메뉴 건너뛰기




Volumn 132, Issue 5, 2006, Pages 482-492

Stage-Discharge Relations for Low-Gradient Tidal Streams Using Data-Driven Models

Author keywords

Channel flow; Coastal environment; Louisiana; Neural networks; Regression models; Streams; Tidal effects; Water discharge

Indexed keywords

FORECASTING; REGRESSION ANALYSIS; RIVERS; RUNOFF; WATER LEVELS; CHANNEL FLOW; DISCHARGE (FLUID MECHANICS); MATHEMATICAL MODELS; NEURAL NETWORKS; STREAM FLOW;

EID: 33645811537     PISSN: 07339429     EISSN: 19437900     Source Type: Journal    
DOI: 10.1061/(ASCE)0733-9429(2006)132:5(482)     Document Type: Article
Times cited : (51)

References (26)
  • 1
    • 33645204046 scopus 로고    scopus 로고
    • Neural network rainfall-runoff forecasting based on continuous resampling
    • Abrahart, R. J. (2003). " Neural network rainfall-runoff forecasting based on continuous resampling." J. Hydroinformatics, 5, 51-61.
    • (2003) J. Hydroinformatics , vol.5 , pp. 51-61
    • Abrahart, R.J.1
  • 2
    • 0034174280 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology. I: Preliminary concepts
    • American Society of Civil Engineers (ASCE) Task Committee on Artificial Neural Networks in Hydrology. " " 10.1061/(ASCE)1084-0699(2000)5:2(115)
    • American Society of Civil Engineers (ASCE) Task Committee on Artificial Neural Networks in Hydrology. (2000a). " Artificial neural networks in hydrology. I: Preliminary concepts." J. Hydrologic Eng. JHYEFF 1084-0699, 5 (2), 115-123. 10.1061/(ASCE)1084-0699(2000)5:2(115)
    • (2000) J. Hydrologic Eng. , vol.5 , Issue.2 , pp. 115-123
  • 3
    • 0034174396 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology. II: Hydrologic applications
    • American Society of Civil Engineers (ASCE) Task Committee on Artificial Neural Networks in Hydrology. " " 10.1061/(ASCE)1084-0699(2000)5:2(124)
    • American Society of Civil Engineers (ASCE) Task Committee on Artificial Neural Networks in Hydrology. (2000b). " Artificial neural networks in hydrology. II: Hydrologic applications." J. Hydrologic Eng. JHYEFF 1084-0699, 5 (2), 124-137. 10.1061/(ASCE)1084-0699(2000)5:2(124)
    • (2000) J. Hydrologic Eng. , vol.5 , Issue.2 , pp. 124-137
  • 4
    • 20344376738 scopus 로고    scopus 로고
    • Application of artificial neural network in stage-discharge relationship
    • IAHR, Iowa City, Iowa.
    • Bhattacharya, B., and, Solomatine, D. P. (2000). " Application of artificial neural network in stage-discharge relationship." Proc., 4th Int. Conf. on Hydroinformatics, IAHR, Iowa City, Iowa.
    • (2000) Proc., 4th Int. Conf. on Hydroinformatics
    • Bhattacharya, B.1    Solomatine, D.P.2
  • 5
    • 0001044176 scopus 로고
    • Neural networks and their applications
    • Bishop, C. M. (1994). " Neural networks and their applications." Rev. Sci. Instrum. RSINAK 0034-6748, 65, 1803-1832. 10.1063/1.1144830
    • (1994) Rev. Sci. Instrum. , vol.65 , pp. 1803-1832
    • Bishop, C.M.1
  • 6
    • 10644295753 scopus 로고    scopus 로고
    • Input determination for neural network models in water resources applications. Part 1 - Background and methodology
    • Bowden, G. J., Dandy, G. C., and, Maier, H. R. (2005). " Input determination for neural network models in water resources applications. Part 1-Background and methodology." J. Hydrol. JHYDA7 0022-1694, 302, 75-92.
    • (2005) J. Hydrol. , vol.302 , pp. 75-92
    • Bowden, G.J.1    Dandy, G.C.2    Maier, H.R.3
  • 7
    • 0036221122 scopus 로고    scopus 로고
    • Optimal division of data for neural network models in water resources applications
    • Bowden, G. J., Maier, H. R., and, Dandy, G. C. (2002). " Optimal division of data for neural network models in water resources applications." Water Resour. Res. WRERAQ 0043-1397, 38 (2), 2.1-2.11. 10.1029/2001WR000266
    • (2002) Water Resour. Res. , vol.38 , Issue.2 , pp. 21-211
    • Bowden, G.J.1    Maier, H.R.2    Dandy, G.C.3
  • 8
    • 84936916896 scopus 로고
    • Robust locally weighted regression and smoothing scatter plots
    • Cleveland, W. S. (1979). " Robust locally weighted regression and smoothing scatter plots." J. Am. Stat. Assoc. JSTNAL 0162-1459, 74, 829-836.
    • (1979) J. Am. Stat. Assoc. , vol.74 , pp. 829-836
    • Cleveland, W.S.1
  • 9
    • 85053520810 scopus 로고
    • Local regression models
    • J. M. Chambers and T. Hastie, eds. Chapman and Hall, New York.
    • Cleveland, W. S., Grosse, E., and, Shyu, W. M. (1992). " Local regression models." Statistical models in S, J. M. Chambers and T. Hastie., eds., Chapman and Hall, New York, 309-376.
    • (1992) Statistical Models in S , pp. 309-376
    • Cleveland, W.S.1    Grosse, E.2    Shyu, W.M.3
  • 10
    • 0000090258 scopus 로고    scopus 로고
    • Smoothing by local regression: Principles and methods
    • W. Haerdle and M. G. Schimek, eds. Springer, New York.
    • Cleveland, W. S., and, Loader, C. L. (1996). " Smoothing by local regression: Principles and methods." Statistical theory and computational aspects of smoothing, W. Haerdle and M. G. Schimek., eds., Springer, New York, 10-49.
    • (1996) Statistical Theory and Computational Aspects of Smoothing , pp. 10-49
    • Cleveland, W.S.1    Loader, C.L.2
  • 12
    • 0016494679 scopus 로고
    • Computation of stage-discharge relationships affected by unsteady flow
    • Fread, D. L. (1975). " Computation of stage-discharge relationships affected by unsteady flow." Water Resour. Bull. WARBAQ 0043-1370, 11 (2), 213-228.
    • (1975) Water Resour. Bull. , vol.11 , Issue.2 , pp. 213-228
    • Fread, D.L.1
  • 14
    • 0028543366 scopus 로고
    • Training feedforward networks with the Marquardt algorithm
    • Hagan, M. T., and, Menhaj, M. B. (1994). " Training feedforward networks with the Marquardt algorithm." IEEE Trans. Neural Netw. ITNNEP 1045-9227, 5 (6), 989-993. 10.1109/72.329697
    • (1994) IEEE Trans. Neural Netw. , vol.5 , Issue.6 , pp. 989-993
    • Hagan, M.T.1    Menhaj, M.B.2
  • 16
    • 0029413797 scopus 로고
    • Artificial neural network modeling of the rainfall-runoff process
    • Hsu, K.-L., Gupta, H. V., and, Sorooshian S. (1995). " Artificial neural network modeling of the rainfall-runoff process." Water Resour. Res., 31 (10), 2517-2530.
    • (1995) Water Resour. Res. , vol.31 , Issue.10 , pp. 2517-2530
    • Hsu, K.-L.1    Gupta, H.V.2    Sorooshian, S.3
  • 17
    • 0034306715 scopus 로고    scopus 로고
    • Setting up stage-discharge relations using ANN
    • Jain, S. K., and, Chalisgaonkar, D. (2000). " Setting up stage-discharge relations using ANN." J. Hydrologic Eng. JHYEFF 1084-0699, 5 (4), 428-433. 10.1061/(ASCE)1084-0699(2000)5:4(428)
    • (2000) J. Hydrologic Eng. , vol.5 , Issue.4 , pp. 428-433
    • Jain, S.K.1    Chalisgaonkar, D.2
  • 18
    • 0032920124 scopus 로고    scopus 로고
    • Evaluating the use of goodness-of-fit measures in hydrologic and hydroclimatic model validation
    • Legates, D. R., and, McCabe, G. J. (1999). " Evaluating the use of goodness-of-fit measures in hydrologic and hydroclimatic model validation." Water Resour. Res. WRERAQ 0043-1397, 35 (1), 233-241. 10.1029/1998WR900018
    • (1999) Water Resour. Res. , vol.35 , Issue.1 , pp. 233-241
    • Legates, D.R.1    McCabe, G.J.2
  • 19
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for the prediction and forecasting of water resources variables: A review of modeling issues and applications
    • Maier, H. R., and, Dandy, G. C. (2000). " Neural networks for the prediction and forecasting of water resources variables: A review of modeling issues and applications." Environmental Modelling and Software, 15 (1), 101-124.
    • (2000) Environmental Modelling and Software , vol.15 , Issue.1 , pp. 101-124
    • Maier, H.R.1    Dandy, G.C.2
  • 21
    • 11944257797 scopus 로고    scopus 로고
    • Accuracy assessment of peak discharge models
    • McCuen, R. H. (2005). " Accuracy assessment of peak discharge models." J. Hydrologic Eng. JHYEFF 1084-0699, 10 (1), 16-22. 10.1061/(ASCE)1084-0699(2005)10:1(16)
    • (2005) J. Hydrologic Eng. , vol.10 , Issue.1 , pp. 16-22
    • McCuen, R.H.1
  • 23
    • 0000629975 scopus 로고
    • Cross-validatory choice and assessment of statistical predictions
    • Stone, M. (1974). " Cross-validatory choice and assessment of statistical predictions." J. R. Stat. Soc. Ser. B. Methodol. JSTBAJ 0035-9246, 36, 111-147.
    • (1974) J. R. Stat. Soc. Ser. B. Methodol. , vol.36 , pp. 111-147
    • Stone, M.1
  • 24
    • 0038105929 scopus 로고    scopus 로고
    • Radial basis function neural network for modeling rating curves
    • Sudheer, K. P., and, Jain, S. K. (2003). " Radial basis function neural network for modeling rating curves." J. Hydrologic Eng. JHYEFF 1084-0699, 8 (3), 161-164. 10.1061/(ASCE)1084-0699(2003)8:3(161)
    • (2003) J. Hydrologic Eng. , vol.8 , Issue.3 , pp. 161-164
    • Sudheer, K.P.1    Jain, S.K.2
  • 25
    • 0242656262 scopus 로고    scopus 로고
    • Application of a neural network model in establishing a stage-discharge relationship for a tidal river
    • Supharatid, S. (2003). " Application of a neural network model in establishing a stage-discharge relationship for a tidal river." Hydrolog. Process. HYPRE3 0885-6087, 17 (15), 3085-3099.
    • (2003) Hydrolog. Process. , vol.17 , Issue.15 , pp. 3085-3099
    • Supharatid, S.1
  • 26
    • 0031180223 scopus 로고    scopus 로고
    • Hysteresis sensitive neural network for modeling rating curves
    • Tawfik, M., Ibrahim, A., and, Fahmy, H. (1997). " Hysteresis sensitive neural network for modeling rating curves." J. Comput. Civ. Eng. JCCEE5 0887-3801, 11 (3), 206-211. 10.1061/(ASCE)0887-3801(1997)11:3(206)
    • (1997) J. Comput. Civ. Eng. , vol.11 , Issue.3 , pp. 206-211
    • Tawfik, M.1    Ibrahim, A.2    Fahmy, H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.