-
130
-
-
79751512293
-
Human natural killer cells exhibit direct activity against Aspergillus fumigatus hyphae, but not against resting conidia
-
21208932
-
S.Schmidt, L.Tramsen, M.Hanisch, J.-P.Latgé, S.Huenecke, U.Koehl, T.Lehrnbecher. Human natural killer cells exhibit direct activity against Aspergillus fumigatus hyphae, but not against resting conidia. J Infect Dis 2011; 203:430-5; PMID:21208932; http://dx.doi.org/10.1093/infdis/jiq062
-
(2011)
J Infect Dis
, vol.203
, pp. 430-435
-
-
Schmidt, S.1
Tramsen, L.2
Hanisch, M.3
Latgé, J.-P.4
Huenecke, S.5
Koehl, U.6
Lehrnbecher, T.7
-
131
-
-
84877154841
-
Rhizopus oryzae hyphae are damaged by human natural killer (NK) cells, but suppress NK cell mediated immunity
-
23201314
-
S.Schmidt, L.Tramsen, S.Perkhofer, C.Lass-Flörl, M.Hanisch, F.Röger, T.Klingebiel, U.Koehl, T.Lehrnbecher. Rhizopus oryzae hyphae are damaged by human natural killer (NK) cells, but suppress NK cell mediated immunity. Immunobiology 2013; 218:939-44; PMID:23201314; http://dx.doi.org/10.1016/j.imbio.2012.10.013
-
(2013)
Immunobiology
, vol.218
, pp. 939-944
-
-
Schmidt, S.1
Tramsen, L.2
Perkhofer, S.3
Lass-Flörl, C.4
Hanisch, M.5
Röger, F.6
Klingebiel, T.7
Koehl, U.8
Lehrnbecher, T.9
-
132
-
-
84906093170
-
Differential role of NK cells against Candida albicans infection in immunocompetent or immunocompromised mice
-
24802993
-
J.Quintin, J.Voigt, R.van der Voort, I.D.Jacobsen, I.Verschueren, B.Hube, E.J.Giamarellos-Bourboulis, J.W.van der Meer, L.A.Joosten, O.Kurzai, et al. Differential role of NK cells against Candida albicans infection in immunocompetent or immunocompromised mice. Euro J Immunol 2014; 44:2405-14; PMID:24802993; http://dx.doi.org/10.1002/eji.201343828
-
(2014)
Euro J Immunol
, vol.44
, pp. 2405-2414
-
-
Quintin, J.1
Voigt, J.2
van der Voort, R.3
Jacobsen, I.D.4
Verschueren, I.5
Hube, B.6
Giamarellos-Bourboulis, E.J.7
van der Meer, J.W.8
Joosten, L.A.9
Kurzai, O.10
-
133
-
-
0023689860
-
Tumor necrosis factor induction by Candida albicans from human natural killer cells and monocytes
-
J.Y.Djeu, D.K.Blanchard, A.L.Richards, H.Friedman. Tumor necrosis factor induction by Candida albicans from human natural killer cells and monocytes. J Immunol 1988; 141:4047-52
-
(1988)
J Immunol
, vol.141
, pp. 4047-4052
-
-
Djeu, J.Y.1
Blanchard, D.K.2
Richards, A.L.3
Friedman, H.4
-
134
-
-
84897953752
-
TLR/NCR/KIR: which one to use and when?
-
S.Sivori, S.Carlomagno, S.Pesce, A.Moretta, M.Vitale, E.Marcenaro. TLR/NCR/KIR: which one to use and when? Front Immunol 2014; 5:105
-
(2014)
Front Immunol
, vol.5
, pp. 105
-
-
Sivori, S.1
Carlomagno, S.2
Pesce, S.3
Moretta, A.4
Vitale, M.5
Marcenaro, E.6
-
135
-
-
84885965312
-
NKp30 enables NK cells to act naturally with fungi
-
24139394
-
J.Quintin, S.M.Levitz. NKp30 enables NK cells to act naturally with fungi. Cell Host Microbe 2013; 14:369-71; PMID:24139394; http://dx.doi.org/10.1016/j.chom.2013.10.001
-
(2013)
Cell Host Microbe
, vol.14
, pp. 369-371
-
-
Quintin, J.1
Levitz, S.M.2
-
136
-
-
84885975693
-
The NK receptor NKp30 mediates direct fungal recognition and killing and is diminished in NK cells from HIV-infected patients
-
24139398
-
S.S.Li, S.K.Kyei, M.Timm-McCann, H.Ogbomo, G.J.Jones, M.Shi, R.F.Xiang, P.Oykhman, S.M.Huston, A.Islam, et al. The NK receptor NKp30 mediates direct fungal recognition and killing and is diminished in NK cells from HIV-infected patients. Cell Host Microbe 2013; 14:387-97; PMID:24139398; http://dx.doi.org/10.1016/j.chom.2013.09.007
-
(2013)
Cell Host Microbe
, vol.14
, pp. 387-397
-
-
Li, S.S.1
Kyei, S.K.2
Timm-McCann, M.3
Ogbomo, H.4
Jones, G.J.5
Shi, M.6
Xiang, R.F.7
Oykhman, P.8
Huston, S.M.9
Islam, A.10
-
137
-
-
34248207220
-
Perforin-dependent cryptococcal microbicidal activity in NK cells requires PI3K-dependent ERK1/2 signaling
-
17475875
-
J.C.Wiseman, L.L.Ma, K.J.Marr, G.J.Jones, C.H.Mody. Perforin-dependent cryptococcal microbicidal activity in NK cells requires PI3K-dependent ERK1/2 signaling. J Immunol 2007; 178:6456-64; PMID:17475875; http://dx.doi.org/10.4049/jimmunol.178.10.6456
-
(2007)
J Immunol
, vol.178
, pp. 6456-6464
-
-
Wiseman, J.C.1
Ma, L.L.2
Marr, K.J.3
Jones, G.J.4
Mody, C.H.5
-
138
-
-
50249184550
-
Formation and function of the lytic NK-cell immunological synapse
-
19172692
-
J.S.Orange. Formation and function of the lytic NK-cell immunological synapse. Nat Rev Immunol 2008; 8:713-25; PMID:19172692; http://dx.doi.org/10.1038/nri2381
-
(2008)
Nat Rev Immunol
, vol.8
, pp. 713-725
-
-
Orange, J.S.1
-
139
-
-
78549267766
-
The structural basis for membrane binding and pore formation by lymphocyte perforin
-
21037563
-
R.H.Law, N.Lukoyanova, I.Voskoboinik, T.T.Caradoc-Davies, K.Baran, M.A.Dunstone, M.E.D'Angelo, E.V.Orlova, F.Coulibaly, S.Verschoor, et al. The structural basis for membrane binding and pore formation by lymphocyte perforin. Nature 2010; 468:447-51; PMID:21037563; http://dx.doi.org/10.1038/nature09518
-
(2010)
Nature
, vol.468
, pp. 447-451
-
-
Law, R.H.1
Lukoyanova, N.2
Voskoboinik, I.3
Caradoc-Davies, T.T.4
Baran, K.5
Dunstone, M.A.6
D'Angelo, M.E.7
Orlova, E.V.8
Coulibaly, F.9
Verschoor, S.10
-
140
-
-
84892479849
-
IL-17 regulates systemic fungal immunity by controlling the functional competence of NK cells
-
24412614
-
E.Bar, P.G.Whitney, K.Moor, C.Reis e Sousa, S.LeibundGut-Landmann. IL-17 regulates systemic fungal immunity by controlling the functional competence of NK cells. Immunity 2014; 40:117-27; PMID:24412614; http://dx.doi.org/10.1016/j.immuni.2013.12.002
-
(2014)
Immunity
, vol.40
, pp. 117-127
-
-
Bar, E.1
Whitney, P.G.2
Moor, K.3
Reis e Sousa, C.4
LeibundGut-Landmann, S.5
-
141
-
-
84905403506
-
Syk signaling in dendritic cells orchestrates innate resistance to systemic fungal infection
-
25033445
-
P.G.Whitney, E.Bar, F.Osorio, N.C.Rogers, B.U.Schraml, S.Deddouche, S.LeibundGut-Landmann, C.Reis e Sousa. Syk signaling in dendritic cells orchestrates innate resistance to systemic fungal infection. PLoS Pathogens 2014; 10:e1004276; PMID:25033445; http://dx.doi.org/10.1371/journal.ppat.1004276
-
(2014)
PLoS Pathogens
, vol.10
, pp. e1004276
-
-
Whitney, P.G.1
Bar, E.2
Osorio, F.3
Rogers, N.C.4
Schraml, B.U.5
Deddouche, S.6
LeibundGut-Landmann, S.7
Reis e Sousa, C.8
-
142
-
-
31844439923
-
Killed Candida albicans yeasts and hyphae inhibit gamma interferon release by murine natural killer cells
-
16428793
-
C.Murciano, E.Villamón, J.-E.O'Connor, D.Gozalbo, M.L.Gil. Killed Candida albicans yeasts and hyphae inhibit gamma interferon release by murine natural killer cells. Infect Immun 2006; 74:1403-6; PMID:16428793; http://dx.doi.org/10.1128/IAI.74.2.1403-1406.2006
-
(2006)
Infect Immun
, vol.74
, pp. 1403-1406
-
-
Murciano, C.1
Villamón, E.2
O'Connor, J.-E.3
Gozalbo, D.4
Gil, M.L.5
-
143
-
-
0035400445
-
The use of 7-amino-actinomycin D in the analysis of Candida albicans phagocytosis and opsonization
-
11384680
-
E.Ortega, I.Algarra, M.Serrano, G.Alvarez de Cienfuegos, J.Gaforio. The use of 7-amino-actinomycin D in the analysis of Candida albicans phagocytosis and opsonization. J Immunolog Methods 2001; 253:189-93; PMID:11384680; http://dx.doi.org/10.1016/S0022-1759(01)00358-1
-
(2001)
J Immunolog Methods
, vol.253
, pp. 189-193
-
-
Ortega, E.1
Algarra, I.2
Serrano, M.3
Alvarez de Cienfuegos, G.4
Gaforio, J.5
-
144
-
-
0027311319
-
Enhancement of macrophage candidacidal activity by interferon-gamma. Increased phagocytosis, killing, and calcium signal mediated by a decreased number of mannose receptors
-
8390485
-
L.Marodi, S.Schreiber, D.Anderson, R.MacDermott, H.Korchak, R.JohnstonJr. Enhancement of macrophage candidacidal activity by interferon-gamma. Increased phagocytosis, killing, and calcium signal mediated by a decreased number of mannose receptors. J Clin Investigat 1993; 91:2596-601; PMID:8390485; http://dx.doi.org/10.1172/JCI116498
-
(1993)
J Clin Investigat
, vol.91
, pp. 2596-2601
-
-
Marodi, L.1
Schreiber, S.2
Anderson, D.3
MacDermott, R.4
Korchak, H.5
Johnston, R.6
-
145
-
-
0022977035
-
Growth inhibition of Candida albicans by human polymorphonuclear neutrophils: activation by interferon-gamma and tumor necrosis factor
-
3093587
-
J.Y.Djeu, D.Blanchard, D.Halkias, H.Friedman. Growth inhibition of Candida albicans by human polymorphonuclear neutrophils: activation by interferon-gamma and tumor necrosis factor. J Immunol 1986; 137:2980-4; PMID:3093587
-
(1986)
J Immunol
, vol.137
, pp. 2980-2984
-
-
Djeu, J.Y.1
Blanchard, D.2
Halkias, D.3
Friedman, H.4
-
146
-
-
79960829290
-
Neutrophils in the activation and regulation of innate and adaptive immunity
-
21785456
-
A.Mantovani, M.A.Cassatella, C.Costantini, S.Jaillon. Neutrophils in the activation and regulation of innate and adaptive immunity. Nat Rev Immunol 2011; 11:519-31; PMID:21785456; http://dx.doi.org/10.1038/nri3024
-
(2011)
Nat Rev Immunol
, vol.11
, pp. 519-531
-
-
Mantovani, A.1
Cassatella, M.A.2
Costantini, C.3
Jaillon, S.4
-
147
-
-
77956547425
-
Cytokine-activated NK cells inhibit PMN apoptosis and preserve their functional capacity
-
20501895
-
N.Bhatnagar, H.S.Hong, J.K.Krishnaswamy, A.Haghikia, G.M.Behrens, R.E.Schmidt, R.Jacobs. Cytokine-activated NK cells inhibit PMN apoptosis and preserve their functional capacity. Blood 2010; 116:1308-16; PMID:20501895; http://dx.doi.org/10.1182/blood-2010-01-264903
-
(2010)
Blood
, vol.116
, pp. 1308-1316
-
-
Bhatnagar, N.1
Hong, H.S.2
Krishnaswamy, J.K.3
Haghikia, A.4
Behrens, G.M.5
Schmidt, R.E.6
Jacobs, R.7
-
148
-
-
0037017381
-
Reciprocal activating interaction between natural killer cells and dendritic cells
-
11828007
-
F.Gerosa, B.Baldani-Guerra, C.Nisii, V.Marchesini, G.Carra, G.Trinchieri. Reciprocal activating interaction between natural killer cells and dendritic cells. J Exp Med 2002; 195:327-33; PMID:11828007; http://dx.doi.org/10.1084/jem.20010938
-
(2002)
J Exp Med
, vol.195
, pp. 327-333
-
-
Gerosa, F.1
Baldani-Guerra, B.2
Nisii, C.3
Marchesini, V.4
Carra, G.5
Trinchieri, G.6
|