메뉴 건너뛰기




Volumn 15, Issue 6, 2011, Pages 1835-1852

River flow time series using least squares support vector machines

Author keywords

[No Author keywords available]

Indexed keywords

AUTO-REGRESSIVE INTEGRATED MOVING AVERAGE; COEFFICIENT OF CORRELATION; CONVENTIONAL ARTIFICIAL NEURAL NETWORK MODELS; FLOW FORECASTS; GROUP METHOD OF DATA HANDLING; HYBRID FORECASTING; HYBRID MODEL; INPUT VARIABLES; LEAST SQUARES SUPPORT VECTOR MACHINES; LONG TERM OBSERVATIONS; MALAYSIA; RIVER FLOW; RIVER FLOW DISCHARGES; RIVER FLOW FORECASTING; RIVER FLOW TIME SERIES; ROOT MEAN SQUARE ERRORS; TIME SERIES FORECASTING;

EID: 84872725276     PISSN: 10275606     EISSN: 16077938     Source Type: Journal    
DOI: 10.5194/hess-15-1835-2011     Document Type: Article
Times cited : (89)

References (82)
  • 1
    • 1442320489 scopus 로고    scopus 로고
    • A neuro-fuzzy approach for modelling electricity demand in Victoria
    • PII S1568494601000138
    • Abraham, A. and Nath, B.: A neuro-fuzzy approach for modeling electricity demand in Victoria, Appl. Soft Comput, 1(2), 127-138, 2001. (Pubitemid 33718571)
    • (2001) Applied Soft Computing , vol.1 , Issue.2 , pp. 127-138
    • Abraham, A.1    Nath, B.2
  • 2
    • 77955276087 scopus 로고    scopus 로고
    • Development of a coupled wavelet transform and neural network method for flow forecasting of non-perennial rivers in semi-arid watersheds
    • Adamowski,J. and Sun,K.: Development of a coupled wavelet transform and neural network method for flow forecasting of non-perennial rivers in semi-arid watersheds, J. Hydrol., 390( 1- 2), 85-91, 2010.
    • (2010) J. Hydrol. , vol.390 , Issue.1-2 , pp. 85-91
    • Adamowski, J.1    Sun, K.2
  • 3
    • 77953973407 scopus 로고    scopus 로고
    • Daily groundwater level fluctuation forecasting using soft computing technique
    • Affandi,A. K. and Watanabe,K.: Daily groundwater level fluctuation forecasting using soft computing technique, Nat. Sci., 5( 2), 1-10, 2007.
    • (2007) Nat. Sci. , vol.5 , Issue.2 , pp. 1-10
    • Affandi, A.K.1    Watanabe, K.2
  • 5
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • Akaike,H.: A new look at the statistical model identification, IEEE T. Automat. Contr., 19, 716-723, 1974.
    • (1974) IEEE T. Automat. Contr. , vol.19 , pp. 716-723
    • Akaike, H.1
  • 6
    • 77951015838 scopus 로고    scopus 로고
    • River flow forecasting with artificial neural networks using satellite observed precipitation pre-processed with flow length and travel time information: Case study of the Ganges river basin
    • doi:10.5194/hess-13-1607-2009
    • Akhtar,M. K., Corzo,G. A., van Andel,S. J., and Jonoski,A.: River flow forecasting with artificial neural networks using satellite observed precipitation pre-processed with flow length and travel time information: case study of the Ganges river basin, Hydrol. Earth Syst. Sci., 13, 1607-1618, doi:10.5194/hess-13-1607-2009, 2009.
    • (2009) Hydrol. Earth Syst. Sci. , vol.13 , pp. 1607-1618
    • Akhtar, M.K.1    Corzo, G.A.2    Van Andel, S.J.3    Jonoski, A.4
  • 7
    • 0034174396 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology, II -Hydrologic applications
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology: Artificial neural networks in hydrology, II -Hydrologic applications, J. Hydrol. Eng., 5( 2), 124-137, 2000.
    • (2000) J. Hydrol. Eng. , vol.5 , Issue.2 , pp. 124-137
  • 8
    • 31044438334 scopus 로고    scopus 로고
    • Multi-time scale stream flow predictions: The support vector machines approach
    • DOI 10.1016/j.jhydrol.2005.06.001, PII S0022169405002908
    • Asefa, T., Kemblowski, M., McKee, M., and Khalil, A.: Multitime scale stream flow prediction: The support vector machines approach, J. Hydrol., 318, 7-16, 2006. (Pubitemid 43120784)
    • (2006) Journal of Hydrology , vol.318 , Issue.1-4 , pp. 7-16
    • Asefa, T.1    Kemblowski, M.2    McKee, M.3    Khalil, A.4
  • 9
    • 0033097707 scopus 로고    scopus 로고
    • A Comparison between neural-network forecasting techniquesCase Study: River flow forecasting
    • Atiya,A. F., El-Shoura,S. M., Shaheen,S. I., and El-Sherif,M. S.: A Comparison between neural-network forecasting techniquesCase Study: River flow forecasting, IEEE T. Neural Netw, 10( 2), 402-409, 1999.
    • (1999) IEEE T. Neural Netw , vol.10 , Issue.2 , pp. 402-409
    • Atiya, A.F.1    El-Shoura, S.M.2    Shaheen, S.I.3    El-Sherif, M.S.4
  • 10
    • 41649106264 scopus 로고    scopus 로고
    • A hybrid neural networks and numerical models approach for predicting groundwater abstraction impacts
    • Birkinshaw,S. J., Parkin,G., and Rao,Z.: A hybrid neural networks and numerical models approach for predicting groundwater abstraction impacts, J. Hydroinform., 10. 2, 127-137, 2008.
    • (2008) J. Hydroinform. , vol.10 , Issue.2 , pp. 127-137
    • Birkinshaw, S.J.1    Parkin, G.2    Rao, Z.3
  • 11
    • 0004311217 scopus 로고
    • Forecasting and Control, Holden-Day, San Francisco, CA
    • Box,G. E. P. and Jenkins,G.: Time Series Analysis, Forecasting and Control, Holden-Day, San Francisco, CA, 1970.
    • (1970) Time Series Analysis
    • Box, G.E.P.1    Jenkins, G.2
  • 13
    • 0033075129 scopus 로고    scopus 로고
    • Mneural short-term rediction based on dynamics reconstruction
    • Camastra,F. and Colla,A.: Mneural short-term rediction based on dynamics reconstruction, ACM -Association of Computing Machinery, 9( 1), 45-52, 1999.
    • (1999) ACM -Association of Computing Machinery , vol.9 , Issue.1 , pp. 45-52
    • Camastra, F.1    Colla, A.2
  • 14
    • 0033557210 scopus 로고    scopus 로고
    • A self-organization algorithm for real-time flood forecast
    • Chang,F. J. and Hwang,Y. Y.: A self-organization algorithm for real-time flood forecast, Hydrol. Process., 13, 123-138, 1999.
    • (1999) Hydrol. Process. , vol.13 , pp. 123-138
    • Chang, F.J.1    Hwang, Y.Y.2
  • 15
    • 33748133361 scopus 로고    scopus 로고
    • A hybrid ARIMA and support vector machines in forecasting the production values of the machinery industry in Taiwan
    • Chen,K. Y. and Wang,C. H.: A hybrid ARIMA and support vector machines in forecasting the production values of the machinery industry in Taiwan, Expert Syst. Appl., 32, 254-264, 2007.
    • (2007) Expert Syst. Appl. , vol.32 , pp. 254-264
    • Chen, K.Y.1    Wang, C.H.2
  • 16
    • 34250818666 scopus 로고    scopus 로고
    • Comparison of neural network methods for infilling missing daily weather records
    • DOI 10.1016/j.jhydrol.2007.04.020, PII S0022169407002557
    • Coulibaly, P. and Evora, N. D.: Comparison of neural network methods for infilling missing daily weather records, J. Hydrol., 341, 27-41, 2007. (Pubitemid 46990403)
    • (2007) Journal of Hydrology , vol.341 , Issue.1-2 , pp. 27-41
    • Coulibaly, P.1    Evora, N.D.2
  • 17
    • 23744444467 scopus 로고    scopus 로고
    • Constraints of artificial neural networks for rainfall-runoff modelling: Trade-offs in hydrological state representation and model evaluation
    • de Vos, N. J. and Rientjes, T. H. M.: Constraints of artificial neural networks for rainfall-runoff modelling: trade-offs in hydrological state representation and model evaluation, Hydrol. Earth Syst. Sci., 9, 111-126, doi: 10.5194/hess-9-111-2005, 2005. (Pubitemid 41122744)
    • (2005) Hydrology and Earth System Sciences , vol.9 , Issue.1-2 , pp. 111-126
    • De Vos, N.J.1    Rientjes, T.H.M.2
  • 18
    • 0035398081 scopus 로고    scopus 로고
    • Model induction with support vector machines: Introduction and applications
    • DOI 10.1061/(ASCE)0887-3801(2001)15:3(208), Reportnr 22146
    • Dibike, Y. B., Velickov, S., Solomatine, D. P., and Abbott, M. B.: Model induction with support vector machines: introduction and applications, ASCE J. Comput. Civil Eng., 15(2), 208-216, 2001. (Pubitemid 32583199)
    • (2001) Journal of Computing in Civil Engineering , vol.15 , Issue.3 , pp. 208-216
    • Dibike, Y.B.1    Velickov, S.2    Solomatine, D.3    Abbott, M.B.4
  • 19
    • 0038502200 scopus 로고    scopus 로고
    • Artificial neural networks for streamflow prediction
    • Dolling,O. R. and Varas,E. A.: Artificial neural networks for streamflow prediction, J. Hydraul. Res., 40( 5), 547-554, 2003.
    • (2003) J. Hydraul. Res. , vol.40 , Issue.5 , pp. 547-554
    • Dolling, O.R.1    Varas, E.A.2
  • 20
    • 71149110298 scopus 로고    scopus 로고
    • Streamflow drought time series forecasting: A case study in a small watershed in north west spain
    • Fernandez,C. and Vega,J. A. : Streamflow drought time series forecasting: a case study in a small watershed in north west spain, Stoch. Environ. Res. Risk Assess., 23, 1063-1070, 2009.
    • (2009) Stoch. Environ. Res. Risk Assess. , vol.23 , pp. 1063-1070
    • Fernandez, C.1    Vega, J.A.2
  • 21
    • 38849167375 scopus 로고    scopus 로고
    • Comparison of Artificial Intelligence Techniques for river flow forecasting
    • doi:10.5194/hess-12-123-2008
    • Firat,M.: Comparison of Artificial Intelligence Techniques for river flow forecasting, Hydrol. Earth Syst. Sci., 12, 123-139, doi:10.5194/hess-12-123- 2008, 2008.
    • (2008) Hydrol. Earth Syst. Sci. , vol.12 , pp. 123-139
    • Firat, M.1
  • 22
    • 34249943593 scopus 로고    scopus 로고
    • River flow estimation using adaptive neuro fuzzy inference system
    • DOI 10.1016/j.matcom.2006.09.003, PII S0378475406002394
    • Firat, M. and Gungor, M.: River flow estimation using adaptive neuro fuzzy inference system, Math. Comput. Simulat., 75(3-4), 87-96, 2007. (Pubitemid 46880072)
    • (2007) Mathematics and Computers in Simulation , vol.75 , Issue.3-4 , pp. 87-96
    • Firat, M.1    Gungor, M.2
  • 23
    • 77953949991 scopus 로고    scopus 로고
    • Monthly river flow forecasting by an adaptive neuro-fuzzy inference system
    • Firat,M. and Turan,M. E.: Monthly river flow forecasting by an adaptive neuro-fuzzy inference system, Water Environ. J., 24, 116-125, 2010.
    • (2010) Water Environ. J. , vol.24 , pp. 116-125
    • Firat, M.1    Turan, M.E.2
  • 24
    • 67349260019 scopus 로고    scopus 로고
    • Prediction of flashover voltage of insulators using least squares support vector machines
    • Gencoglu,M. T. and Uyar,M.: Prediction of flashover voltage of insulators using least squares support vector machines, Expert Syst. Appl., 36, 10789-10798, 2009.
    • (2009) Expert Syst. Appl. , vol.36 , pp. 10789-10798
    • Gencoglu, M.T.1    Uyar, M.2
  • 26
    • 56349101899 scopus 로고    scopus 로고
    • Analysis and modeling of multivariate chaotic time series based on neural network
    • Han,M. and Wang,M.: Analysis and modeling of multivariate chaotic time series based on neural network, Expert Syst. Appl., 2( 36), 1280-1290, 2009.
    • (2009) Expert Syst. Appl. , vol.2 , Issue.36 , pp. 1280-1290
    • Han, M.1    Wang, M.2
  • 27
    • 0029413797 scopus 로고
    • Artificial neural network modeling of the rainfall-runoff process
    • DOI 10.1029/95WR01955
    • Hsu, K. L., Gupta, H. V., and Sorooshian, S.: Artificial neural network modeling of the rainfall runoff process, Water Resour. Res., 31(10), 2517-2530, 1995. (Pubitemid 26475080)
    • (1995) Water Resources Research , vol.31 , Issue.10 , pp. 2517-2530
    • Kuo-Lin, H.1    Gupta, H.V.2    Sorooshian, S.3
  • 28
    • 4644299731 scopus 로고    scopus 로고
    • Forecasting flows in Apalachicola River using neural networks
    • DOI 10.1002/hyp.1492
    • Huang, W., Bing Xu, B., and Hilton, A.: Forecasting flow in apalachicola river using neural networks, Hydrol. Process., 18, 2545-2564, 2004. (Pubitemid 39267227)
    • (2004) Hydrological Processes , vol.18 , Issue.13 , pp. 2545-2564
    • Huang, W.1    Xu, B.2    Chan-Hilton, A.3
  • 29
    • 77951872732 scopus 로고    scopus 로고
    • An artificial neural network model for rainfall forecasting in Bangkok, Thailand
    • doi:10.5194/hess-13-1413-2009
    • Hung,N. Q., Babel,M. S., Weesakul,S., and Tripathi,N. K.: An artificial neural network model for rainfall forecasting in Bangkok, Thailand, Hydrol. Earth Syst. Sci., 13, 1413-1425, doi:10.5194/hess-13-1413-2009, 2009.
    • (2009) Hydrol. Earth Syst. Sci. , vol.13 , pp. 1413-1425
    • Hung, N.Q.1    Babel, M.S.2    Weesakul, S.3    Tripathi, N.K.4
  • 30
    • 0015142058 scopus 로고
    • Polynomial theory of complex system
    • Ivanenko,A. G.: Polynomial theory of complex system, IEEE Trans. Syst., Man Cybern. SMCI-1, No. 1, 364-378, 1971.
    • (1971) IEEE Trans. Syst., Man Cybern. , vol.SMCI-1 , Issue.1 , pp. 364-378
    • Ivanenko, A.G.1
  • 31
    • 0006826682 scopus 로고
    • A review of problems solved by algorithms of the GMDH
    • IvakhenekoA. G. and Ivakheneko,G. A.: A review of problems solved by algorithms of the GMDH, S. Mach. Pere, 5( 4), 527-535, 1995.
    • (1995) S. Mach. Pere , vol.5 , Issue.4 , pp. 527-535
    • Ivakheneko, A.G.1    Ivakheneko, G.A.2
  • 32
    • 33644655239 scopus 로고    scopus 로고
    • An evaluation of artificial neural network technique for the determination of infiltration model parameters
    • DOI 10.1016/j.asoc.2004.12.007, PII S1568494605000177
    • Jain, A. and Kumar, A.: An evaluation of artificial neural network technique for the determination of infiltration model parameters, Appl. Soft Comput., 6, 272-282, 2006. (Pubitemid 43326126)
    • (2006) Applied Soft Computing Journal , vol.6 , Issue.3 , pp. 272-282
    • Jain, A.1    Kumar, A.2
  • 33
    • 33846813334 scopus 로고    scopus 로고
    • Hybrid neural network models for hydrologic time series forecasting
    • DOI 10.1016/j.asoc.2006.03.002, PII S1568494606000317
    • Jain, A. and Kumar, A. M.: Hybrid neural network models for hydrologie time series forecasting, Appl. Soft Comput., 7, 585-592, 2007. (Pubitemid 46205467)
    • (2007) Applied Soft Computing Journal , vol.7 , Issue.2 , pp. 585-592
    • Jain, A.1    Kumar, A.M.2
  • 35
    • 33646572227 scopus 로고    scopus 로고
    • Chaotic time series prediction with a global model: Artificial neural network
    • DOI 10.1016/j.jhydrol.2005.07.048, PII S0022169405004142
    • Karunasinghe, D. S. K. and Liong, S. Y.: Chaotic time series prediction with a global model: Artificial neural network, J. Hydrol., 323, 92-105, 2006. (Pubitemid 43728879)
    • (2006) Journal of Hydrology , vol.323 , Issue.1-4 , pp. 92-105
    • Karunasinghe, D.S.K.1    Liong, S.-Y.2
  • 36
    • 67649135194 scopus 로고    scopus 로고
    • Artifical models for interbasin flow prediction in southern turkey
    • Keskin,M. E. and Taylan,D.: Artifical models for interbasin flow prediction in southern turkey, J. Hydrol. Eng., 14( 7), 752-758, 2009.
    • (2009) J. Hydrol. Eng. , vol.14 , Issue.7 , pp. 752-758
    • Keskin, M.E.1    Taylan, D.2
  • 37
    • 1642497522 scopus 로고    scopus 로고
    • River flow modeling using artificial neural networks
    • Kisi,O.: River flow modeling using artificial neural networks, J. Hydrol. Eng., 9( 1), 60-63, 2004.
    • (2004) J. Hydrol. Eng. , vol.9 , Issue.1 , pp. 60-63
    • Kisi, O.1
  • 38
    • 41949142664 scopus 로고    scopus 로고
    • River flow forecasting and estimation using different artificial neural network technique
    • Kisi,O.: River flow forecasting and estimation using different artificial neural network technique, Hydrol. Res., 39. 1, 27-10, 2008.
    • (2008) Hydrol. Res. , vol.39 , Issue.1 , pp. 27-110
    • Kisi, O.1
  • 39
    • 71649094330 scopus 로고    scopus 로고
    • Wavelet regression model as an alternative to neural networks for monthly streamflow forecasting
    • Kisi,O.: Wavelet regression model as an alternative to neural networks for monthly streamflow forecasting, Hydrol. Process., 23, 3583-3597, 2009.
    • (2009) Hydrol. Process. , vol.23 , pp. 3583-3597
    • Kisi, O.1
  • 40
    • 69049113766 scopus 로고    scopus 로고
    • Using least squares support vector machines for adaptive communication channel equalization
    • Lin,C. J., Hong,S. J., and Lee,C. Y.: Using least squares support vector machines for adaptive communication channel equalization, Int. J. Appl. Sci. Eng., 3( 1), 51-59, 2005.
    • (2005) Int. J. Appl. Sci. Eng. , vol.3 , Issue.1 , pp. 51-59
    • Lin, C.J.1    Hong, S.J.2    Lee, C.Y.3
  • 41
    • 33746830757 scopus 로고    scopus 로고
    • Using support vector machines for long-term discharge prediction
    • Lin,J. Y., Cheng,C. T., and Chau,K. W.: Using support vector machines for long-term discharge prediction, Hydrolog. Sei. J., 51( 4), 599-612, 2006.
    • (2006) Hydrolog. Sei. J. , vol.51 , Issue.4 , pp. 599-612
    • Lin, J.Y.1    Cheng, C.T.2    Chau, K.W.3
  • 42
    • 0036202123 scopus 로고    scopus 로고
    • Flood stage forecasting with support vector machines
    • Liong,S.Y. and Sivapragasam,C.: Flood stage forecasting with support vector machines, J. Am. Water Resour. Assoc., 38( 1), 173-196, 2002.
    • (2002) J. Am. Water Resour. Assoc. , vol.38 , Issue.1 , pp. 173-196
    • Liong, S.Y.1    Sivapragasam, C.2
  • 43
    • 0023331258 scopus 로고
    • An introduction to computing with neural nets
    • Lippmann,R. P.: An introduction to computing with neural nets, IEEE ASSP Magazine, April, 4-22, 1987.
    • (1987) IEEE ASSP Magazine , Issue.APRIL , pp. 4-22
    • Lippmann, R.P.1
  • 45
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for the prediction and forecasting of water resources variables: A review of modelling issues and applications
    • DOI 10.1016/S1364-8152(99)00007-9, PII S1364815299000079
    • Maier, H. R. and Dandy, G. C.: Neural networks for the production and forecasting of water resource variables: a review and modelling issues and application, Environ. Modell. Softw., 15, 101-124, 2000. (Pubitemid 30018318)
    • (2000) Environmental Modelling and Software , vol.15 , Issue.1 , pp. 101-124
    • Maier, H.R.1    Dandy, G.C.2
  • 46
    • 67650621579 scopus 로고    scopus 로고
    • Application and analysis of support vector machine based simulation for runoff and sediment yield
    • Misra,D., Oommen,T., Agarwal,A., Mishra,S. K., and Thompson,A. M.: Application and analysis of support vector machine based simulation for runoff and sediment yield, Biosyst. Eng., 103, 527-535, 2009.
    • (2009) Biosyst. Eng. , vol.103 , pp. 527-535
    • Misra, D.1    Oommen, T.2    Agarwal, A.3    Mishra, S.K.4    Thompson, A.M.5
  • 47
    • 33846093833 scopus 로고    scopus 로고
    • Streamflow drought time series forecasting
    • Modarres,R.: Streamflow drought time series forecasting, Stoch. Environ. Res. Risk Assess., 21, 223-233, 2007.
    • (2007) Stoch. Environ. Res. Risk Assess. , vol.21 , pp. 223-233
    • Modarres, R.1
  • 48
    • 84867245302 scopus 로고    scopus 로고
    • Khabur River flow using artificial neural networks
    • Muhamad,J. R. and Hassan,J. N.: Khabur River flow using artificial neural networks, Al-Rafidain Engineering, 13( 2), 33-12, 2005.
    • (2005) Al-Rafidain Engineering , vol.13 , Issue.2 , pp. 33-112
    • Muhamad, J.R.1    Hassan, J.N.2
  • 49
    • 0036853424 scopus 로고    scopus 로고
    • Polynomial modelling of explosive compaction process of metallic powders using GMDH-type neural networks and singular value decomposition
    • DOI 10.1088/0965-0393/10/6/308, PII S0965039302392283
    • Nariman-Zadeh, N., Darvizeh, A., Felezi, M. E., and Gharababaei, H.: Polynomial modelling of explosive process of metalic powders using GMDH-type neural networks and singular value decomposition, Model. Simul. Sci. Eng., 10, 727-744, 2002. (Pubitemid 35373297)
    • (2002) Modelling and Simulation in Materials Science and Engineering , vol.10 , Issue.6 , pp. 727-744
    • Nariman-Zadeh, N.1    Darvizeh, A.2    Felezi, M.E.3    Gharababaei, H.4
  • 50
    • 46949093808 scopus 로고    scopus 로고
    • Design of hybrid differential evolution and group method of data handling networks for modeling and prediction
    • Onwubolu,G. C.: Design of hybrid differential evolution and group method of data handling networks for modeling and prediction, Information Sci., 178, 3616-3634, 2008.
    • (2008) Information Sci. , vol.178 , pp. 3616-3634
    • Onwubolu, G.C.1
  • 54
    • 38649141876 scopus 로고    scopus 로고
    • Soft-computing techniques and ARMA model for time series prediction
    • DOI 10.1016/j.neucom.2007.07.018, PII S0925231207002858
    • Rojas, I., Valenzuela, O., Rojas, F., Guillen, A., Herrera, L. J., Pomares, H., Marquez, L., and Pasadas, M.: Soft-computing techniques and ARMA model for time series prediction, Neurocomputing, 71(4-6), 519-537, 2008. (Pubitemid 351168441)
    • (2008) Neurocomputing , vol.71 , Issue.4-6 , pp. 519-537
    • Rojas, I.1    Valenzuela, O.2    Rojas, F.3    Guillen, A.4    Herrera, L.J.5    Pomares, H.6    Marquez, L.7    Pasadas, M.8
  • 55
    • 0034254025 scopus 로고    scopus 로고
    • A hybrid multi-model approach to river level forecasting
    • See,L. and Openshaw,S.: A hybrid multi-model approach to river level forecasting, Hydrolog. Sci. J., 45( 4), 523-536, 2009.
    • (2009) Hydrolog. Sci. J. , vol.45 , Issue.4 , pp. 523-536
    • See, L.1    Openshaw, S.2
  • 56
    • 0342506462 scopus 로고    scopus 로고
    • Application of neural network technique to rainfall-runoff modelling
    • Shamseldin,A. Y: Application of Neural Network Technique to Rainfall-Runoff Modelling, J. Hydrol., 199, 272-294, 1997.
    • (1997) J. Hydrol. , vol.199 , pp. 272-294
    • Shamseldin, A.Y.1
  • 57
    • 0031250747 scopus 로고    scopus 로고
    • Combination of time series and neural network for reliability forecasting modeling
    • Su,C. T., Tong,L. I., and Leou,C. M.: Combination of time series and neural network for reliability forecasting modeling, J. Chinese Ind. Eng., 14, 419-429, 1997.
    • (1997) J. Chinese Ind. Eng. , vol.14 , pp. 419-429
    • Su, C.T.1    Tong, L.I.2    Leou, C.M.3
  • 58
    • 21244454892 scopus 로고    scopus 로고
    • Robust mobile geo-location algorithm based on LS-SVM
    • DOI 10.1109/TVT.2005.844676
    • Sun, G. and Guo, W.: Robust mobile geo-location algorithm based on LSSVM, IEEE T. Veh. Technol., 54(2), 1037-1041, 2005. (Pubitemid 40889779)
    • (2005) IEEE Transactions on Vehicular Technology , vol.54 , Issue.3 , pp. 1037-1041
    • Sun, G.1    Guo, W.2
  • 59
    • 0032638628 scopus 로고    scopus 로고
    • Least squares support vector machine classifiers
    • Suykens,J. A. K. and Vandewalle,J.: Least squares support vector machine classifiers, Neural Process. Lett, 9( 2), 293-300, 1999.
    • (1999) Neural Process. Lett , vol.9 , Issue.2 , pp. 293-300
    • Suykens, J.A.K.1    Vandewalle, J.2
  • 61
    • 0019056830 scopus 로고
    • Heuristics free group method of data handling algorithm of generating optimal partial polynomials with application to air pollution prediction
    • Tamura, H. and Kondo, T.: Heuristic free group method of data handling algorithm of generating optional partial polynomials with application to air pollution prediction, Int. J. Syst. Sci., 11, 1095-1111, 1980. (Pubitemid 11458164)
    • (1980) International Journal of Systems Science , vol.11 , Issue.9 , pp. 1095-1111
    • Tamura, H.1    Kondo, T.2
  • 62
    • 0000393458 scopus 로고
    • Feedforward Neural Nets as Models for Time Series Forecasting
    • Tang,Z. and Fishwick,P. A.: Feedforward Neural Nets as Models for Time Series Forecasting, ORSA J. Comput., 5( 4), 374-385, 1993.
    • (1993) ORSA J. Comput. , vol.5 , Issue.4 , pp. 374-385
    • Tang, Z.1    Fishwick, P.A.2
  • 63
    • 0001023715 scopus 로고    scopus 로고
    • Application of support vector machines in financial time series forecasting
    • DOI 10.1016/S0305-0483(01)00026-3, PII S0305048301000263
    • Tay, F. and Cao, L. : Application of support vector machines in financial time series forecasting, Omega Int. J. Manage. Sei., 29(4), 309-317, 2001. (Pubitemid 33628757)
    • (2001) Omega , vol.29 , Issue.4 , pp. 309-317
    • Tay, F.E.H.1    Cao, L.2
  • 64
    • 0142184418 scopus 로고    scopus 로고
    • Using support vector machines for time series prediction
    • Thiessen,U. and Van Brakel,R.: Using support vector machines for time series prediction, Chemometr. Intell. Lab., 69, 35-49, 2003.
    • (2003) Chemometr. Intell. Lab. , vol.69 , pp. 35-49
    • Thiessen, U.1    Van Brakel, R.2
  • 66
    • 1542325048 scopus 로고    scopus 로고
    • A new methodology for emergent system identification using particle swarm optimization (PSO) and the group method data handling (GMDH)
    • Voss,M. S. and Feng,X.: A new methodology for emergent system identification using particle swarm optimization (PSO) and the group method data handling (GMDH), Gecco 2002, 1227-1232, 2002.
    • (2002) Gecco , vol.2002 , pp. 1227-1232
    • Voss, M.S.1    Feng, X.2
  • 67
    • 33847122958 scopus 로고    scopus 로고
    • Comparison of SVM and LS-SVM for Regression
    • Wang,H. and Hu,D.: Comparison of SVM and LS-SVM for Regression, Ieee, 279-283, 2005.
    • (2005) Ieee , pp. 279-283
    • Wang, H.1    Hu, D.2
  • 69
    • 33646547633 scopus 로고    scopus 로고
    • Forecasting daily streamflow using hybrid ANN models
    • DOI 10.1016/j.jhydrol.2005.09.032, PII S0022169405004981
    • Wang, W., Gelder, V. P., and Vrijling, J. K.: Forecasting daily stream flow using hybrid ANN models, J. Hydrol., 324, 383-399, 2006. (Pubitemid 43729372)
    • (2006) Journal of Hydrology , vol.324 , Issue.1-4 , pp. 383-399
    • Wang, W.1    Gelder, P.H.A.J.M.V.2    Vrijling, J.K.3    Ma, J.4
  • 70
    • 68349105875 scopus 로고    scopus 로고
    • A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series
    • Wang,W. C., Chau,K. W., Cheng,C. T., and Qiu,L.: A Comparison of Performance of Several Artificial Intelligence Methods for Forecasting Monthly Discharge Time Series, J. Hydrol., 374, 294-306, 2009.
    • (2009) J. Hydrol. , vol.374 , pp. 294-306
    • Wang, W.C.1    Chau, K.W.2    Cheng, C.T.3    Qiu, L.4
  • 72
    • 0001242140 scopus 로고
    • Time series forecasting using backpropagation neural network
    • Wong,F. S.: Time series forecasting using backpropagation neural network, Neurocomputing, 2, 147-159, 1991.
    • (1991) Neurocomputing , vol.2 , pp. 147-159
    • Wong, F.S.1
  • 73
    • 70349777454 scopus 로고    scopus 로고
    • Predicting monthly streamflow using data-driven models coupled with datapreprocessing techniques
    • doi:10.1029/2007WR006737
    • Wu,C. L., Chau,K. W., and Li,Y. S.: Predicting monthly streamflow using data-driven models coupled with datapreprocessing techniques, Water Resour. Res., 45, W08432, doi:10.1029/2007WR006737, 2009.
    • (2009) Water Resour. Res. , vol.45
    • Wu, C.L.1    Chau, K.W.2    Li, Y.S.3
  • 75
    • 33746916489 scopus 로고    scopus 로고
    • Support vector regression for real-time flood stage forecasting
    • Yu,P. S., Chen,S. T., and Chang,I. F.: Support vector regression for real-time flood stage forecasting, J. Hydrol., 328( 3-4), 704-716, 2006.
    • (2006) J. Hydrol. , vol.328 , Issue.3-4 , pp. 704-716
    • Yu, P.S.1    Chen, S.T.2    Chang, I.F.3
  • 77
    • 77953977940 scopus 로고    scopus 로고
    • Prediction of daily streamflow based on stochastic approaches
    • Yurekli,K., Kurunc,A., and Simsek,H.: Prediction of Daily Streamflow Based on Stochastic Approaches, J. Spatial Hydrol., 4( 2), 1-12, 2004.
    • (2004) J. Spatial Hydrol. , vol.4 , Issue.2 , pp. 1-12
    • Yurekli, K.1    Kurunc, A.2    Simsek, H.3
  • 78
    • 0034100712 scopus 로고    scopus 로고
    • Prediction of watershed runoff using Bayesian concepts and modular neural networks
    • DOI 10.1029/1999WR900264
    • Zhang, B. and Govindaraju, G.: Prediction of watershed runoff using bayesian concepts and modular neural networks, Water Resour. Res., 36(2), 753-762, 2000. (Pubitemid 30149761)
    • (2000) Water Resources Research , vol.36 , Issue.3 , pp. 753-762
    • Zhang, B.1    Govindaraju, R.S.2
  • 79
    • 0003123930 scopus 로고    scopus 로고
    • Forecasting with artificial neural networks: The state of the art
    • PII S0169207097000447
    • Zhang, G., Patuwo, B. E., and Hu, M. Y: Forecasting with artificial neural networks: the state of the art, Int. J. Forecast., 14, 35-62, 1998. (Pubitemid 128340470)
    • (1998) International Journal of Forecasting , vol.14 , Issue.1 , pp. 35-62
    • Zhang, G.1    Eddy, P.B.2    Y, H.M.3
  • 80
    • 0037243071 scopus 로고    scopus 로고
    • Time series forecasting using a hybrid ARIMA and neural network model
    • Zhang,G. P.: Time series forecasting using a hybrid ARIMA and neural network model, Neurocomputing, 50, 159-175, 2003.
    • (2003) Neurocomputing , vol.50 , pp. 159-175
    • Zhang, G.P.1
  • 81
    • 0035314205 scopus 로고    scopus 로고
    • Simulation study of artificial neural networks for nonlinear time-series forecasting
    • DOI 10.1016/S0305-0548(99)00123-9
    • Zhang, G. P., Patuwo, B. E., and Hu, M. Y: A simulation study of artificial neural networks for nonlinear time-series forecasting, Comput. Oper. Res., 28(4), 381-396, 2001. (Pubitemid 32033793)
    • (2001) Computers and Operations Research , vol.28 , Issue.4 , pp. 381-396
    • Zhang, G.P.1    Patuwo, B.E.2    Hu, M.Y.3
  • 82
    • 34548167332 scopus 로고    scopus 로고
    • An investigation and comparison of artificial neural network and time series models for Chinese food grain price forecasting
    • DOI 10.1016/j.neucom.2007.01.009, PII S0925231207000136
    • Zou, H. F., Xia, G. P., Yang, F. T., and Wang, H. Y: An investigation and comparison of artificial neural network and time series models for chinese food grain price forecasting, Neurocomputing, 70, 2913-2923, 2007. (Pubitemid 47308610)
    • (2007) Neurocomputing , vol.70 , Issue.16-18 , pp. 2913-2923
    • Zou, H.F.1    Xia, G.P.2    Yang, F.T.3    Wang, H.Y.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.