-
1
-
-
84866106584
-
Stage and discharge forecasting by SVM and ANN techniques
-
Aggarwal SK, Goel A, Singh VP (2012) Stage and discharge forecasting by SVM and ANN techniques. Water Resour Manag 26:3705–3724
-
(2012)
Water Resour Manag
, vol.26
, pp. 3705-3724
-
-
Aggarwal, S.K.1
Goel, A.2
Singh, V.P.3
-
2
-
-
84855893978
-
Development of stage–discharge rating curve using model tree and neural networks: an application to Peachtree Creek in Atlanta
-
Ajmera TK, Goyal MK (2012) Development of stage–discharge rating curve using model tree and neural networks: an application to Peachtree Creek in Atlanta. Expert Syst Appl 39:5702–5710
-
(2012)
Expert Syst Appl
, vol.39
, pp. 5702-5710
-
-
Ajmera, T.K.1
Goyal, M.K.2
-
5
-
-
33846455432
-
Simple flume for flow measurement in sloping open channel
-
Baiamonte G, Ferro V (2007) Simple flume for flow measurement in sloping open channel. J Irrig Drain Eng ASCE 133:71–78
-
(2007)
J Irrig Drain Eng ASCE
, vol.133
, pp. 71-78
-
-
Baiamonte, G.1
Ferro, V.2
-
7
-
-
84893757670
-
Multistep-ahead river flow prediction using LS-SVR at daily scale
-
Bhagwat PP, Maity R (2012) Multistep-ahead river flow prediction using LS-SVR at daily scale. J Water Resource Prot 4:528–539
-
(2012)
J Water Resource Prot
, vol.4
, pp. 528-539
-
-
Bhagwat, P.P.1
Maity, R.2
-
8
-
-
12144264770
-
Neural networks and M5 model trees in modeling water level–discharge relationship
-
Bhattacharya B, Solomatine DP (2005) Neural networks and M5 model trees in modeling water level–discharge relationship. Neurocomputing 63:381–396
-
(2005)
Neurocomputing
, vol.63
, pp. 381-396
-
-
Bhattacharya, B.1
Solomatine, D.P.2
-
9
-
-
0742268991
-
Support vector machine with adaptive parameters in financial time series forecasting
-
Cao LJ, Tay Francis EH (2003) Support vector machine with adaptive parameters in financial time series forecasting. IEEE Trans Neural Netw 14:1506–1518. doi:10.1109/TNN.2003.820556
-
(2003)
IEEE Trans Neural Netw
, vol.14
, pp. 1506-1518
-
-
Cao, L.J.1
Tay Francis, E.H.2
-
10
-
-
33747297499
-
Accuracy of annual volume from current-meter-based stage discharges
-
Clemmens AJ, Wahlin BT (2006) Accuracy of annual volume from current-meter-based stage discharges. J Hydraul Eng-Asce 11:489–501
-
(2006)
J Hydraul Eng-Asce
, vol.11
, pp. 489-501
-
-
Clemmens, A.J.1
Wahlin, B.T.2
-
11
-
-
0037388488
-
A fuzzy neural network model for deriving the river stage discharge relationship
-
Deka P, Chandramouli V (2003) A fuzzy neural network model for deriving the river stage discharge relationship. Hydrolog Sci J 48:197–209
-
(2003)
Hydrolog Sci J
, vol.48
, pp. 197-209
-
-
Deka, P.1
Chandramouli, V.2
-
13
-
-
0028449781
-
Optimal use of the SCE-UA global optimization method for calibrating watershed models
-
Duan QY, Sorooshian S, Gupta VK (1994) Optimal use of the SCE-UA global optimization method for calibrating watershed models. J Hydrol 158:265–284
-
(1994)
J Hydrol
, vol.158
, pp. 265-284
-
-
Duan, Q.Y.1
Sorooshian, S.2
Gupta, V.K.3
-
14
-
-
84884589096
-
Relative importance of parameters affecting wind speed prediction using artificial neural networks
-
Ghorbani MA, Khatibi R, Hosseini B, Bilgili M (2013) Relative importance of parameters affecting wind speed prediction using artificial neural networks. Theor Appl Climatol 114:107–114
-
(2013)
Theor Appl Climatol
, vol.114
, pp. 107-114
-
-
Ghorbani, M.A.1
Khatibi, R.2
Hosseini, B.3
Bilgili, M.4
-
16
-
-
84857263727
-
Stage–discharge modeling using support vector machines
-
Goel A, Pal M (2012) Stage–discharge modeling using support vector machines. IJE Trans A Basics. doi:10.5829/idosi.ije.2012.25.01a.01
-
(2012)
IJE Trans A Basics
-
-
Goel, A.1
Pal, M.2
-
17
-
-
68049113510
-
A new approach for stage–discharge relationship: gene-expression programming
-
Guven A, Aytek A (2009) A new approach for stage–discharge relationship: gene-expression programming. J Hydraul Eng ASCE 14:812–820
-
(2009)
J Hydraul Eng ASCE
, vol.14
, pp. 812-820
-
-
Guven, A.1
Aytek, A.2
-
18
-
-
33645811537
-
Stage–discharge relations for low-gradient tidal streams using data driven models
-
Habib EH, Meselhe EA (2006) Stage–discharge relations for low-gradient tidal streams using data driven models. J Hydraul Eng ASCE. 132:482–492
-
(2006)
J Hydraul Eng ASCE.
, vol.132
, pp. 482-492
-
-
Habib, E.H.1
Meselhe, E.A.2
-
21
-
-
84890351420
-
A comparative study of artificial neural network, adaptive neuro fuzzy inference system and support vector machine for forecasting river flow in the semiarid mountain region
-
He Z, Wen X, Liu H, Du J (2014) A comparative study of artificial neural network, adaptive neuro fuzzy inference system and support vector machine for forecasting river flow in the semiarid mountain region. J Hydrol 509:379–386
-
(2014)
J Hydrol
, vol.509
, pp. 379-386
-
-
He, Z.1
Wen, X.2
Liu, H.3
Du, J.4
-
22
-
-
0034306715
-
Setting up stage–discharge relations using ANN
-
Jain SK, Chalisgaonkar D (2000) Setting up stage–discharge relations using ANN. J Hydraul Eng ASCE 5:428–433
-
(2000)
J Hydraul Eng ASCE
, vol.5
, pp. 428-433
-
-
Jain, S.K.1
Chalisgaonkar, D.2
-
23
-
-
33645864343
-
Application of support vector machine in lake water level prediction
-
Khan MS, Coulibaly P (2006) Application of support vector machine in lake water level prediction. J Hydrol Eng 11:199–205
-
(2006)
J Hydrol Eng
, vol.11
, pp. 199-205
-
-
Khan, M.S.1
Coulibaly, P.2
-
24
-
-
84963714756
-
-
Khatibi R (2012) Evolutionary transitions in mathematical modelling complexity by using evolutionary systemic modelling—formulating a vision. In: Lynch JR, Derek T, Williamson DT (eds) Chapter 5: Natural selection: biological processes, theory and role in evolution. (this may be accessed in:)
-
Khatibi R (2012) Evolutionary transitions in mathematical modelling complexity by using evolutionary systemic modelling—formulating a vision. In: Lynch JR, Derek T, Williamson DT (eds) Chapter 5: Natural selection: biological processes, theory and role in evolution. https://www.novapublishers.com/catalog/product_info.php?products_id=41527 (this may be accessed in: https://www.researchgate.net/publication/285860237_EVOLUTIONARY_TRANSITIONS_IN_MATHEMATICAL_MODELING_COMPLEXITY_BY_EVOLUTIONARY_SYSTEMICS)
-
-
-
-
25
-
-
3042784680
-
Improving coastal flood forecasting services of the Environment Agency
-
Brighton: UK
-
Khatibi R, Gouldby B, Sayers P, McArthur J, Roberts I, Grime A, Akhondi-asl A (2003) Improving coastal flood forecasting services of the Environment Agency. In: McInnes RG (ed) Proc. of the 1st International Conference on Coastal Management, Brighton, UK, pp 70–82
-
(2003)
Proc. of the 1st International Conference on Coastal Management
, pp. 70-82
-
-
Khatibi, R.1
Gouldby, B.2
Sayers, P.3
McArthur, J.4
Roberts, I.5
Grime, A.6
Akhondi-asl, A.7
McInnes, R.G.8
-
26
-
-
84855192809
-
Investigating chaos in river stage and discharge time series
-
Khatibi R, Sivakumar B, Ghorbani MA, Kisi O, Kocak K, Farsadi Zadeh D (2012) Investigating chaos in river stage and discharge time series. J Hydrol 414–415:108–117
-
(2012)
J Hydrol
, vol.414-415
, pp. 108-117
-
-
Khatibi, R.1
Sivakumar, B.2
Ghorbani, M.A.3
Kisi, O.4
Kocak, K.5
Farsadi Zadeh, D.6
-
27
-
-
67649845504
-
Modeling river stage–discharge relationships using different neural network computing techniques
-
Kisi O, Cobaner M (2009) Modeling river stage–discharge relationships using different neural network computing techniques. Clean Soil Air Water 37:160–169
-
(2009)
Clean Soil Air Water
, vol.37
, pp. 160-169
-
-
Kisi, O.1
Cobaner, M.2
-
28
-
-
33746830757
-
Using support vector machines for long-term discharge prediction
-
Lin JY, Cheng CT, Chau KW (2006) Using support vector machines for long-term discharge prediction. Hydrolog Sci J 51:599–612
-
(2006)
Hydrolog Sci J
, vol.51
, pp. 599-612
-
-
Lin, J.Y.1
Cheng, C.T.2
Chau, K.W.3
-
29
-
-
0036202123
-
Flood stage forecasting with support vector machines
-
Liong SY, Sivapragasam C (2002) Flood stage forecasting with support vector machines. J Am Water Resour 38:173–186
-
(2002)
J Am Water Resour
, vol.38
, pp. 173-186
-
-
Liong, S.Y.1
Sivapragasam, C.2
-
30
-
-
67650621579
-
Application and analysis of support vector machine based simulation for runoff and sediment yield
-
Misra D, Oommen T, Agarwal A, Mishra SK, Thompson AM (2009) Application and analysis of support vector machine based simulation for runoff and sediment yield. Biosyst Eng 103:527–535
-
(2009)
Biosyst Eng
, vol.103
, pp. 527-535
-
-
Misra, D.1
Oommen, T.2
Agarwal, A.3
Mishra, S.K.4
Thompson, A.M.5
-
32
-
-
84855199264
-
Daily streamflow forecasting by machine learning methods with weather and climate inputs
-
Rasouli K, Hsieh WW, Cannon AJ (2012) Daily streamflow forecasting by machine learning methods with weather and climate inputs. J Hydrol 414–415:284–293
-
(2012)
J Hydrol
, vol.414-415
, pp. 284-293
-
-
Rasouli, K.1
Hsieh, W.W.2
Cannon, A.J.3
-
33
-
-
84872725276
-
River flow time series using least squares support vector machines
-
Samsudin R, Saad P, Shabri A (2011) River flow time series using least squares support vector machines. Hydrol Earth Syst Sci 15:1835–1852. doi:10.5194/hess-15-1835
-
(2011)
Hydrol Earth Syst Sci
, vol.15
, pp. 1835-1852
-
-
Samsudin, R.1
Saad, P.2
Shabri, A.3
-
34
-
-
84963651653
-
-
Sene K, Tilford K (2004) Review of transfer function modelling for fluvial flood forecasting R&D Technical Report W5C-013/6/TR
-
Sene K, Tilford K (2004) Review of transfer function modelling for fluvial flood forecasting R&D Technical Report W5C-013/6/TR
-
-
-
-
36
-
-
27744590254
-
Discharge rating curve extension—a new approach
-
Sivapragasam C, Muttil N (2005) Discharge rating curve extension—a new approach. Water Resour Manag 19:505–520
-
(2005)
Water Resour Manag
, vol.19
, pp. 505-520
-
-
Sivapragasam, C.1
Muttil, N.2
-
37
-
-
0038105929
-
Radial basis function neural network for modeling rating curves
-
Sudheer KP, Jain SK (2003) Radial basis function neural network for modeling rating curves. J Hydrol Eng 8:161–164
-
(2003)
J Hydrol Eng
, vol.8
, pp. 161-164
-
-
Sudheer, K.P.1
Jain, S.K.2
-
38
-
-
0031180223
-
Hysteresis sensitive neural network for modeling rating curves
-
Tawfik M, Ibrahim A, Fahmy H (1997) Hysteresis sensitive neural network for modeling rating curves. J Comput Civil Eng 11:206–211
-
(1997)
J Comput Civil Eng
, vol.11
, pp. 206-211
-
-
Tawfik, M.1
Ibrahim, A.2
Fahmy, H.3
-
39
-
-
85028301604
-
-
Tilford KA, Sene KJ, Khatibi R (2007) Flood forecasting model selection—a new approach. In: Begum S, Hall JW, Stive MJF (eds) Flooding in Europe: challenges and developments in flood risk management, vol 25, pp 401–416. ()
-
Tilford KA, Sene KJ, Khatibi R (2007) Flood forecasting model selection—a new approach. In: Begum S, Hall JW, Stive MJF (eds) Flooding in Europe: challenges and developments in flood risk management, vol 25, pp 401–416. (http://www.springer.com/earth+sciences+and+geography/hydrogeology/book/978-1-4020-4199-0)
-
-
-
-
40
-
-
84963641134
-
-
The MathWorks Inc. (2012) Matlab the language of technical computing. Retrieved 4 Sept 2012
-
The MathWorks Inc. (2012) Matlab the language of technical computing. http://www.mathworks.nl/products/matlab/. Retrieved 4 Sept 2012
-
-
-
-
43
-
-
38849202538
-
Online prediction model based on support vector machine
-
Wang W, Men C, Lu W (2008) Online prediction model based on support vector machine. Neurocomputing 71:550–558
-
(2008)
Neurocomputing
, vol.71
, pp. 550-558
-
-
Wang, W.1
Men, C.2
Lu, W.3
-
44
-
-
78650179085
-
A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastal aquifer
-
Yoon H, Jun SC, Hyun Y, Bae GO, Lee KK (2011) A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastal aquifer. J Hydrol 396:128–138
-
(2011)
J Hydrol
, vol.396
, pp. 128-138
-
-
Yoon, H.1
Jun, S.C.2
Hyun, Y.3
Bae, G.O.4
Lee, K.K.5
-
45
-
-
33746916489
-
Support vector regression for real-time flood stage forecasting
-
Yu PS, Chen ST, Chang IF (2006) Support vector regression for real-time flood stage forecasting. J Hydrol 328:704–716
-
(2006)
J Hydrol
, vol.328
, pp. 704-716
-
-
Yu, P.S.1
Chen, S.T.2
Chang, I.F.3
|