메뉴 건너뛰기




Volumn 37, Issue 2, 2009, Pages 160-169

Modeling river stage-discharge relationships using different neural network computing techniques

Author keywords

Neural networks; Rating curve; Regression; Stage discharge relationship

Indexed keywords

ALGORITHM; ARTIFICIAL NEURAL NETWORK; COMPARATIVE STUDY; NONLINEARITY; NUMERICAL MODEL; PARALLEL COMPUTING; RATING CURVE; REGRESSION ANALYSIS; RIVER DISCHARGE;

EID: 67649845504     PISSN: 18630650     EISSN: None     Source Type: Journal    
DOI: 10.1002/clen.200800010     Document Type: Article
Times cited : (40)

References (34)
  • 2
    • 0033167344 scopus 로고    scopus 로고
    • Rainfall-runoff modeling using artificial neural networks
    • A. S. Tokar, P. A. Johnson, Rainfall-runoff modeling using artificial neural networks, J. Hydrol. Eng., ASCE 1999, 4 (3), 232-239.
    • (1999) J. Hydrol. Eng., ASCE , vol.4 , Issue.3 , pp. 232-239
    • Tokar, A.S.1    Johnson, P.A.2
  • 3
    • 0037565156 scopus 로고    scopus 로고
    • Model trees as an alternative to neural networks in rainfall-runoff modeling
    • D. P. Solomatine, K. N. Dulal, Model trees as an alternative to neural networks in rainfall-runoff modeling, Hydrol. Sci. J. 2003, 48 (3), 399-411.
    • (2003) Hydrol. Sci. J , vol.48 , Issue.3 , pp. 399-411
    • Solomatine, D.P.1    Dulal, K.N.2
  • 4
    • 1642387025 scopus 로고    scopus 로고
    • A nonlinear rainfall-runoff model using radial basis function network
    • G. F. Lin, L. H. Chen, A nonlinear rainfall-runoff model using radial basis function network, J. Hydrol. 2004, 289, 1-8.
    • (2004) J. Hydrol , vol.289 , pp. 1-8
    • Lin, G.F.1    Chen, L.H.2
  • 5
    • 0029413038 scopus 로고
    • Multivariate modeling of water resources time series using artificial neural networks
    • H. Raman, N. Sunilkumar, Multivariate modeling of water resources time series using artificial neural networks, Hydrol. Sci. J. 1995, 40 (2), 145-163.
    • (1995) Hydrol. Sci. J , vol.40 , Issue.2 , pp. 145-163
    • Raman, H.1    Sunilkumar, N.2
  • 6
    • 0031932822 scopus 로고    scopus 로고
    • Using neural networks to assess the influence of changing seasonal climates in modifying discharge, dissolved organic carbon, and nitrogen export in eastern Canadian rivers
    • T. A. Clair, J. M. Ehrman, Using neural networks to assess the influence of changing seasonal climates in modifying discharge, dissolved organic carbon, and nitrogen export in eastern Canadian rivers, Water Resour. Res. 1998, 34 (3), 447-455.
    • (1998) Water Resour. Res , vol.34 , Issue.3 , pp. 447-455
    • Clair, T.A.1    Ehrman, J.M.2
  • 7
    • 0037903280 scopus 로고    scopus 로고
    • Modeling and forecasting of hydrological variables using artificial neural networks: The Kafue River sub-basin
    • R. Chibanga, J. Berlamont, J. Vandewalle, Modeling and forecasting of hydrological variables using artificial neural networks: the Kafue River sub-basin. Hydrol. Sci. J. 2003, 48 (3), 363-379.
    • (2003) Hydrol. Sci. J , vol.48 , Issue.3 , pp. 363-379
    • Chibanga, R.1    Berlamont, J.2    Vandewalle, J.3
  • 8
    • 0038240755 scopus 로고    scopus 로고
    • Estimation, forecasting and extrapolation of river flows by artificial neural networks
    • H. K. Cigizoglu, Estimation, forecasting and extrapolation of river flows by artificial neural networks, Hydrol. Sci. J. 2003, 48 (3), 349-361.
    • (2003) Hydrol. Sci. J , vol.48 , Issue.3 , pp. 349-361
    • Cigizoglu, H.K.1
  • 9
    • 1642497522 scopus 로고    scopus 로고
    • River flow modeling using artificial neural networks
    • O. Kisi, River flow modeling using artificial neural networks, J. Hydrol. Eng., ASCE 2004, 9 (1), 60-63.
    • (2004) J. Hydrol. Eng., ASCE , vol.9 , Issue.1 , pp. 60-63
    • Kisi, O.1
  • 10
    • 12544253180 scopus 로고    scopus 로고
    • Flow prediction by three back propagation techniques using k-fold partitioning of neural network training data
    • H. K. Cigizoglu, O. Kisi, Flow prediction by three back propagation techniques using k-fold partitioning of neural network training data, Nordic Hydrol. 2005, 36 (1), 49-64.
    • (2005) Nordic Hydrol , vol.36 , Issue.1 , pp. 49-64
    • Cigizoglu, H.K.1    Kisi, O.2
  • 11
    • 0036898378 scopus 로고    scopus 로고
    • Artificial neural networks for sheet sediment transport
    • G. Tayfur, Artificial neural networks for sheet sediment transport, Hydrol. Sci. J. 2002, 47 (6), 879-892.
    • (2002) Hydrol. Sci. J , vol.47 , Issue.6 , pp. 879-892
    • Tayfur, G.1
  • 12
    • 10244249159 scopus 로고    scopus 로고
    • Multi-layer perceptrons with Levenberg-Marquardt optimization algorithm for suspended sediment concentration prediction and estimation
    • Kisi, O. (2004b) Multi-layer perceptrons with Levenberg-Marquardt optimization algorithm for suspended sediment concentration prediction and estimation, Hydrol. Sci. J. 2004, 49 (6), 1025-1040.
    • (2004) Hydrol. Sci. J , vol.49 , Issue.6 , pp. 1025-1040
    • Kisi, O.1
  • 13
    • 23044459648 scopus 로고    scopus 로고
    • Suspended sediment estimation using neuro-fuzzy and neural network approaches
    • O. Kisi, Suspended sediment estimation using neuro-fuzzy and neural network approaches, Hydrol. Sci. J. 2005, 50 (4), 683-696.
    • (2005) Hydrol. Sci. J , vol.50 , Issue.4 , pp. 683-696
    • Kisi, O.1
  • 14
    • 0029663691 scopus 로고    scopus 로고
    • Fuzzy learning decomposition for the scheduling of hydroelectric power systems
    • M. Saad, P. Bigras, A. Turgeon, R. Duquette, Fuzzy learning decomposition for the scheduling of hydroelectric power systems, Water Resour. Res. 1996, 32 (1), 179-186.
    • (1996) Water Resour. Res , vol.32 , Issue.1 , pp. 179-186
    • Saad, M.1    Bigras, P.2    Turgeon, A.3    Duquette, R.4
  • 17
    • 14844292558 scopus 로고    scopus 로고
    • P. Coulibaly, M. Hache, V. Fortin, B. & Bobe'e, Improving daily reservoir inflow forecasting with model combination, J. Hydrol. Eng., ASCE 2005, 10 (2), 91-99.
    • P. Coulibaly, M. Hache, V. Fortin, B. & Bobe'e, Improving daily reservoir inflow forecasting with model combination, J. Hydrol. Eng., ASCE 2005, 10 (2), 91-99.
  • 18
    • 0034306715 scopus 로고    scopus 로고
    • Setting up stage discharge relations using ANN
    • S. K. Jain, D. Chalisgaonkar, Setting up stage discharge relations using ANN, J. Hydrol. Eng., ASCE 2000, 5 (4), 428-433.
    • (2000) J. Hydrol. Eng., ASCE , vol.5 , Issue.4 , pp. 428-433
    • Jain, S.K.1    Chalisgaonkar, D.2
  • 19
    • 20344376738 scopus 로고    scopus 로고
    • Application of artificial neural network in stage-discharge relationships
    • Cedar-Rapids, USA, July
    • B. Bhattacharya, D. P. Solomatine, Application of artificial neural network in stage-discharge relationships, 4th Int. Conf. on Hydroinformatics. Cedar-Rapids, USA, July 2000.
    • (2000) 4th Int. Conf. on Hydroinformatics
    • Bhattacharya, B.1    Solomatine, D.P.2
  • 20
    • 0037388488 scopus 로고    scopus 로고
    • A fuzzy neural network model for deriving the river stage-discharge relationship
    • P. Deka, V. Chandramouli, A fuzzy neural network model for deriving the river stage-discharge relationship. Hydrol. Sci. J. 2003, 48 (2), 197-209.
    • (2003) Hydrol. Sci. J , vol.48 , Issue.2 , pp. 197-209
    • Deka, P.1    Chandramouli, V.2
  • 21
    • 12144264770 scopus 로고    scopus 로고
    • Neural networks and M5 model trees in modeling water level-discharge relationship
    • B. Bhattacharya, D. P. Solomatine, Neural networks and M5 model trees in modeling water level-discharge relationship, Neurocomputing 2005, 63, 381-396.
    • (2005) Neurocomputing , vol.63 , pp. 381-396
    • Bhattacharya, B.1    Solomatine, D.P.2
  • 22
    • 0038105929 scopus 로고    scopus 로고
    • Radial basis function neural networks for modeling rating curves
    • K. P. Sudheer, S. K. Jain, Radial basis function neural networks for modeling rating curves, J. Hydrol. Eng., ASCE 2003, 8 (3), 161-164.
    • (2003) J. Hydrol. Eng., ASCE , vol.8 , Issue.3 , pp. 161-164
    • Sudheer, K.P.1    Jain, S.K.2
  • 23
    • 0242656262 scopus 로고    scopus 로고
    • Application of a neural network model in establishing a stage-discharge relationship for a tidal river
    • S. Supharatid, Application of a neural network model in establishing a stage-discharge relationship for a tidal river, Hydrol. Processes 2003, 17, 3085-3099.
    • (2003) Hydrol. Processes , vol.17 , pp. 3085-3099
    • Supharatid, S.1
  • 25
    • 0023331258 scopus 로고
    • An introduction to computing with neural nets
    • R. Lippman, An introduction to computing with neural nets, IEEE ASSP Mag. 1987, 4, 4-22.
    • (1987) IEEE ASSP Mag , vol.4 , pp. 4-22
    • Lippman, R.1
  • 26
    • 0000169232 scopus 로고
    • An algorithm for least squares estimation of nonlinear parameters
    • D. Marquardt, An algorithm for least squares estimation of nonlinear parameters, J. Soc. Ind. Appl. Math. 1963, 11, 431-441.
    • (1963) J. Soc. Ind. Appl. Math , vol.11 , pp. 431-441
    • Marquardt, D.1
  • 27
    • 0028543366 scopus 로고
    • Training feed forward networks with the Marquaradt algorithm
    • M. T. Hagan, M. B. Menhaj, Training feed forward networks with the Marquaradt algorithm, IEEE Trans. Neural Networks 1994, 6, 861-867.
    • (1994) IEEE Trans. Neural Networks , vol.6 , pp. 861-867
    • Hagan, M.T.1    Menhaj, M.B.2
  • 29
    • 4243585583 scopus 로고
    • Computational experience with a quasi Newton based training of the feedforward neural network
    • Lawrence Erlbaum, Hillsdale, NJ
    • L. E. K. Achenie, Computational experience with a quasi Newton based training of the feedforward neural network, In World Congress on Neural Networks Vol. 3, Lawrence Erlbaum, Hillsdale, NJ 1994, pp. 607-612.
    • (1994) World Congress on Neural Networks , vol.3 , pp. 607-612
    • Achenie, L.E.K.1
  • 30
    • 0000621802 scopus 로고
    • Multivariable functional interpolation and adaptive networks
    • D. Broomhead, D. Lowe, Multivariable functional interpolation and adaptive networks, Complex Syst. 1988, 2, 321-355.
    • (1988) Complex Syst , vol.2 , pp. 321-355
    • Broomhead, D.1    Lowe, D.2
  • 31
    • 0038009289 scopus 로고    scopus 로고
    • Radial basis function networks applied to DNBR calculation in digital core protection systems
    • G. C. Lee, S. H. Chang, Radial basis function networks applied to DNBR calculation in digital core protection systems, Ann. Nucl. Energy 2003, 30, 1561-1572.
    • (2003) Ann. Nucl. Energy , vol.30 , pp. 1561-1572
    • Lee, G.C.1    Chang, S.H.2
  • 32
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • K. Hornik, M. Stinchcombe, H. White, Multilayer feedforward networks are universal approximators, Neural Networks 1989, 2, 359-366.
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 33
    • 0032005702 scopus 로고    scopus 로고
    • An artificial neural network approach to rainfall-runoff modeling
    • W. C. Dawson, R. Wilby, An artificial neural network approach to rainfall-runoff modeling, Hydrol. Sci. J. 1998, 43 (1), 47-66.
    • (1998) Hydrol. Sci. J , vol.43 , Issue.1 , pp. 47-66
    • Dawson, W.C.1    Wilby, R.2
  • 34
    • 0034174396 scopus 로고    scopus 로고
    • ASCE Task Committee, Artificial neural networks in hydrology, II: Hydrological applications, ASCE J. Hydrol. Eng. 2000, 5 (2), 124-137.
    • ASCE Task Committee, Artificial neural networks in hydrology, II: Hydrological applications, ASCE J. Hydrol. Eng. 2000, 5 (2), 124-137.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.