메뉴 건너뛰기




Volumn 75, Issue 8, 2016, Pages

Modeling river discharge time series using support vector machine and artificial neural networks

Author keywords

Artificial neural network; Big Cypress River; Support vector machine

Indexed keywords

LINEAR REGRESSION; NEURAL NETWORKS; RIVERS; TIME SERIES; UNCERTAINTY ANALYSIS;

EID: 84963682833     PISSN: 18666280     EISSN: 18666299     Source Type: Journal    
DOI: 10.1007/s12665-016-5435-6     Document Type: Article
Times cited : (59)

References (45)
  • 1
    • 84866106584 scopus 로고    scopus 로고
    • Stage and discharge forecasting by SVM and ANN techniques
    • Aggarwal SK, Goel A, Singh VP (2012) Stage and discharge forecasting by SVM and ANN techniques. Water Resour Manag 26:3705–3724
    • (2012) Water Resour Manag , vol.26 , pp. 3705-3724
    • Aggarwal, S.K.1    Goel, A.2    Singh, V.P.3
  • 2
    • 84855893978 scopus 로고    scopus 로고
    • Development of stage–discharge rating curve using model tree and neural networks: an application to Peachtree Creek in Atlanta
    • Ajmera TK, Goyal MK (2012) Development of stage–discharge rating curve using model tree and neural networks: an application to Peachtree Creek in Atlanta. Expert Syst Appl 39:5702–5710
    • (2012) Expert Syst Appl , vol.39 , pp. 5702-5710
    • Ajmera, T.K.1    Goyal, M.K.2
  • 5
    • 33846455432 scopus 로고    scopus 로고
    • Simple flume for flow measurement in sloping open channel
    • Baiamonte G, Ferro V (2007) Simple flume for flow measurement in sloping open channel. J Irrig Drain Eng ASCE 133:71–78
    • (2007) J Irrig Drain Eng ASCE , vol.133 , pp. 71-78
    • Baiamonte, G.1    Ferro, V.2
  • 7
    • 84893757670 scopus 로고    scopus 로고
    • Multistep-ahead river flow prediction using LS-SVR at daily scale
    • Bhagwat PP, Maity R (2012) Multistep-ahead river flow prediction using LS-SVR at daily scale. J Water Resource Prot 4:528–539
    • (2012) J Water Resource Prot , vol.4 , pp. 528-539
    • Bhagwat, P.P.1    Maity, R.2
  • 8
    • 12144264770 scopus 로고    scopus 로고
    • Neural networks and M5 model trees in modeling water level–discharge relationship
    • Bhattacharya B, Solomatine DP (2005) Neural networks and M5 model trees in modeling water level–discharge relationship. Neurocomputing 63:381–396
    • (2005) Neurocomputing , vol.63 , pp. 381-396
    • Bhattacharya, B.1    Solomatine, D.P.2
  • 9
    • 0742268991 scopus 로고    scopus 로고
    • Support vector machine with adaptive parameters in financial time series forecasting
    • Cao LJ, Tay Francis EH (2003) Support vector machine with adaptive parameters in financial time series forecasting. IEEE Trans Neural Netw 14:1506–1518. doi:10.1109/TNN.2003.820556
    • (2003) IEEE Trans Neural Netw , vol.14 , pp. 1506-1518
    • Cao, L.J.1    Tay Francis, E.H.2
  • 10
    • 33747297499 scopus 로고    scopus 로고
    • Accuracy of annual volume from current-meter-based stage discharges
    • Clemmens AJ, Wahlin BT (2006) Accuracy of annual volume from current-meter-based stage discharges. J Hydraul Eng-Asce 11:489–501
    • (2006) J Hydraul Eng-Asce , vol.11 , pp. 489-501
    • Clemmens, A.J.1    Wahlin, B.T.2
  • 11
    • 0037388488 scopus 로고    scopus 로고
    • A fuzzy neural network model for deriving the river stage discharge relationship
    • Deka P, Chandramouli V (2003) A fuzzy neural network model for deriving the river stage discharge relationship. Hydrolog Sci J 48:197–209
    • (2003) Hydrolog Sci J , vol.48 , pp. 197-209
    • Deka, P.1    Chandramouli, V.2
  • 12
    • 0035398081 scopus 로고    scopus 로고
    • Model induction with support vector machines: introduction and applications
    • Dibike YB, Velickov S, Solomatine D, Abbott MB (2001) Model induction with support vector machines: introduction and applications. J Comput Civil Eng 15:208–216
    • (2001) J Comput Civil Eng , vol.15 , pp. 208-216
    • Dibike, Y.B.1    Velickov, S.2    Solomatine, D.3    Abbott, M.B.4
  • 13
    • 0028449781 scopus 로고
    • Optimal use of the SCE-UA global optimization method for calibrating watershed models
    • Duan QY, Sorooshian S, Gupta VK (1994) Optimal use of the SCE-UA global optimization method for calibrating watershed models. J Hydrol 158:265–284
    • (1994) J Hydrol , vol.158 , pp. 265-284
    • Duan, Q.Y.1    Sorooshian, S.2    Gupta, V.K.3
  • 14
    • 84884589096 scopus 로고    scopus 로고
    • Relative importance of parameters affecting wind speed prediction using artificial neural networks
    • Ghorbani MA, Khatibi R, Hosseini B, Bilgili M (2013) Relative importance of parameters affecting wind speed prediction using artificial neural networks. Theor Appl Climatol 114:107–114
    • (2013) Theor Appl Climatol , vol.114 , pp. 107-114
    • Ghorbani, M.A.1    Khatibi, R.2    Hosseini, B.3    Bilgili, M.4
  • 16
    • 84857263727 scopus 로고    scopus 로고
    • Stage–discharge modeling using support vector machines
    • Goel A, Pal M (2012) Stage–discharge modeling using support vector machines. IJE Trans A Basics. doi:10.5829/idosi.ije.2012.25.01a.01
    • (2012) IJE Trans A Basics
    • Goel, A.1    Pal, M.2
  • 17
    • 68049113510 scopus 로고    scopus 로고
    • A new approach for stage–discharge relationship: gene-expression programming
    • Guven A, Aytek A (2009) A new approach for stage–discharge relationship: gene-expression programming. J Hydraul Eng ASCE 14:812–820
    • (2009) J Hydraul Eng ASCE , vol.14 , pp. 812-820
    • Guven, A.1    Aytek, A.2
  • 18
    • 33645811537 scopus 로고    scopus 로고
    • Stage–discharge relations for low-gradient tidal streams using data driven models
    • Habib EH, Meselhe EA (2006) Stage–discharge relations for low-gradient tidal streams using data driven models. J Hydraul Eng ASCE. 132:482–492
    • (2006) J Hydraul Eng ASCE. , vol.132 , pp. 482-492
    • Habib, E.H.1    Meselhe, E.A.2
  • 19
    • 84923319775 scopus 로고    scopus 로고
    • Evaluation of capabilities of different methods for development of a stage–discharge curve of the Kizilirmak River
    • Hasanpour Kashani M, Daneshfaraz R, Ghorbani MA, Najafi MR, Kisi O (2013) Evaluation of capabilities of different methods for development of a stage–discharge curve of the Kizilirmak River. J Flood Risk Manage. doi:10.1111/jfr3.12064
    • (2013) J Flood Risk Manage
    • Hasanpour Kashani, M.1    Daneshfaraz, R.2    Ghorbani, M.A.3    Najafi, M.R.4    Kisi, O.5
  • 21
    • 84890351420 scopus 로고    scopus 로고
    • A comparative study of artificial neural network, adaptive neuro fuzzy inference system and support vector machine for forecasting river flow in the semiarid mountain region
    • He Z, Wen X, Liu H, Du J (2014) A comparative study of artificial neural network, adaptive neuro fuzzy inference system and support vector machine for forecasting river flow in the semiarid mountain region. J Hydrol 509:379–386
    • (2014) J Hydrol , vol.509 , pp. 379-386
    • He, Z.1    Wen, X.2    Liu, H.3    Du, J.4
  • 22
    • 0034306715 scopus 로고    scopus 로고
    • Setting up stage–discharge relations using ANN
    • Jain SK, Chalisgaonkar D (2000) Setting up stage–discharge relations using ANN. J Hydraul Eng ASCE 5:428–433
    • (2000) J Hydraul Eng ASCE , vol.5 , pp. 428-433
    • Jain, S.K.1    Chalisgaonkar, D.2
  • 23
    • 33645864343 scopus 로고    scopus 로고
    • Application of support vector machine in lake water level prediction
    • Khan MS, Coulibaly P (2006) Application of support vector machine in lake water level prediction. J Hydrol Eng 11:199–205
    • (2006) J Hydrol Eng , vol.11 , pp. 199-205
    • Khan, M.S.1    Coulibaly, P.2
  • 24
    • 84963714756 scopus 로고    scopus 로고
    • Khatibi R (2012) Evolutionary transitions in mathematical modelling complexity by using evolutionary systemic modelling—formulating a vision. In: Lynch JR, Derek T, Williamson DT (eds) Chapter 5: Natural selection: biological processes, theory and role in evolution. (this may be accessed in:)
    • Khatibi R (2012) Evolutionary transitions in mathematical modelling complexity by using evolutionary systemic modelling—formulating a vision. In: Lynch JR, Derek T, Williamson DT (eds) Chapter 5: Natural selection: biological processes, theory and role in evolution. https://www.novapublishers.com/catalog/product_info.php?products_id=41527 (this may be accessed in: https://www.researchgate.net/publication/285860237_EVOLUTIONARY_TRANSITIONS_IN_MATHEMATICAL_MODELING_COMPLEXITY_BY_EVOLUTIONARY_SYSTEMICS)
  • 27
    • 67649845504 scopus 로고    scopus 로고
    • Modeling river stage–discharge relationships using different neural network computing techniques
    • Kisi O, Cobaner M (2009) Modeling river stage–discharge relationships using different neural network computing techniques. Clean Soil Air Water 37:160–169
    • (2009) Clean Soil Air Water , vol.37 , pp. 160-169
    • Kisi, O.1    Cobaner, M.2
  • 28
    • 33746830757 scopus 로고    scopus 로고
    • Using support vector machines for long-term discharge prediction
    • Lin JY, Cheng CT, Chau KW (2006) Using support vector machines for long-term discharge prediction. Hydrolog Sci J 51:599–612
    • (2006) Hydrolog Sci J , vol.51 , pp. 599-612
    • Lin, J.Y.1    Cheng, C.T.2    Chau, K.W.3
  • 29
    • 0036202123 scopus 로고    scopus 로고
    • Flood stage forecasting with support vector machines
    • Liong SY, Sivapragasam C (2002) Flood stage forecasting with support vector machines. J Am Water Resour 38:173–186
    • (2002) J Am Water Resour , vol.38 , pp. 173-186
    • Liong, S.Y.1    Sivapragasam, C.2
  • 30
    • 67650621579 scopus 로고    scopus 로고
    • Application and analysis of support vector machine based simulation for runoff and sediment yield
    • Misra D, Oommen T, Agarwal A, Mishra SK, Thompson AM (2009) Application and analysis of support vector machine based simulation for runoff and sediment yield. Biosyst Eng 103:527–535
    • (2009) Biosyst Eng , vol.103 , pp. 527-535
    • Misra, D.1    Oommen, T.2    Agarwal, A.3    Mishra, S.K.4    Thompson, A.M.5
  • 32
    • 84855199264 scopus 로고    scopus 로고
    • Daily streamflow forecasting by machine learning methods with weather and climate inputs
    • Rasouli K, Hsieh WW, Cannon AJ (2012) Daily streamflow forecasting by machine learning methods with weather and climate inputs. J Hydrol 414–415:284–293
    • (2012) J Hydrol , vol.414-415 , pp. 284-293
    • Rasouli, K.1    Hsieh, W.W.2    Cannon, A.J.3
  • 33
    • 84872725276 scopus 로고    scopus 로고
    • River flow time series using least squares support vector machines
    • Samsudin R, Saad P, Shabri A (2011) River flow time series using least squares support vector machines. Hydrol Earth Syst Sci 15:1835–1852. doi:10.5194/hess-15-1835
    • (2011) Hydrol Earth Syst Sci , vol.15 , pp. 1835-1852
    • Samsudin, R.1    Saad, P.2    Shabri, A.3
  • 34
    • 84963651653 scopus 로고    scopus 로고
    • Sene K, Tilford K (2004) Review of transfer function modelling for fluvial flood forecasting R&D Technical Report W5C-013/6/TR
    • Sene K, Tilford K (2004) Review of transfer function modelling for fluvial flood forecasting R&D Technical Report W5C-013/6/TR
  • 36
    • 27744590254 scopus 로고    scopus 로고
    • Discharge rating curve extension—a new approach
    • Sivapragasam C, Muttil N (2005) Discharge rating curve extension—a new approach. Water Resour Manag 19:505–520
    • (2005) Water Resour Manag , vol.19 , pp. 505-520
    • Sivapragasam, C.1    Muttil, N.2
  • 37
    • 0038105929 scopus 로고    scopus 로고
    • Radial basis function neural network for modeling rating curves
    • Sudheer KP, Jain SK (2003) Radial basis function neural network for modeling rating curves. J Hydrol Eng 8:161–164
    • (2003) J Hydrol Eng , vol.8 , pp. 161-164
    • Sudheer, K.P.1    Jain, S.K.2
  • 38
    • 0031180223 scopus 로고    scopus 로고
    • Hysteresis sensitive neural network for modeling rating curves
    • Tawfik M, Ibrahim A, Fahmy H (1997) Hysteresis sensitive neural network for modeling rating curves. J Comput Civil Eng 11:206–211
    • (1997) J Comput Civil Eng , vol.11 , pp. 206-211
    • Tawfik, M.1    Ibrahim, A.2    Fahmy, H.3
  • 39
    • 85028301604 scopus 로고    scopus 로고
    • Tilford KA, Sene KJ, Khatibi R (2007) Flood forecasting model selection—a new approach. In: Begum S, Hall JW, Stive MJF (eds) Flooding in Europe: challenges and developments in flood risk management, vol 25, pp 401–416. ()
    • Tilford KA, Sene KJ, Khatibi R (2007) Flood forecasting model selection—a new approach. In: Begum S, Hall JW, Stive MJF (eds) Flooding in Europe: challenges and developments in flood risk management, vol 25, pp 401–416. (http://www.springer.com/earth+sciences+and+geography/hydrogeology/book/978-1-4020-4199-0)
  • 40
    • 84963641134 scopus 로고    scopus 로고
    • The MathWorks Inc. (2012) Matlab the language of technical computing. Retrieved 4 Sept 2012
    • The MathWorks Inc. (2012) Matlab the language of technical computing. http://www.mathworks.nl/products/matlab/. Retrieved 4 Sept 2012
  • 43
    • 38849202538 scopus 로고    scopus 로고
    • Online prediction model based on support vector machine
    • Wang W, Men C, Lu W (2008) Online prediction model based on support vector machine. Neurocomputing 71:550–558
    • (2008) Neurocomputing , vol.71 , pp. 550-558
    • Wang, W.1    Men, C.2    Lu, W.3
  • 44
    • 78650179085 scopus 로고    scopus 로고
    • A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastal aquifer
    • Yoon H, Jun SC, Hyun Y, Bae GO, Lee KK (2011) A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastal aquifer. J Hydrol 396:128–138
    • (2011) J Hydrol , vol.396 , pp. 128-138
    • Yoon, H.1    Jun, S.C.2    Hyun, Y.3    Bae, G.O.4    Lee, K.K.5
  • 45
    • 33746916489 scopus 로고    scopus 로고
    • Support vector regression for real-time flood stage forecasting
    • Yu PS, Chen ST, Chang IF (2006) Support vector regression for real-time flood stage forecasting. J Hydrol 328:704–716
    • (2006) J Hydrol , vol.328 , pp. 704-716
    • Yu, P.S.1    Chen, S.T.2    Chang, I.F.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.