메뉴 건너뛰기




Volumn 9, Issue 9, 2016, Pages 4047-4059

Wavelet-Domain Multiview Active Learning for Spatial-Spectral Hyperspectral Image Classification

Author keywords

Active learning; hyperspectral image classification; multiview (MV); redundant discrete wavelet transform; spatial information

Indexed keywords

ADDITIVE NOISE; ALUMINUM; ARTIFICIAL INTELLIGENCE; CLASSIFICATION (OF INFORMATION); DISCRETE WAVELET TRANSFORMS; INDEPENDENT COMPONENT ANALYSIS; SPECTROSCOPY; WAVELET ANALYSIS; WAVELET TRANSFORMS;

EID: 84964454354     PISSN: 19391404     EISSN: 21511535     Source Type: Journal    
DOI: 10.1109/JSTARS.2016.2552998     Document Type: Article
Times cited : (34)

References (38)
  • 1
    • 67650436064 scopus 로고    scopus 로고
    • Recent advances in techniques for hyperspectral image processing
    • A. Plaza et al., "Recent advances in techniques for hyperspectral image processing," Remote Sens. Environ., vol. 113, pp. S110-S122, 2009.
    • (2009) Remote Sens. Environ. , vol.113 , pp. S110-S122
    • Plaza, A.1
  • 2
    • 33747610735 scopus 로고    scopus 로고
    • Training set size requirements for the classification of a specific class
    • G.M. Foody, A. Mathur, C. Sanchez-Hernandez, and D. S. Boyd, "Training set size requirements for the classification of a specific class," Remote Sens. Environ., vol. 104, no. 1, pp. 1-14, 2006.
    • (2006) Remote Sens. Environ. , vol.104 , Issue.1 , pp. 1-14
    • Foody, G.M.1    Mathur, A.2    Sanchez-Hernandez, C.3    Boyd, D.S.4
  • 4
    • 84874518998 scopus 로고    scopus 로고
    • Active learning: Any value for classification of remotely sensed data?
    • Mar.
    • M. M.Crawford, D. Tuia, and H. L. Yang, "Active learning: Any value for classification of remotely sensed data?" Proc. IEEE, vol. 101, no. 3, pp. 593-608, Mar. 2013.
    • (2013) Proc. IEEE , vol.101 , Issue.3 , pp. 593-608
    • Crawford, M.M.1    Tuia, D.2    Yang, H.L.3
  • 5
    • 79957456032 scopus 로고    scopus 로고
    • A survey of active learning algorithms for supervised remote sensing image classification
    • Jun.
    • D. Tuia, M. Volpi, L. Copa, M. Kanevski, and J. Munoz-Mari, "A survey of active learning algorithms for supervised remote sensing image classification," IEEE J. Sel. Topics Signal Process., vol. 5, no. 3, pp. 606-617, Jun. 2011.
    • (2011) IEEE J. Sel. Topics Signal Process. , vol.5 , Issue.3 , pp. 606-617
    • Tuia, D.1    Volpi, M.2    Copa, L.3    Kanevski, M.4    Munoz-Mari, J.5
  • 6
    • 41549147912 scopus 로고    scopus 로고
    • An active learning approach to hyperspectral data classification
    • Apr.
    • S. Rajan, J. Ghosh, and M. M. Crawford, "An active learning approach to hyperspectral data classification," IEEE Trans.Geosci. Remote Sens., vol. 46, no. 4, pp. 1231-1242, Apr. 2008.
    • (2008) IEEE Trans.Geosci. Remote Sens. , vol.46 , Issue.4 , pp. 1231-1242
    • Rajan, S.1    Ghosh, J.2    Crawford, M.M.3
  • 8
    • 79957490338 scopus 로고    scopus 로고
    • Active learning with spatially sensitive labeling costs
    • presented at the Whistler, BC, Canada
    • A. Liu and A. J. G. G. Jun, "Active learning with spatially sensitive labeling costs," presented at the NIPS Workshop Cost-Sensitive Learn., Whistler, BC, Canada, 2008.
    • (2008) NIPS Workshop Cost-Sensitive Learn
    • Liu, A.1    Jun, A.J.G.G.2
  • 9
    • 77950938874 scopus 로고    scopus 로고
    • Active learning of hyperspectral data with spatially dependent label acquisition costs
    • Cape Town, South Africa, 2009
    • A. Liu and A. J. G. G. Jun, "Active learning of hyperspectral data with spatially dependent label acquisition costs," in Proc. Int. Geosci. Remote Sens. Symp., Cape Town, South Africa, 2009, vol. 5, 2009, pp. V-256-V-259.
    • (2009) Proc. Int. Geosci. Remote Sens. Symp. , vol.5 , pp. V256-V259
    • Liu, A.1    Jun, A.J.G.G.2
  • 10
    • 84901851364 scopus 로고    scopus 로고
    • Cost-sensitive active learning with lookahead: Optimizing field surveys for remote sensing data classification
    • Oct.
    • C. Persello, A. Boularias, M. Dalponte, T. Gobakken, E. Naesset, and B. Scholkopf, "Cost-sensitive active learning with lookahead: Optimizing field surveys for remote sensing data classification," IEEE Trans. Geosci. Remote Sens., vol. 52, no. 10, pp. 6652-6664, Oct. 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.10 , pp. 6652-6664
    • Persello, C.1    Boularias, A.2    Dalponte, M.3    Gobakken, T.4    Naesset, E.5    Scholkopf, B.6
  • 11
    • 79952041537 scopus 로고    scopus 로고
    • Batch-mode active-learning methods for the interactive classification of remote sensing images
    • Mar.
    • B. Demir, C. Persello, and L. Bruzzone, "Batch-mode active-learning methods for the interactive classification of remote sensing images," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 3, pp. 1014-1031, Mar. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.3 , pp. 1014-1031
    • Demir, B.1    Persello, C.2    Bruzzone, L.3
  • 12
    • 84869491853 scopus 로고    scopus 로고
    • SVM-based boosting of active learning strategies for efficient domain adaptation
    • Oct.
    • G. Matasci, D. Tuia, and M. Kanevski, "SVM-based boosting of active learning strategies for efficient domain adaptation," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 5, no. 5, pp. 1335-1343, Oct. 2012.
    • (2012) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.5 , Issue.5 , pp. 1335-1343
    • Matasci, G.1    Tuia, D.2    Kanevski, M.3
  • 13
    • 84860338492 scopus 로고    scopus 로고
    • Detection of land-cover transitions in multitemporal remote sensing images with active-learning-based compound classification
    • May
    • B. Demir, F. Bovolo, and L. Bruzzone, "Detection of land-cover transitions in multitemporal remote sensing images with active-learning-based compound classification," IEEE Trans. Geosci. Remote Sens., vol. 50, no. 5, pp. 1930-1941, May 2012.
    • (2012) IEEE Trans. Geosci. Remote Sens. , vol.50 , Issue.5 , pp. 1930-1941
    • Demir, B.1    Bovolo, F.2    Bruzzone, L.3
  • 15
    • 84892437309 scopus 로고    scopus 로고
    • SVM active learning approach for image classification using spatial information
    • Apr.
    • E. Pasolli, F. Melgani, D. Tuia, F. Pacifici, and W. J. Emery, "SVM active learning approach for image classification using spatial information," IEEE Trans. Geosci. Remote Sens., vol. 52, no. 4, pp. 2217-2233, Apr. 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.4 , pp. 2217-2233
    • Pasolli, E.1    Melgani, F.2    Tuia, D.3    Pacifici, F.4    Emery, W.J.5
  • 16
    • 84872922940 scopus 로고    scopus 로고
    • Spectral-spatial classification of hyperspectral data using loopy belief propagation and active learning
    • Feb.
    • J. Li, J. Bioucas-Dias, and A. Plaza, "Spectral-spatial classification of hyperspectral data using loopy belief propagation and active learning," IEEE Trans. Geosci. Remote Sens., vol. 51, no. 2, pp. 844-856, Feb. 2013.
    • (2013) IEEE Trans. Geosci. Remote Sens. , vol.51 , Issue.2 , pp. 844-856
    • Li, J.1    Bioucas-Dias, J.2    Plaza, A.3
  • 17
    • 84898598578 scopus 로고    scopus 로고
    • Active learning in the spatial domain for remote sensing image classification
    • May
    • A. Stumpf, N. Lachiche, J.-P. Malet, N. Kerle, and A. Puissant, "Active learning in the spatial domain for remote sensing image classification," IEEE Trans. Geosci. Remote Sens., vol. 52, no. 5, pp. 2492-2507, May 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.5 , pp. 2492-2507
    • Stumpf, A.1    Lachiche, N.2    Malet, J.-P.3    Kerle, N.4    Puissant, A.5
  • 19
    • 85027919075 scopus 로고    scopus 로고
    • Locality preserving composite kernel feature extraction for multi-source geospatial image analysis
    • Mar.
    • Y. Zhang and S. Prasad, "Locality preserving composite kernel feature extraction for multi-source geospatial image analysis," IEEE J. Select. Topics Appl. Earth Observ. Remote Sens., vol. 8, no. 3, pp. 1385-1392, Mar. 2015.
    • (2015) IEEE J. Select. Topics Appl. Earth Observ. Remote Sens. , vol.8 , Issue.3 , pp. 1385-1392
    • Zhang, Y.1    Prasad, S.2
  • 20
    • 78649286256 scopus 로고    scopus 로고
    • Locally consistent graph regularization based active learning for hyperspectral image classification
    • Reyjavik, Iceland
    • W. Di and M. M. Crawford, "Locally consistent graph regularization based active learning for hyperspectral image classification," in Proc. 2nd IEEEWorkshop Hyperspectral Image Signal Process., Evol. Remote Sens., Reyjavik, Iceland, 2010, pp. 1-4.
    • (2010) Proc. 2nd IEEEWorkshop Hyperspectral Image Signal Process., Evol. Remote Sens. , pp. 1-4
    • Di, W.1    Crawford, M.M.2
  • 21
    • 79957458331 scopus 로고    scopus 로고
    • Active learning via multi-view and local proximity co-regularization for hyperspectral image classification
    • Jun.
    • W. Di and M. M. Crawford, "Active learning via multi-view and local proximity co-regularization for hyperspectral image classification," IEEE J. Sel. Topics Signal Process., vol. 5, no. 3, pp. 618-628, Jun. 2011.
    • (2011) IEEE J. Sel. Topics Signal Process. , vol.5 , Issue.3 , pp. 618-628
    • Di, W.1    Crawford, M.M.2
  • 22
    • 84860318734 scopus 로고    scopus 로고
    • View generation for multiview maximum disagreement based active learning for hyperspectral image classification
    • May
    • W. Di and M. M. Crawford, "View generation for multiview maximum disagreement based active learning for hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., vol. 50, no. 5, pp. 1942-1954, May 2012.
    • (2012) IEEE Trans. Geosci. Remote Sens. , vol.50 , Issue.5 , pp. 1942-1954
    • Di, W.1    Crawford, M.M.2
  • 23
    • 0002087078 scopus 로고
    • An implementation of the algorithme à trous to compute the wavelet transform
    • New York, NY, USA: Springer
    • P. Dutilleux, "An implementation of the algorithme à trous to compute the wavelet transform," in Wavelets. New York, NY, USA: Springer, 1989, pp. 298-304.
    • (1989) Wavelets , pp. 298-304
    • Dutilleux, P.1
  • 24
    • 84865677926 scopus 로고    scopus 로고
    • Information fusion in the redundant-wavelet-transform domain for noise-robust hyperspectral classification
    • Sep.
    • S. Prasad, W. Li, J. E. Fowler, and L. M. Bruce, "Information fusion in the redundant-wavelet-transform domain for noise-robust hyperspectral classification," IEEE Trans. Geosci. Remote Sens., vol. 50, no. 99, pp. 3474-3486, Sep. 2012.
    • (2012) IEEE Trans. Geosci. Remote Sens. , vol.50 , Issue.99 , pp. 3474-3486
    • Prasad, S.1    Li, W.2    Fowler, J.E.3    Bruce, L.M.4
  • 25
    • 0031620208 scopus 로고    scopus 로고
    • Combining labeled and unlabeled data with co-training
    • Madison, WI, USA
    • A. Blum and T. Mitchell, "Combining labeled and unlabeled data with co-training," in Proc. 11th Annu. Conf. Comput. Learn. Theory, Madison, WI, USA, 1998, pp. 92-100.
    • (1998) Proc. 11th Annu. Conf. Comput. Learn. Theory , pp. 92-100
    • Blum, A.1    Mitchell, T.2
  • 26
    • 36348938695 scopus 로고    scopus 로고
    • Semi-supervised learning with very few labeled training examples
    • Vancouver, BC, Canada
    • Z. Zhou, D. Zhan, and Q. Yang, "Semi-supervised learning with very few labeled training examples," in Proc. 22nd AAAI Conf. Artif. Intell., Vancouver, BC, Canada, vol. 22, no. 1, 2007, pp. 675-680.
    • (2007) Proc. 22nd AAAI Conf. Artif. Intell. , vol.22 , Issue.1 , pp. 675-680
    • Zhou, Z.1    Zhan, D.2    Yang, Q.3
  • 28
    • 84880839103 scopus 로고    scopus 로고
    • Active learning with strong and weak views: A case study on wrapper induction
    • I. Muslea, S. Minton, and C. A. Knoblock, "Active learning with strong and weak views: A case study on wrapper induction," in Proc. 18th Int. Joint Conf. Artif. Intell., 2003, vol. 3, pp. 415-420.
    • (2003) Proc. 18th Int. Joint Conf. Artif. Intell. , vol.3 , pp. 415-420
    • Muslea, I.1    Minton, S.2    Knoblock, C.A.3
  • 30
    • 84921061644 scopus 로고    scopus 로고
    • Spectral-spatial classification of hyperspectral images via spatial translation-invariant wavelet-based sparse representation
    • May
    • L. He, Y. Li, X. Li, and W. Wu, "Spectral-spatial classification of hyperspectral images via spatial translation-invariant wavelet-based sparse representation," IEEE Trans. Geosci. Remote Sens., vol. 53, no. 5, pp. 2696-2712, May 2015.
    • (2015) IEEE Trans. Geosci. Remote Sens. , vol.53 , Issue.5 , pp. 2696-2712
    • He, L.1    Li, Y.2    Li, X.3    Wu, W.4
  • 31
    • 84896402119 scopus 로고
    • A simulation study of some contextual classification methods for remotely sensed data
    • Nov.
    • E. Mohn, N. L. Hjort, and G. Storvik, "A simulation study of some contextual classification methods for remotely sensed data," IEEE Trans. Geosci. Remote Sens., vol. GRS-25, no. 6, pp. 796-804, Nov. 1987.
    • (1987) IEEE Trans. Geosci. Remote Sens. , vol.GRS-25 , Issue.6 , pp. 796-804
    • Mohn, E.1    Hjort, N.L.2    Storvik, G.3
  • 32
    • 0036555995 scopus 로고    scopus 로고
    • Multispectral image classification using wavelets: A simulation study
    • J. Yu andM. Ekström, "Multispectral image classification using wavelets: A simulation study," Pattern Recog., vol. 36, no. 4, pp. 889-898, 2003.
    • (2003) Pattern Recog. , vol.36 , Issue.4 , pp. 889-898
    • Yu, J.1    Ekström, M.2
  • 34
    • 0026686049 scopus 로고
    • Singularity detection and processing with wavelets
    • Mar.
    • S. Mallat and W. Hwang, "Singularity detection and processing with wavelets," IEEE Trans. Inf. Theory, vol. 38, no. 2, pp. 617-643, Mar. 1992.
    • (1992) IEEE Trans. Inf. Theory , vol.38 , Issue.2 , pp. 617-643
    • Mallat, S.1    Hwang, W.2
  • 36
    • 84994580733 scopus 로고    scopus 로고
    • [Online]
    • Hyperspectral remote sensing scenes. (2016). [Online]. Available: http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral-Remote- Sensing-Scenes
    • (2016) Hyperspectral Remote Sensing Scenes
  • 37
    • 78650907095 scopus 로고    scopus 로고
    • Multi-view adaptive disagreement based active learning for hyperspectral image classification
    • Honolulu, HI, USA
    • W. Di and M. M. Crawford, "Multi-view adaptive disagreement based active learning for hyperspectral image classification," in Proc. IEEE Int. Geosci. Remote Sens. Symp., Honolulu, HI, USA, 2010, pp. 1374-1377.
    • (2010) Proc. IEEE Int. Geosci. Remote Sens. Symp. , pp. 1374-1377
    • Di, W.1    Crawford, M.M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.