메뉴 건너뛰기




Volumn 80, Issue 4, 2012, Pages 1304-1313

Interplay between Candida albicans and the mammalian innate host defense

Author keywords

[No Author keywords available]

Indexed keywords

FARNESOL; INTERLEUKIN 17; PATTERN RECOGNITION RECEPTOR;

EID: 84860244125     PISSN: 00199567     EISSN: 10985522     Source Type: Journal    
DOI: 10.1128/IAI.06146-11     Document Type: Short Survey
Times cited : (198)

References (124)
  • 1
    • 68049110304 scopus 로고    scopus 로고
    • Suppression of anti-Candida activity of macrophages by a quorum-sensing molecule, farnesol, through induction of oxidative stress
    • Abe S, et al. 2009. Suppression of anti-Candida activity of macrophages by a quorum-sensing molecule, farnesol, through induction of oxidative stress. Microbiol. Immunol. 53:323-330.
    • (2009) Microbiol. Immunol. , vol.53 , pp. 323-330
    • Abe, S.1
  • 2
    • 0036390959 scopus 로고    scopus 로고
    • Upregulation of human beta-defensin 2 peptide expression in oral lichen planus, leukoplakia and candidiasis. An immunohistochemical study
    • Abiko Y, et al. 2002. Upregulation of human beta-defensin 2 peptide expression in oral lichen planus, leukoplakia and candidiasis. An immunohistochemical study. Pathol. Res. Pract. 198:537-542.
    • (2002) Pathol. Res. Pract. , vol.198 , pp. 537-542
    • Abiko, Y.1
  • 3
    • 0033041907 scopus 로고    scopus 로고
    • Severe impairment in early host defense against Candida albicans in mice deficient in myeloperoxidase
    • Aratani Y, et al. 1999. Severe impairment in early host defense against Candida albicans in mice deficient in myeloperoxidase. Infect. Immun. 67:1828-1836.
    • (1999) Infect. Immun. , vol.67 , pp. 1828-1836
    • Aratani, Y.1
  • 4
    • 0023761744 scopus 로고
    • Macrophage function in chronic experimental alcoholism. I. Modulation of surface receptors and phagocytosis
    • Bagasra O, Howeedy A, Kajdacsy-Balla A. 1988. Macrophage function in chronic experimental alcoholism. I. Modulation of surface receptors and phagocytosis. Immunology 65:405-409.
    • (1988) Immunology , vol.65 , pp. 405-409
    • Bagasra, O.1    Howeedy, A.2    Kajdacsy-Balla, A.3
  • 5
    • 77952520934 scopus 로고    scopus 로고
    • Normal human gingival epithelial cells sense C. parapsilosis by toll-like receptors and module its pathogenesis through antimicrobial peptides and proinflammatory cytokines
    • Bahri R, Curt S, Saidane-Mosbahi D, Rouabhia M. 2010. Normal human gingival epithelial cells sense C. parapsilosis by toll-like receptors and module its pathogenesis through antimicrobial peptides and proinflammatory cytokines. Mediators Inflamm. 2010:940383.
    • (2010) Mediators Inflamm , vol.2010 , pp. 940383
    • Bahri, R.1    Curt, S.2    Saidane-Mosbahi, D.3    Rouabhia, M.4
  • 6
    • 73949100761 scopus 로고    scopus 로고
    • Candida famata modulates toll-like receptor, beta-defensin, and proinflammatory cytokine expression by normal human epithelial cells
    • Bahri R, Saidane-Mosbahi D, Rouabhia M. 2010. Candida famata modulates toll-like receptor, beta-defensin, and proinflammatory cytokine expression by normal human epithelial cells. J. Cell. Physiol. 222: 209-218.
    • (2010) J. Cell. Physiol. , vol.222 , pp. 209-218
    • Bahri, R.1    Saidane-Mosbahi, D.2    Rouabhia, M.3
  • 7
    • 0032994870 scopus 로고    scopus 로고
    • Mucosal and systemic candidiasis in IL-8Rh-/- BALB/c mice
    • Balish E, et al. 1999. Mucosal and systemic candidiasis in IL-8Rh-/- BALB/c mice. J. Leukoc. Biol. 66:144-150.
    • (1999) J. Leukoc. Biol. , vol.66 , pp. 144-150
    • Balish, E.1
  • 8
    • 0035576475 scopus 로고    scopus 로고
    • Growth inhibition of Candida albicans by human vaginal epithelial cells
    • Barousse MM, et al. 2001. Growth inhibition of Candida albicans by human vaginal epithelial cells. J. Infect. Dis. 184:1489-1493.
    • (2001) J. Infect. Dis. , vol.184 , pp. 1489-1493
    • Barousse, M.M.1
  • 9
    • 0035801610 scopus 로고    scopus 로고
    • NRG1, a repressor of filamentous growth in C. albicans, is down-regulated during filament induction
    • Braun BR, Kadosh D, Johnson AD. 2001. NRG1, a repressor of filamentous growth in C. albicans, is down-regulated during filament induction. EMBO J. 20:4753-4761.
    • (2001) EMBO J , vol.20 , pp. 4753-4761
    • Braun, B.R.1    Kadosh, D.2    Johnson, A.D.3
  • 10
    • 69949088960 scopus 로고    scopus 로고
    • NLR-mediated control of inflammasome assembly in the host response against bacterial pathogens
    • Brodsky IE, Monack D. 2009. NLR-mediated control of inflammasome assembly in the host response against bacterial pathogens. Semin. Immunol. 21:199-207.
    • (2009) Semin. Immunol. , vol.21 , pp. 199-207
    • Brodsky, I.E.1    Monack, D.2
  • 11
    • 44849113967 scopus 로고    scopus 로고
    • Mannose-binding lectin (MBL) facilitates opsonophagocytosis of yeasts but not of bacteria despite MBL binding
    • Brouwer N, et al. 2008. Mannose-binding lectin (MBL) facilitates opsonophagocytosis of yeasts but not of bacteria despite MBL binding. J. Immunol. 180:4124-4132.
    • (2008) J. Immunol. , vol.180 , pp. 4124-4132
    • Brouwer, N.1
  • 12
    • 0037025994 scopus 로고    scopus 로고
    • Dectin-1 is a major beta-glucan receptor on macrophages
    • Brown GD, et al. 2002. Dectin-1 is a major beta-glucan receptor on macrophages. J. Exp. Med. 196:407-412.
    • (2002) J. Exp. Med. , vol.196 , pp. 407-412
    • Brown, G.D.1
  • 13
    • 58049202418 scopus 로고    scopus 로고
    • Human and mouse macrophage-inducible Ctype lectin (Mincle) bind Candida albicans
    • Bugarcic A, et al. 2008. Human and mouse macrophage-inducible Ctype lectin (Mincle) bind Candida albicans. Glycobiology 18:679-685.
    • (2008) Glycobiology , vol.18 , pp. 679-685
    • Bugarcic, A.1
  • 14
    • 0035399946 scopus 로고    scopus 로고
    • Virulence factors of Candida albicans
    • Calderone RA, Fonzi WA. 2001. Virulence factors of Candida albicans. Trends Microbiol. 9:327-335.
    • (2001) Trends Microbiol , vol.9 , pp. 327-335
    • Calderone, R.A.1    Fonzi, W.A.2
  • 15
    • 0037331548 scopus 로고    scopus 로고
    • The C-type lectin DC-SIGN (CD209) is an antigen-uptake receptor for Candida albicans on dendritic cells
    • Cambi A, et al. 2003. The C-type lectin DC-SIGN (CD209) is an antigen-uptake receptor for Candida albicans on dendritic cells. Eur. J. Immunol. 33:532-538.
    • (2003) Eur. J. Immunol. , vol.33 , pp. 532-538
    • Cambi, A.1
  • 16
    • 50649113319 scopus 로고    scopus 로고
    • Dendritic cell interaction with Candida albicans critically depends on N-linked mannan
    • Cambi A, et al. 2008. Dendritic cell interaction with Candida albicans critically depends on N-linked mannan. J. Biol. Chem. 283:20590-20599.
    • (2008) J. Biol. Chem. , vol.283 , pp. 20590-20599
    • Cambi, A.1
  • 17
    • 73449084116 scopus 로고    scopus 로고
    • Candida albicans releases soluble factors that potentiate cytokine production by human cells through a proteaseactivated receptor 1-and 2-independent pathway
    • Cheng SC, et al. 2010. Candida albicans releases soluble factors that potentiate cytokine production by human cells through a proteaseactivated receptor 1-and 2-independent pathway. Infect. Immun. 78: 393-399.
    • (2010) Infect. Immun. , vol.78 , pp. 393-399
    • Cheng, S.C.1
  • 18
    • 84860260355 scopus 로고    scopus 로고
    • Complement plays a central role in Candida albicans-induced cytokine production by human PBMCs
    • doi:10.1002/eji.201142057. 4 January, posting date
    • Cheng SC, et al. 4 January 2012, posting date. Complement plays a central role in Candida albicans-induced cytokine production by human PBMCs. Eur. J. Immunol. doi:10.1002/eji.201142057.
    • (2012) Eur. J. Immunol
    • Cheng, S.C.1
  • 19
    • 79961092526 scopus 로고    scopus 로고
    • The dectin-1/inflammasome pathway is responsible for the induction of protective T-helper 17 responses that discriminate between yeasts and hyphae of Candida albicans
    • Cheng SC, et al. 2011. The dectin-1/inflammasome pathway is responsible for the induction of protective T-helper 17 responses that discriminate between yeasts and hyphae of Candida albicans. J. Leukoc. Biol. 90:357-366.
    • (2011) J. Leukoc. Biol. , vol.90 , pp. 357-366
    • Cheng, S.C.1
  • 20
    • 77956944307 scopus 로고    scopus 로고
    • Candida albicans dampens host defense by downregulating IL-17 production
    • Cheng SC, et al. 2010. Candida albicans dampens host defense by downregulating IL-17 production. J. Immunol. 185:2450-2457.
    • (2010) J. Immunol. , vol.185 , pp. 2450-2457
    • Cheng, S.C.1
  • 21
    • 79957851940 scopus 로고    scopus 로고
    • New mechanism of oral immunity to mucosal candidiasis in hyper-IgE syndrome
    • Conti HR, et al. 2011. New mechanism of oral immunity to mucosal candidiasis in hyper-IgE syndrome. Mucosal Immunol. 4:448-455.
    • (2011) Mucosal Immunol , vol.4 , pp. 448-455
    • Conti, H.R.1
  • 22
    • 63049138176 scopus 로고    scopus 로고
    • Th17 cells and IL-17 receptor signaling are essential for mucosal host defense against oral candidiasis
    • Conti HR, et al. 2009. Th17 cells and IL-17 receptor signaling are essential for mucosal host defense against oral candidiasis. J. Exp. Med. 206: 299-311.
    • (2009) J. Exp. Med. , vol.206 , pp. 299-311
    • Conti, H.R.1
  • 23
    • 59449104320 scopus 로고    scopus 로고
    • Farnesol promotes epithelial cell defense against Candida albicans through Toll-like receptor 2 expression, interleukin-6 and human beta-defensin 2 production
    • Decanis N, Savignac K, Rouabhia M. 2009. Farnesol promotes epithelial cell defense against Candida albicans through Toll-like receptor 2 expression, interleukin-6 and human beta-defensin 2 production. Cytokine 45:132-140.
    • (2009) Cytokine , vol.45 , pp. 132-140
    • Decanis, N.1    Savignac, K.2    Rouabhia, M.3
  • 24
    • 77953802446 scopus 로고    scopus 로고
    • IL-22 defines a novel immune pathway of antifungal resistance
    • De Luca A, et al. 2010. IL-22 defines a novel immune pathway of antifungal resistance. Mucosal Immunol. 3:361-373.
    • (2010) Mucosal Immunol , vol.3 , pp. 361-373
    • De Luca, A.1
  • 25
    • 0034658107 scopus 로고    scopus 로고
    • Dendritic cells discriminate between yeasts and hyphae of the fungus Candida albicans. Implications for initiation of T helper cell immunity in vitro and in vivo
    • d'Ostiani CF, et al. 2000. Dendritic cells discriminate between yeasts and hyphae of the fungus Candida albicans. Implications for initiation of T helper cell immunity in vitro and in vivo. J. Exp. Med. 191:1661-1674.
    • (2000) J. Exp. Med. , vol.191 , pp. 1661-1674
    • d'Ostiani, C.F.1
  • 26
    • 79959724313 scopus 로고    scopus 로고
    • IL-22 and TNF-alpha represent a key cytokine combination for epidermal integrity during infection with Candida albicans
    • Eyerich S, et al. 2011. IL-22 and TNF-alpha represent a key cytokine combination for epidermal integrity during infection with Candida albicans. Eur. J. Immunol. 41:1894-1901.
    • (2011) Eur. J. Immunol. , vol.41 , pp. 1894-1901
    • Eyerich, S.1
  • 27
    • 62249165087 scopus 로고    scopus 로고
    • Candida albicans actively modulates intracellular membrane trafficking in mouse macrophage phagosomes
    • Fernandez-Arenas E, et al. 2009. Candida albicans actively modulates intracellular membrane trafficking in mouse macrophage phagosomes. Cell. Microbiol. 11:560-589.
    • (2009) Cell. Microbiol. , vol.11 , pp. 560-589
    • Fernandez-Arenas, E.1
  • 28
    • 70350534272 scopus 로고    scopus 로고
    • Human dectin-1 deficiency and mucocutaneous fungal infections
    • Ferwerda B, et al. 2009. Human dectin-1 deficiency and mucocutaneous fungal infections. N. Engl. J. Med. 361:1760-1767.
    • (2009) N. Engl. J. Med. , vol.361 , pp. 1760-1767
    • Ferwerda, B.1
  • 29
    • 0036668764 scopus 로고    scopus 로고
    • Distinct protective host defenses against oral and vaginal candidiasis
    • Fidel PL, Jr. 2002. Distinct protective host defenses against oral and vaginal candidiasis. Med. Mycol. 40:359-375.
    • (2002) Med. Mycol. , vol.40 , pp. 359-375
    • Fidel Jr., P.L.1
  • 30
    • 79954570319 scopus 로고    scopus 로고
    • Candida-host interactions in HIV disease: implications for oropharyngeal candidiasis
    • Fidel PL, Jr. 2011. Candida-host interactions in HIV disease: implications for oropharyngeal candidiasis. Adv. Dent. Res. 23:45-49.
    • (2011) Adv. Dent. Res. , vol.23 , pp. 45-49
    • Fidel Jr., P.L.1
  • 31
    • 2142695775 scopus 로고    scopus 로고
    • An intravaginal live Candida challenge in humans leads to new hypotheses for the immunopathogenesis of vulvovaginal candidiasis
    • Fidel PL, Jr, et al. 2004. An intravaginal live Candida challenge in humans leads to new hypotheses for the immunopathogenesis of vulvovaginal candidiasis. Infect. Immun. 72:2939-2946.
    • (2004) Infect. Immun. , vol.72 , pp. 2939-2946
    • Fidel Jr., P.L.1
  • 32
    • 33746477658 scopus 로고    scopus 로고
    • Candida-host cell receptor-ligand interactions
    • Filler SG. 2006. Candida-host cell receptor-ligand interactions. Curr. Opin. Microbiol. 9:333-339.
    • (2006) Curr. Opin. Microbiol. , vol.9 , pp. 333-339
    • Filler, S.G.1
  • 33
    • 17144368786 scopus 로고    scopus 로고
    • Granulocytes govern the transcriptional response, morphology and proliferation of Candida albicans in human blood
    • Fradin C, et al. 2005. Granulocytes govern the transcriptional response, morphology and proliferation of Candida albicans in human blood. Mol. Microbiol. 56:397-415.
    • (2005) Mol. Microbiol. , vol.56 , pp. 397-415
    • Fradin, C.1
  • 34
    • 58149136353 scopus 로고    scopus 로고
    • Candida albicans cell surface superoxide dismutases degrade host-derived reactive oxygen species to escape innate immune surveillance
    • Frohner IE, Bourgeois C, Yatsyk K, Majer O, Kuchler K. 2009. Candida albicans cell surface superoxide dismutases degrade host-derived reactive oxygen species to escape innate immune surveillance. Mol. Microbiol. 71:240-252.
    • (2009) Mol. Microbiol. , vol.71 , pp. 240-252
    • Frohner, I.E.1    Bourgeois, C.2    Yatsyk, K.3    Majer, O.4    Kuchler, K.5
  • 35
    • 17144370549 scopus 로고    scopus 로고
    • Dectin-1 mediates macrophage recognition of Candida albicans yeast but not filaments
    • Gantner BN, Simmons RM, Underhill DM. 2005. Dectin-1 mediates macrophage recognition of Candida albicans yeast but not filaments. EMBO J. 24:1277-1286.
    • (2005) EMBO J , vol.24 , pp. 1277-1286
    • Gantner, B.N.1    Simmons, R.M.2    Underhill, D.M.3
  • 36
    • 77956515282 scopus 로고    scopus 로고
    • Candida albicans cell wall components and farnesol stimulate the expression of both inflammatory and regulatory cytokines in the murine RAW264.7 macrophage cell line
    • Ghosh S, et al. 2010. Candida albicans cell wall components and farnesol stimulate the expression of both inflammatory and regulatory cytokines in the murine RAW264.7 macrophage cell line. FEMS Immunol. Med. Microbiol. 60:63-73.
    • (2010) FEMS Immunol. Med. Microbiol. , vol.60 , pp. 63-73
    • Ghosh, S.1
  • 37
    • 63149099843 scopus 로고    scopus 로고
    • Arginine-induced germ tube formation in Candida albicans is essential for escape from murine macrophage lineRAW264.7
    • Ghosh S, et al. 2009. Arginine-induced germ tube formation in Candida albicans is essential for escape from murine macrophage lineRAW264.7. Infect. Immun. 77:1596-1605.
    • (2009) Infect. Immun. , vol.77 , pp. 1596-1605
    • Ghosh, S.1
  • 38
    • 70350545720 scopus 로고    scopus 로고
    • A homozygous CARD9 mutation in a family with susceptibility to fungal infections
    • Glocker EO, et al. 2009. A homozygous CARD9 mutation in a family with susceptibility to fungal infections. N. Engl. J. Med. 361:1727-1735.
    • (2009) N. Engl. J. Med. , vol.361 , pp. 1727-1735
    • Glocker, E.O.1
  • 39
    • 38449083793 scopus 로고    scopus 로고
    • Immune recognition of Candida albicans betaglucan by dectin-1
    • Gow NA, et al. 2007. Immune recognition of Candida albicans betaglucan by dectin-1. J. Infect. Dis. 196:1565-1571.
    • (2007) J. Infect. Dis. , vol.196 , pp. 1565-1571
    • Gow, N.A.1
  • 40
    • 70450225229 scopus 로고    scopus 로고
    • The yeast Candida albicans evades human complement attack by secretion of aspartic proteases
    • Gropp K, et al. 2009. The yeast Candida albicans evades human complement attack by secretion of aspartic proteases. Mol. Immunol. 47: 465-475.
    • (2009) Mol. Immunol. , vol.47 , pp. 465-475
    • Gropp, K.1
  • 41
    • 67349271142 scopus 로고    scopus 로고
    • Syk kinase signalling couples to the Nlrp3 inflammasome for anti-fungal host defense
    • Gross O, et al. 2009. Syk kinase signalling couples to the Nlrp3 inflammasome for anti-fungal host defense. Nature 459:433-436.
    • (2009) Nature , vol.459 , pp. 433-436
    • Gross, O.1
  • 42
    • 3142726042 scopus 로고    scopus 로고
    • Incidence of bloodstream infections due to Candida species and in vitro susceptibilities of isolates collected from 1998 to 2000 in a population-based active surveillance program
    • Hajjeh RA, et al. 2004. Incidence of bloodstream infections due to Candida species and in vitro susceptibilities of isolates collected from 1998 to 2000 in a population-based active surveillance program. J. Clin. Microbiol. 42:1519-1527.
    • (2004) J. Clin. Microbiol. , vol.42 , pp. 1519-1527
    • Hajjeh, R.A.1
  • 43
    • 65549154784 scopus 로고    scopus 로고
    • An essential role for the NLRP3 inflammasome in host defense against the human fungal pathogen Candida albicans
    • Hise AG, et al. 2009. An essential role for the NLRP3 inflammasome in host defense against the human fungal pathogen Candida albicans. Cell Host Microbe 5:487-497.
    • (2009) Cell Host Microbe , vol.5 , pp. 487-497
    • Hise, A.G.1
  • 44
    • 0035406382 scopus 로고    scopus 로고
    • Quorum sensing in the dimorphic fungus Candida albicans is mediated by farnesol
    • Hornby JM, et al. 2001. Quorum sensing in the dimorphic fungus Candida albicans is mediated by farnesol. Appl. Environ. Microbiol. 67: 2982-2992.
    • (2001) Appl. Environ. Microbiol. , vol.67 , pp. 2982-2992
    • Hornby, J.M.1
  • 45
    • 3242814586 scopus 로고    scopus 로고
    • Requirement of interleukin-17A for systemic anti-Candida albicans host defense in mice
    • Huang W, Na L, Fidel PL, Schwarzenberger P. 2004. Requirement of interleukin-17A for systemic anti-Candida albicans host defense in mice. J. Infect. Dis. 190:624-631.
    • (2004) J. Infect. Dis. , vol.190 , pp. 624-631
    • Huang, W.1    Na, L.2    Fidel, P.L.3    Schwarzenberger, P.4
  • 46
    • 70349317039 scopus 로고    scopus 로고
    • Cutting edge: Candida albicans hyphae formation triggers activation of the Nlrp3 inflammasome
    • Joly S, et al. 2009. Cutting edge: Candida albicans hyphae formation triggers activation of the Nlrp3 inflammasome. J. Immunol. 183:3578-3581.
    • (2009) J. Immunol. , vol.183 , pp. 3578-3581
    • Joly, S.1
  • 47
    • 33749143645 scopus 로고    scopus 로고
    • Specific recognition of Candida albicans by macrophages requires galectin-3 to discriminate Saccharomyces cerevisiae and needs association with TLR2 for signaling
    • Jouault T, et al. 2006. Specific recognition of Candida albicans by macrophages requires galectin-3 to discriminate Saccharomyces cerevisiae and needs association with TLR2 for signaling. J. Immunol. 177:4679-4687.
    • (2006) J. Immunol. , vol.177 , pp. 4679-4687
    • Jouault, T.1
  • 48
    • 0037560071 scopus 로고    scopus 로고
    • Candida albicans phospholipomannan is sensed through toll-like receptors
    • Jouault T, et al. 2003. Candida albicans phospholipomannan is sensed through toll-like receptors. J. Infect. Dis. 188:165-172.
    • (2003) J. Infect. Dis. , vol.188 , pp. 165-172
    • Jouault, T.1
  • 49
    • 77953464750 scopus 로고    scopus 로고
    • (1,3)-Beta-glucans activate both dectin-1 and NLRP3 inflammasome in human macrophages
    • Kankkunen P, et al. 2010. (1,3)-Beta-glucans activate both dectin-1 and NLRP3 inflammasome in human macrophages. J. Immunol. 184:6335-6342.
    • (2010) J. Immunol. , vol.184 , pp. 6335-6342
    • Kankkunen, P.1
  • 50
    • 84855754509 scopus 로고    scopus 로고
    • Toll-like receptor 9 modulates macrophage antifungal effector function during innate recognition of Candida albicans and Saccharomyces cerevisiae
    • Kasperkovitz PV, et al. 2011. Toll-like receptor 9 modulates macrophage antifungal effector function during innate recognition of Candida albicans and Saccharomyces cerevisiae. Infect. Immun. 79:4858-4867.
    • (2011) Infect. Immun. , vol.79 , pp. 4858-4867
    • Kasperkovitz, P.V.1
  • 51
    • 0033485687 scopus 로고    scopus 로고
    • Modulation of neutrophil function in host defense against disseminated Candida albicans infection in mice
    • Kullberg BJ, Netea MG, Vonk AG, Van der Meer JW. 1999. Modulation of neutrophil function in host defense against disseminated Candida albicans infection in mice. FEMS Immunol. Med. Microbiol. 26:299-307.
    • (1999) FEMS Immunol. Med. Microbiol. , vol.26 , pp. 299-307
    • Kullberg, B.J.1    Netea, M.G.2    Vonk, A.G.3    Van der Meer, J.W.4
  • 52
    • 76249084408 scopus 로고    scopus 로고
    • Involvement of the NLRP3 inflammasome in innate and humoral adaptive immune responses to fungal beta-glucan
    • Kumar H, et al. 2009. Involvement of the NLRP3 inflammasome in innate and humoral adaptive immune responses to fungal beta-glucan. J. Immunol. 183:8061-8067.
    • (2009) J. Immunol. , vol.183 , pp. 8061-8067
    • Kumar, H.1
  • 53
    • 78650676677 scopus 로고    scopus 로고
    • The expression of beta-defensin-2,3 and LL-37 induced by Candida albicans phospholipomannan in human keratinocytes
    • Li M, Chen Q, Tang R, Shen Y, Liu WD. 2011. The expression of beta-defensin-2,3 and LL-37 induced by Candida albicans phospholipomannan in human keratinocytes. J. Dermatol. Sci. 61:72-75.
    • (2011) J. Dermatol. Sci. , vol.61 , pp. 72-75
    • Li, M.1    Chen, Q.2    Tang, R.3    Shen, Y.4    Liu, W.D.5
  • 54
    • 0026681514 scopus 로고
    • Granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor
    • Lieschke GJ, Burgess AW. 1992. Granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor. N. Engl. J. Med. 327:99-106.
    • (1992) N. Engl. J. Med. , vol.327 , pp. 99-106
    • Lieschke, G.J.1    Burgess, A.W.2
  • 56
    • 0030819459 scopus 로고    scopus 로고
    • Nonfilamentous C. albicans mutants are avirulent
    • Lo HJ, et al. 1997. Nonfilamentous C. albicans mutants are avirulent. Cell 90:939-949.
    • (1997) Cell , vol.90 , pp. 939-949
    • Lo, H.J.1
  • 57
    • 33747339180 scopus 로고    scopus 로고
    • Hyphal invasion of Candida albicans inhibits the expression of human beta-defensins in experimental oral candidiasis
    • Lu Q, Jayatilake JA, Samaranayake LP, Jin L. 2006. Hyphal invasion of Candida albicans inhibits the expression of human beta-defensins in experimental oral candidiasis. J. Invest. Dermatol. 126:2049-2056.
    • (2006) J. Invest. Dermatol. , vol.126 , pp. 2049-2056
    • Lu, Q.1    Jayatilake, J.A.2    Samaranayake, L.P.3    Jin, L.4
  • 58
    • 79953136593 scopus 로고    scopus 로고
    • The pH-regulated antigen 1 of Candida albicans binds the human complement inhibitor C4b-binding protein and mediates fungal complement evasion
    • Luo S, et al. 2011. The pH-regulated antigen 1 of Candida albicans binds the human complement inhibitor C4b-binding protein and mediates fungal complement evasion. J. Biol. Chem. 286:8021-8029.
    • (2011) J. Biol. Chem. , vol.286 , pp. 8021-8029
    • Luo, S.1
  • 59
    • 77956897192 scopus 로고    scopus 로고
    • Secreted pH-regulated antigen 1 of Candida albicans blocks activation and conversion of complement C3
    • Luo S, Hartmann A, Dahse HM, Skerka C, Zipfel PF. 2010. Secreted pH-regulated antigen 1 of Candida albicans blocks activation and conversion of complement C3. J. Immunol. 185:2164-2173.
    • (2010) J. Immunol. , vol.185 , pp. 2164-2173
    • Luo, S.1    Hartmann, A.2    Dahse, H.M.3    Skerka, C.4    Zipfel, P.F.5
  • 60
    • 70450222706 scopus 로고    scopus 로고
    • Immune evasion of the human pathogenic yeast Candida albicans: Pra1 is a Factor H, FHL-1 and plasminogen binding surface protein
    • Luo S, Poltermann S, Kunert A, Rupp S, Zipfel PF. 2009. Immune evasion of the human pathogenic yeast Candida albicans: Pra1 is a Factor H, FHL-1 and plasminogen binding surface protein. Mol. Immunol. 47:541-550.
    • (2009) Mol. Immunol. , vol.47 , pp. 541-550
    • Luo, S.1    Poltermann, S.2    Kunert, A.3    Rupp, S.4    Zipfel, P.F.5
  • 61
    • 0036839687 scopus 로고    scopus 로고
    • Candida albicans killing by RAW 264.7 mouse macrophage cells: effects of Candida genotype, infection ratios, and gamma interferon treatment
    • Marcil A, Harcus D, Thomas DY, Whiteway M. 2002. Candida albicans killing by RAW 264.7 mouse macrophage cells: effects of Candida genotype, infection ratios, and gamma interferon treatment. Infect. Immun. 70:6319-6329.
    • (2002) Infect. Immun. , vol.70 , pp. 6319-6329
    • Marcil, A.1    Harcus, D.2    Thomas, D.Y.3    Whiteway, M.4
  • 62
    • 0025772031 scopus 로고
    • Mechanisms of host defense against Candida species. I. Phagocytosis by monocytes and monocyte-derived macrophages
    • Marodi L, Korchak HM, Johnston RB, Jr. 1991. Mechanisms of host defense against Candida species. I. Phagocytosis by monocytes and monocyte-derived macrophages. J. Immunol. 146:2783-2789.
    • (1991) J. Immunol. , vol.146 , pp. 2783-2789
    • Marodi, L.1    Korchak, H.M.2    Johnston Jr., R.B.3
  • 63
    • 33646126940 scopus 로고    scopus 로고
    • The carbohydrate-recognition domain of dectin-2 is a C-type lectin with specificity for high mannose
    • McGreal EP, et al. 2006. The carbohydrate-recognition domain of dectin-2 is a C-type lectin with specificity for high mannose. Glycobiology 16:422-430.
    • (2006) Glycobiology , vol.16 , pp. 422-430
    • McGreal, E.P.1
  • 64
    • 77950252783 scopus 로고    scopus 로고
    • Contribution of Candida albicans cell wall components to recognition by and escape from murine macrophages
    • McKenzie CG, et al. 2010. Contribution of Candida albicans cell wall components to recognition by and escape from murine macrophages. Infect. Immun. 78:1650-1658.
    • (2010) Infect. Immun. , vol.78 , pp. 1650-1658
    • McKenzie, C.G.1
  • 65
    • 63449138494 scopus 로고    scopus 로고
    • Evolutionarily conserved recognition and innate immunity to fungal pathogens by the scavenger receptors SCARF1 and CD36
    • Means TK, et al. 2009. Evolutionarily conserved recognition and innate immunity to fungal pathogens by the scavenger receptors SCARF1 and CD36. J. Exp. Med. 206:637-653.
    • (2009) J. Exp. Med. , vol.206 , pp. 637-653
    • Means, T.K.1
  • 66
    • 0030666222 scopus 로고    scopus 로고
    • Innate immunity: the virtues of a nonclonal system of recognition
    • Medzhitov R, Janeway CA, Jr. 1997. Innate immunity: the virtues of a nonclonal system of recognition. Cell 91:295-298.
    • (1997) Cell , vol.91 , pp. 295-298
    • Medzhitov, R.1    Janeway Jr., C.A.2
  • 67
    • 0033863092 scopus 로고    scopus 로고
    • Interleukin 18 restores defective Th1 immunity to Candida albicans in caspase 1-deficient mice
    • Mencacci A, et al. 2000. Interleukin 18 restores defective Th1 immunity to Candida albicans in caspase 1-deficient mice. Infect. Immun. 68:5126-5131.
    • (2000) Infect. Immun. , vol.68 , pp. 5126-5131
    • Mencacci, A.1
  • 68
    • 7044262339 scopus 로고    scopus 로고
    • The hyphal and yeast forms of Candida albicans bind the complement regulator C4b-binding protein
    • Meri T, et al. 2004. The hyphal and yeast forms of Candida albicans bind the complement regulator C4b-binding protein. Infect. Immun. 72: 6633-6641.
    • (2004) Infect. Immun. , vol.72 , pp. 6633-6641
    • Meri, T.1
  • 69
    • 0036716484 scopus 로고    scopus 로고
    • The yeast Candida albicans binds complement regulators factor H and FHL-1
    • Meri T, et al. 2002. The yeast Candida albicans binds complement regulators factor H and FHL-1. Infect. Immun. 70:5185-5192.
    • (2002) Infect. Immun. , vol.70 , pp. 5185-5192
    • Meri, T.1
  • 70
    • 67650082672 scopus 로고    scopus 로고
    • Toll-like receptor 9-dependent activation of myeloid dendritic cells by deoxynucleic acids from Candida albicans
    • Miyazato A, et al. 2009. Toll-like receptor 9-dependent activation of myeloid dendritic cells by deoxynucleic acids from Candida albicans. Infect. Immun. 77:3056-3064.
    • (2009) Infect. Immun. , vol.77 , pp. 3056-3064
    • Miyazato, A.1
  • 71
    • 48849117466 scopus 로고    scopus 로고
    • The contribution of PARs to inflammation and immunity to fungi
    • Moretti S, et al. 2008. The contribution of PARs to inflammation and immunity to fungi. Mucosal Immunol. 1:156-168.
    • (2008) Mucosal Immunol , vol.1 , pp. 156-168
    • Moretti, S.1
  • 72
    • 77956583415 scopus 로고    scopus 로고
    • A biphasic innate immune MAPK response discriminates between the yeast and hyphal forms of Candida albicans in epithelial cells
    • Moyes DL, et al. 2010. A biphasic innate immune MAPK response discriminates between the yeast and hyphal forms of Candida albicans in epithelial cells. Cell Host Microbe 8:225-235.
    • (2010) Cell Host Microbe , vol.8 , pp. 225-235
    • Moyes, D.L.1
  • 73
    • 4644249924 scopus 로고    scopus 로고
    • Dysregulated inflammatory response to Candida albicans in a C5-deficient mouse strain
    • Mullick A, et al. 2004. Dysregulated inflammatory response to Candida albicans in a C5-deficient mouse strain. Infect. Immun. 72:5868-5876.
    • (2004) Infect. Immun. , vol.72 , pp. 5868-5876
    • Mullick, A.1
  • 74
    • 17944370004 scopus 로고    scopus 로고
    • NRG1 represses yeast-hypha morphogenesis and hypha-specific gene expression in Candida albicans
    • Murad AM, et al. 2001. NRG1 represses yeast-hypha morphogenesis and hypha-specific gene expression in Candida albicans. EMBO J. 20: 4742-4752.
    • (2001) EMBO J , vol.20 , pp. 4742-4752
    • Murad, A.M.1
  • 75
    • 84855747363 scopus 로고    scopus 로고
    • Candida albicans cell wall glycosylation may be indirectly required for activation of epithelial cell proinflammatory responses
    • Murciano C, et al. 2011. Candida albicans cell wall glycosylation may be indirectly required for activation of epithelial cell proinflammatory responses. Infect. Immun. 79:4902-4911.
    • (2011) Infect. Immun. , vol.79 , pp. 4902-4911
    • Murciano, C.1
  • 76
    • 0037633096 scopus 로고    scopus 로고
    • Disruption of the human pathogenic yeast Candida albicans catalase gene decreases survival in mouse-model infection and elevates susceptibility to higher temperature and to detergents
    • Nakagawa Y, Kanbe T, Mizuguchi I. 2003. Disruption of the human pathogenic yeast Candida albicans catalase gene decreases survival in mouse-model infection and elevates susceptibility to higher temperature and to detergents. Microbiol. Immunol. 47:395-403.
    • (2003) Microbiol. Immunol. , vol.47 , pp. 395-403
    • Nakagawa, Y.1    Kanbe, T.2    Mizuguchi, I.3
  • 77
    • 34547646534 scopus 로고    scopus 로고
    • Exogenous farnesol interferes with the normal progression of cytokine expression during candidiasis in a mouse model
    • Navarathna DH, Nickerson KW, Duhamel GE, Jerrels TR, Petro TM. 2007. Exogenous farnesol interferes with the normal progression of cytokine expression during candidiasis in a mouse model. Infect. Immun. 75:4006-4011.
    • (2007) Infect. Immun. , vol.75 , pp. 4006-4011
    • Navarathna, D.H.1    Nickerson, K.W.2    Duhamel, G.E.3    Jerrels, T.R.4    Petro, T.M.5
  • 78
    • 37349015349 scopus 로고    scopus 로고
    • An integrated model of the recognition of Candida albicans by the innate immune system
    • Netea MG, Brown GD, Kullberg BJ, Gow NA. 2008. An integrated model of the recognition of Candida albicans by the innate immune system. Nat. Rev. Microbiol. 6:67-78.
    • (2008) Nat. Rev. Microbiol. , vol.6 , pp. 67-78
    • Netea, M.G.1    Brown, G.D.2    Kullberg, B.J.3    Gow, N.A.4
  • 79
    • 33745207594 scopus 로고    scopus 로고
    • Immune sensing of Candida albicans requires cooperative recognition of mannans and glucans by lectin and Toll-like receptors
    • Netea MG, et al. 2006. Immune sensing of Candida albicans requires cooperative recognition of mannans and glucans by lectin and Toll-like receptors. J. Clin. Invest. 116:1642-1650.
    • (2006) J. Clin. Invest. , vol.116 , pp. 1642-1650
    • Netea, M.G.1
  • 80
    • 77956185307 scopus 로고    scopus 로고
    • Innate immune mechanisms for recognition and uptake of Candida species
    • Netea MG, Marodi L. 2010. Innate immune mechanisms for recognition and uptake of Candida species. Trends Immunol. 31:346-353.
    • (2010) Trends Immunol , vol.31 , pp. 346-353
    • Netea, M.G.1    Marodi, L.2
  • 82
    • 0033178999 scopus 로고    scopus 로고
    • Increased susceptibility of TNF-alpha lymphotoxin-alpha double knockout mice to systemic candidiasis through impaired recruitment of neutrophils and phagocytosis of Candida albicans
    • Netea MG, et al. 1999. Increased susceptibility of TNF-alpha lymphotoxin-alpha double knockout mice to systemic candidiasis through impaired recruitment of neutrophils and phagocytosis of Candida albicans. J. Immunol. 163:1498-1505.
    • (1999) J. Immunol. , vol.163 , pp. 1498-1505
    • Netea, M.G.1
  • 83
    • 12844262948 scopus 로고    scopus 로고
    • Enhanced killing of Candida albicans by human macrophages adherent to type 1 collagen matrices via induction of phagolysosomal fusion
    • Newman SL, Bhugra B, Holly A, Morris RE. 2005. Enhanced killing of Candida albicans by human macrophages adherent to type 1 collagen matrices via induction of phagolysosomal fusion. Infect. Immun. 73: 770-777.
    • (2005) Infect. Immun. , vol.73 , pp. 770-777
    • Newman, S.L.1    Bhugra, B.2    Holly, A.3    Morris, R.E.4
  • 84
    • 80155153023 scopus 로고    scopus 로고
    • Vacuolar trafficking and Candida albicans pathogenesis
    • Palmer GE. 2011. Vacuolar trafficking and Candida albicans pathogenesis. Commun. Integr. Biol. 4:240-242.
    • (2011) Commun. Integr. Biol. , vol.4 , pp. 240-242
    • Palmer, G.E.1
  • 85
    • 26944497176 scopus 로고    scopus 로고
    • The Candida albicans vacuole is required for differentiation and efficient macrophage killing
    • Palmer GE, Kelly MN, Sturtevant JE. 2005. The Candida albicans vacuole is required for differentiation and efficient macrophage killing. Eukaryot. Cell 4:1677-1686.
    • (2005) Eukaryot. Cell , vol.4 , pp. 1677-1686
    • Palmer, G.E.1    Kelly, M.N.2    Sturtevant, J.E.3
  • 86
    • 80855140162 scopus 로고    scopus 로고
    • Next-generation computational genetic analysis: multiple complement alleles control survival after Candida albicans infection
    • Peltz G, et al. 2011. Next-generation computational genetic analysis: multiple complement alleles control survival after Candida albicans infection. Infect. Immun. 79:4472-4479.
    • (2011) Infect. Immun. , vol.79 , pp. 4472-4479
    • Peltz, G.1
  • 87
    • 33947273030 scopus 로고    scopus 로고
    • Als3 is a Candida albicans invasin that binds to cadherins and induces endocytosis by host cells
    • Phan QT, et al. 2007. Als3 is a Candida albicans invasin that binds to cadherins and induces endocytosis by host cells. PLoS Biol. 5:e64.
    • (2007) PLoS Biol , vol.5
    • Phan, Q.T.1
  • 88
    • 38049134765 scopus 로고    scopus 로고
    • Gpm1p is a factor H-, FHL-1-, and plasminogen-binding surface protein of Candida albicans
    • Poltermann S, et al. 2007. Gpm1p is a factor H-, FHL-1-, and plasminogen-binding surface protein of Candida albicans. J. Biol. Chem. 282: 37537-37544.
    • (2007) J. Biol. Chem. , vol.282 , pp. 37537-37544
    • Poltermann, S.1
  • 89
    • 79953284685 scopus 로고    scopus 로고
    • Chronic mucocutaneous candidiasis in humans with inborn errors of interleukin-17 immunity
    • Puel A, et al. 2011. Chronic mucocutaneous candidiasis in humans with inborn errors of interleukin-17 immunity. Science 332:65-68.
    • (2011) Science , vol.332 , pp. 65-68
    • Puel, A.1
  • 90
    • 0028223193 scopus 로고
    • Elimination of mouse splenic macrophages correlates with increased susceptibility to experimental disseminated candidiasis
    • Qian Q, Jutila MA, Van Rooijen N, Cutler JE. 1994. Elimination of mouse splenic macrophages correlates with increased susceptibility to experimental disseminated candidiasis. J. Immunol. 152:5000-5008.
    • (1994) J. Immunol. , vol.152 , pp. 5000-5008
    • Qian, Q.1    Jutila, M.A.2    Van Rooijen, N.3    Cutler, J.E.4
  • 91
    • 0023706676 scopus 로고
    • Scanning electron microscopy of epidermal adherence and cavitation in murine candidiasis: a role for Candida acid proteinase
    • Ray TL, Payne CD. 1988. Scanning electron microscopy of epidermal adherence and cavitation in murine candidiasis: a role for Candida acid proteinase. Infect. Immun. 56:1942-1949.
    • (1988) Infect. Immun. , vol.56 , pp. 1942-1949
    • Ray, T.L.1    Payne, C.D.2
  • 92
    • 0029913685 scopus 로고    scopus 로고
    • Impaired neutrophil response and CD4+ T helper cell 1 development in interleukin 6-deficient mice infected with Candida albicans
    • Romani L, et al. 1996. Impaired neutrophil response and CD4+ T helper cell 1 development in interleukin 6-deficient mice infected with Candida albicans. J. Exp. Med. 183:1345-1355.
    • (1996) J. Exp. Med. , vol.183 , pp. 1345-1355
    • Romani, L.1
  • 93
    • 77953289487 scopus 로고    scopus 로고
    • Dectin-2 recognition of alpha-mannans and induction of Th17 cell differentiation is essential for host defense against Candida albicans
    • Saijo S, et al. 2010. Dectin-2 recognition of alpha-mannans and induction of Th17 cell differentiation is essential for host defense against Candida albicans. Immunity 32:681-691.
    • (2010) Immunity , vol.32 , pp. 681-691
    • Saijo, S.1
  • 94
    • 0023243761 scopus 로고
    • Candidacidal activity of monocyte-derived human macrophages: relationship between Candida killing and oxygen radical generation by human macrophages
    • Sasada M, et al. 1987. Candidacidal activity of monocyte-derived human macrophages: relationship between Candida killing and oxygen radical generation by human macrophages. J. Leukoc. Biol. 41:289-294.
    • (1987) J. Leukoc. Biol. , vol.41 , pp. 289-294
    • Sasada, M.1
  • 95
    • 33845977385 scopus 로고    scopus 로고
    • Dectin-2 is a pattern recognition receptor for fungi that couples with the Fc receptor gamma chain to induce innate immune responses
    • Sato K, et al. 2006. Dectin-2 is a pattern recognition receptor for fungi that couples with the Fc receptor gamma chain to induce innate immune responses. J. Biol. Chem. 281:38854-38866.
    • (2006) J. Biol. Chem. , vol.281 , pp. 38854-38866
    • Sato, K.1
  • 96
    • 4844224005 scopus 로고    scopus 로고
    • Polymorphonuclear leukocytes (PMNs) induce protective Th1-type cytokine epithelial responses in an in vitro model of oral candidosis
    • Schaller M, et al. 2004. Polymorphonuclear leukocytes (PMNs) induce protective Th1-type cytokine epithelial responses in an in vitro model of oral candidosis. Microbiology 150:2807-2813.
    • (2004) Microbiology , vol.150 , pp. 2807-2813
    • Schaller, M.1
  • 97
    • 0032403506 scopus 로고    scopus 로고
    • IL-17 stimulates granulopoiesis in mice: use of an alternate, novel gene therapy-derived method for in vivo evaluation of cytokines
    • Schwarzenberger P, et al. 1998. IL-17 stimulates granulopoiesis in mice: use of an alternate, novel gene therapy-derived method for in vivo evaluation of cytokines. J. Immunol. 161:6383-6389.
    • (1998) J. Immunol. , vol.161 , pp. 6383-6389
    • Schwarzenberger, P.1
  • 98
    • 51649116679 scopus 로고    scopus 로고
    • The interaction of mannose binding lectin (MBL) with mannose containing glycopeptides and the resultant potential impact on invasive fungal infection
    • Sealy PI, Garner B, Swiatlo E, Chapman SW, Cleary JD. 2008. The interaction of mannose binding lectin (MBL) with mannose containing glycopeptides and the resultant potential impact on invasive fungal infection. Med. Mycol. 46:531-539.
    • (2008) Med. Mycol. , vol.46 , pp. 531-539
    • Sealy, P.I.1    Garner, B.2    Swiatlo, E.3    Chapman, S.W.4    Cleary, J.D.5
  • 99
    • 79953664350 scopus 로고    scopus 로고
    • Regulation of innate immune response to Candida albicans infections by αMβ2-Pra1p interaction
    • Soloviev DA, Jawhara S, Fonzi WA. 2011. Regulation of innate immune response to Candida albicans infections by αMβ2-Pra1p interaction. Infect. Immun. 79:1546-1558.
    • (2011) Infect. Immun. , vol.79 , pp. 1546-1558
    • Soloviev, D.A.1    Jawhara, S.2    Fonzi, W.A.3
  • 100
    • 0033788255 scopus 로고    scopus 로고
    • Growth inhibition of Candida by human oral epithelial cells
    • Steele C, Leigh J, Swoboda R, Fidel PL, Jr. 2000. Growth inhibition of Candida by human oral epithelial cells. J. Infect. Dis. 182:1479-1485.
    • (2000) J. Infect. Dis. , vol.182 , pp. 1479-1485
    • Steele, C.1    Leigh, J.2    Swoboda, R.3    Fidel Jr., P.L.4
  • 101
    • 0036021109 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae-and Candida albicansderived mannan induced production of tumor necrosis factor alpha by human monocytes in a CD14-and Toll-like receptor 4-dependent manner
    • Tada H, et al. 2002. Saccharomyces cerevisiae-and Candida albicansderived mannan induced production of tumor necrosis factor alpha by human monocytes in a CD14-and Toll-like receptor 4-dependent manner. Microbiol. Immunol. 46:503-512.
    • (2002) Microbiol. Immunol. , vol.46 , pp. 503-512
    • Tada, H.1
  • 102
    • 2142657899 scopus 로고    scopus 로고
    • Inhibition of monocytic interleukin-12 production by Candida albicans via selective activation of ERK mitogen-activated protein kinase
    • Tang N, et al. 2004. Inhibition of monocytic interleukin-12 production by Candida albicans via selective activation of ERK mitogen-activated protein kinase. Infect. Immun. 72:2513-2520.
    • (2004) Infect. Immun. , vol.72 , pp. 2513-2520
    • Tang, N.1
  • 103
    • 33646045062 scopus 로고    scopus 로고
    • Candida albicans isolates with different genomic backgrounds display a differential response to macrophage infection
    • Tavanti A, et al. 2006. Candida albicans isolates with different genomic backgrounds display a differential response to macrophage infection. Microbes Infect. 8:791-800.
    • (2006) Microbes Infect , vol.8 , pp. 791-800
    • Tavanti, A.1
  • 104
    • 73649099522 scopus 로고    scopus 로고
    • Neutrophil extracellular traps contain calprotectin, a cytosolic protein complex involved in host defense against Candida albicans
    • Urban CF, et al. 2009. Neutrophil extracellular traps contain calprotectin, a cytosolic protein complex involved in host defense against Candida albicans. PLoS Pathog. 5:e1000639.
    • (2009) PLoS Pathog , vol.5
    • Urban, C.F.1
  • 105
    • 64649083975 scopus 로고    scopus 로고
    • The macrophage mannose receptor induces IL-17 in response to Candida albicans
    • van de Veerdonk FL, et al. 2009. The macrophage mannose receptor induces IL-17 in response to Candida albicans. Cell Host Microbe 5:329-340.
    • (2009) Cell Host Microbe , vol.5 , pp. 329-340
    • van de Veerdonk, F.L.1
  • 106
    • 50249171019 scopus 로고    scopus 로고
    • Redundant role of TLR9 for anti-Candida host defense
    • van de Veerdonk F, et al. 2008. Redundant role of TLR9 for anti-Candida host defense. Immunobiology 213:613-620.
    • (2008) Immunobiology , vol.213 , pp. 613-620
    • van de Veerdonk, F.1
  • 107
    • 79960094057 scopus 로고    scopus 로고
    • STAT1 mutations in autosomal dominant chronic mucocutaneous candidiasis
    • van de Veerdonk F, et al. 2011. STAT1 mutations in autosomal dominant chronic mucocutaneous candidiasis. N. Engl. J. Med. 365:54-61.
    • (2011) N. Engl. J. Med. , vol.365 , pp. 54-61
    • van de Veerdonk, F.1
  • 108
    • 0033405366 scopus 로고    scopus 로고
    • Increased susceptibility to systemic candidiasis in interleukin-6 deficient mice
    • van Enckevort FH, et al. 1999. Increased susceptibility to systemic candidiasis in interleukin-6 deficient mice. Med. Mycol. 37:419-426.
    • (1999) Med. Mycol. , vol.37 , pp. 419-426
    • van Enckevort, F.H.1
  • 109
    • 0024245476 scopus 로고
    • Contribution of granulocytes and monocytes to resistance against experimental disseminated Candida albicans infection
    • van 't Wout JW, Linde I, Leijh PC, van Furth R. 1988. Contribution of granulocytes and monocytes to resistance against experimental disseminated Candida albicans infection. Eur. J. Clin. Microbiol. Infect. Dis. 7:736-741.
    • (1988) Eur. J. Clin. Microbiol. Infect. Dis. , vol.7 , pp. 736-741
    • van 't Wout, J.W.1    Linde, I.2    Leijh, P.C.3    van Furth, R.4
  • 110
    • 0030055894 scopus 로고    scopus 로고
    • Peroxynitrite contributes to the candidacidal activity of nitric oxide-producing macrophages
    • Vazquez-Torres A, Jones-Carson J, Balish E. 1996. Peroxynitrite contributes to the candidacidal activity of nitric oxide-producing macrophages. Infect. Immun. 64:3127-3133.
    • (1996) Infect. Immun. , vol.64 , pp. 3127-3133
    • Vazquez-Torres, A.1    Jones-Carson, J.2    Balish, E.3
  • 111
    • 79952019135 scopus 로고    scopus 로고
    • From attachment to damage: defined genes of Candida albicans mediate adhesion, invasion and damage during interaction with oral epithelial cells
    • Wachtler B, Wilson D, Haedicke K, Dalle F, Hube B. 2011. From attachment to damage: defined genes of Candida albicans mediate adhesion, invasion and damage during interaction with oral epithelial cells. PLoS One 6:e17046.
    • (2011) PLoS One , vol.6
    • Wachtler, B.1    Wilson, D.2    Haedicke, K.3    Dalle, F.4    Hube, B.5
  • 112
    • 42049095248 scopus 로고    scopus 로고
    • Characterization and partial purification of Candida albicans secretory IL-12 inhibitory factor
    • Wang M, et al. 2008. Characterization and partial purification of Candida albicans secretory IL-12 inhibitory factor. BMC Microbiol. 8:31.
    • (2008) BMC Microbiol , vol.8 , pp. 31
    • Wang, M.1
  • 113
    • 36849088141 scopus 로고    scopus 로고
    • Human epithelial cells establish direct antifungal defense through TLR4-mediated signaling
    • Weindl G, et al. 2007. Human epithelial cells establish direct antifungal defense through TLR4-mediated signaling. J. Clin. Invest. 117:3664-3672.
    • (2007) J. Clin. Invest. , vol.117 , pp. 3664-3672
    • Weindl, G.1
  • 114
    • 58449091560 scopus 로고    scopus 로고
    • Live Candida albicans suppresses production of reactive oxygen species in phagocytes
    • Wellington M, Dolan K, Krysan DJ. 2009. Live Candida albicans suppresses production of reactive oxygen species in phagocytes. Infect. Immun. 77:405-413.
    • (2009) Infect. Immun. , vol.77 , pp. 405-413
    • Wellington, M.1    Dolan, K.2    Krysan, D.J.3
  • 115
    • 26944437020 scopus 로고    scopus 로고
    • Candida albicansconditioned medium protects yeast cells from oxidative stress: a possible link between quorum sensing and oxidative stress resistance
    • Westwater C, Balish E, Schofield DA. 2005. Candida albicansconditioned medium protects yeast cells from oxidative stress: a possible link between quorum sensing and oxidative stress resistance. Eukaryot. Cell 4:1654-1661.
    • (2005) Eukaryot. Cell , vol.4 , pp. 1654-1661
    • Westwater, C.1    Balish, E.2    Schofield, D.A.3
  • 116
    • 58149269544 scopus 로고    scopus 로고
    • Dynamic, morphotype-specific Candida albicans beta-glucan exposure during infection and drug treatment
    • Wheeler RT, Kombe D, Agarwala SD, Fink GR. 2008. Dynamic, morphotype-specific Candida albicans beta-glucan exposure during infection and drug treatment. PLoS Pathog. 4:e1000227.
    • (2008) PLoS Pathog , vol.4
    • Wheeler, R.T.1    Kombe, D.2    Agarwala, S.D.3    Fink, G.R.4
  • 118
    • 3943093972 scopus 로고    scopus 로고
    • Nosocomial bloodstream infections in US hospitals: analysis of 24, 179 cases from a prospective nationwide surveillance study
    • Wisplinghoff H, et al. 2004. Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clin. Infect. Dis. 39:309-317.
    • (2004) Clin. Infect. Dis. , vol.39 , pp. 309-317
    • Wisplinghoff, H.1
  • 119
    • 0034100030 scopus 로고    scopus 로고
    • Candida albicans and Candida krusei differentially induce human blood mononuclear cell interleukin-12 and gamma interferon production
    • Xiong J, et al. 2000. Candida albicans and Candida krusei differentially induce human blood mononuclear cell interleukin-12 and gamma interferon production. Infect. Immun. 68:2464-2469.
    • (2000) Infect. Immun. , vol.68 , pp. 2464-2469
    • Xiong, J.1
  • 120
    • 78649962008 scopus 로고    scopus 로고
    • Epithelial cell-derived S100 calcium-binding proteins as key mediators in the hallmark acute neutrophil response during Candida vaginitis
    • Yano J, Lilly E, Barousse M, Fidel PL, Jr. 2010. Epithelial cell-derived S100 calcium-binding proteins as key mediators in the hallmark acute neutrophil response during Candida vaginitis. Infect. Immun. 78:5126-5137.
    • (2010) Infect. Immun. , vol.78 , pp. 5126-5137
    • Yano, J.1    Lilly, E.2    Barousse, M.3    Fidel Jr., P.L.4
  • 121
    • 17944364849 scopus 로고    scopus 로고
    • Requirement of interleukin 17 receptor signaling for lung CXC chemokine and granulocyte colony-stimulating factor expression, neutrophil recruitment, and host defense
    • Ye P, et al. 2001. Requirement of interleukin 17 receptor signaling for lung CXC chemokine and granulocyte colony-stimulating factor expression, neutrophil recruitment, and host defense. J. Exp. Med. 194:519-527.
    • (2001) J. Exp. Med. , vol.194 , pp. 519-527
    • Ye, P.1
  • 122
    • 35948998096 scopus 로고    scopus 로고
    • In vivo transcript profiling of Candida albicans identifies a gene essential for interepithelial dissemination
    • Zakikhany K, et al. 2007. In vivo transcript profiling of Candida albicans identifies a gene essential for interepithelial dissemination. Cell. Microbiol. 9:2938-2954.
    • (2007) Cell. Microbiol. , vol.9 , pp. 2938-2954
    • Zakikhany, K.1
  • 123
    • 0031691926 scopus 로고    scopus 로고
    • Mannan-specific immunoglobulin G antibodies in normal human serum accelerate binding of C3 to Candida albicans via the alternative complement pathway
    • Zhang MX, Kozel TR. 1998. Mannan-specific immunoglobulin G antibodies in normal human serum accelerate binding of C3 to Candida albicans via the alternative complement pathway. Infect. Immun. 66: 4845-4850.
    • (1998) Infect. Immun. , vol.66 , pp. 4845-4850
    • Zhang, M.X.1    Kozel, T.R.2
  • 124
    • 0030931389 scopus 로고    scopus 로고
    • Mannan-specific immunoglobulinGantibodies in normal human serum mediate classical pathway initiation of C3 binding to Candida albicans
    • Zhang MX, Lupan DM, Kozel TR. 1997. Mannan-specific immunoglobulinGantibodies in normal human serum mediate classical pathway initiation of C3 binding to Candida albicans. Infect. Immun. 65:3822-3827.
    • (1997) Infect. Immun. , vol.65 , pp. 3822-3827
    • Zhang, M.X.1    Lupan, D.M.2    Kozel, T.R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.