-
1
-
-
1442320489
-
A neuro-fuzzy approach for modelling electricity demand in Victoria
-
PII S1568494601000138
-
Abraham, A. and Nath, B.: A neuro-fuzzy approach for modeling electricity demand in Victoria, Appl. Soft Comput, 1(2), 127-138, 2001. (Pubitemid 33718571)
-
(2001)
Applied Soft Computing
, vol.1
, Issue.2
, pp. 127-138
-
-
Abraham, A.1
Nath, B.2
-
2
-
-
77955276087
-
Development of a coupled wavelet transform and neural network method for flow forecasting of non-perennial rivers in semi-arid watersheds
-
Adamowski,J. and Sun,K.: Development of a coupled wavelet transform and neural network method for flow forecasting of non-perennial rivers in semi-arid watersheds, J. Hydrol., 390( 1- 2), 85-91, 2010.
-
(2010)
J. Hydrol.
, vol.390
, Issue.1-2
, pp. 85-91
-
-
Adamowski, J.1
Sun, K.2
-
3
-
-
77953973407
-
Daily groundwater level fluctuation forecasting using soft computing technique
-
Affandi,A. K. and Watanabe,K.: Daily groundwater level fluctuation forecasting using soft computing technique, Nat. Sci., 5( 2), 1-10, 2007.
-
(2007)
Nat. Sci.
, vol.5
, Issue.2
, pp. 1-10
-
-
Affandi, A.K.1
Watanabe, K.2
-
5
-
-
0016355478
-
A new look at the statistical model identification
-
Akaike,H.: A new look at the statistical model identification, IEEE T. Automat. Contr., 19, 716-723, 1974.
-
(1974)
IEEE T. Automat. Contr.
, vol.19
, pp. 716-723
-
-
Akaike, H.1
-
6
-
-
77951015838
-
River flow forecasting with artificial neural networks using satellite observed precipitation pre-processed with flow length and travel time information: Case study of the Ganges river basin
-
doi:10.5194/hess-13-1607-2009
-
Akhtar,M. K., Corzo,G. A., van Andel,S. J., and Jonoski,A.: River flow forecasting with artificial neural networks using satellite observed precipitation pre-processed with flow length and travel time information: case study of the Ganges river basin, Hydrol. Earth Syst. Sci., 13, 1607-1618, doi:10.5194/hess-13-1607-2009, 2009.
-
(2009)
Hydrol. Earth Syst. Sci.
, vol.13
, pp. 1607-1618
-
-
Akhtar, M.K.1
Corzo, G.A.2
Van Andel, S.J.3
Jonoski, A.4
-
7
-
-
0034174396
-
Artificial neural networks in hydrology, II -Hydrologic applications
-
ASCE Task Committee on Application of Artificial Neural Networks in Hydrology
-
ASCE Task Committee on Application of Artificial Neural Networks in Hydrology: Artificial neural networks in hydrology, II -Hydrologic applications, J. Hydrol. Eng., 5( 2), 124-137, 2000.
-
(2000)
J. Hydrol. Eng.
, vol.5
, Issue.2
, pp. 124-137
-
-
-
8
-
-
31044438334
-
Multi-time scale stream flow predictions: The support vector machines approach
-
DOI 10.1016/j.jhydrol.2005.06.001, PII S0022169405002908
-
Asefa, T., Kemblowski, M., McKee, M., and Khalil, A.: Multitime scale stream flow prediction: The support vector machines approach, J. Hydrol., 318, 7-16, 2006. (Pubitemid 43120784)
-
(2006)
Journal of Hydrology
, vol.318
, Issue.1-4
, pp. 7-16
-
-
Asefa, T.1
Kemblowski, M.2
McKee, M.3
Khalil, A.4
-
9
-
-
0033097707
-
A Comparison between neural-network forecasting techniquesCase Study: River flow forecasting
-
Atiya,A. F., El-Shoura,S. M., Shaheen,S. I., and El-Sherif,M. S.: A Comparison between neural-network forecasting techniquesCase Study: River flow forecasting, IEEE T. Neural Netw, 10( 2), 402-409, 1999.
-
(1999)
IEEE T. Neural Netw
, vol.10
, Issue.2
, pp. 402-409
-
-
Atiya, A.F.1
El-Shoura, S.M.2
Shaheen, S.I.3
El-Sherif, M.S.4
-
10
-
-
41649106264
-
A hybrid neural networks and numerical models approach for predicting groundwater abstraction impacts
-
Birkinshaw,S. J., Parkin,G., and Rao,Z.: A hybrid neural networks and numerical models approach for predicting groundwater abstraction impacts, J. Hydroinform., 10. 2, 127-137, 2008.
-
(2008)
J. Hydroinform.
, vol.10
, Issue.2
, pp. 127-137
-
-
Birkinshaw, S.J.1
Parkin, G.2
Rao, Z.3
-
11
-
-
0004311217
-
-
Forecasting and Control, Holden-Day, San Francisco, CA
-
Box,G. E. P. and Jenkins,G.: Time Series Analysis, Forecasting and Control, Holden-Day, San Francisco, CA, 1970.
-
(1970)
Time Series Analysis
-
-
Box, G.E.P.1
Jenkins, G.2
-
13
-
-
0033075129
-
Mneural short-term rediction based on dynamics reconstruction
-
Camastra,F. and Colla,A.: Mneural short-term rediction based on dynamics reconstruction, ACM -Association of Computing Machinery, 9( 1), 45-52, 1999.
-
(1999)
ACM -Association of Computing Machinery
, vol.9
, Issue.1
, pp. 45-52
-
-
Camastra, F.1
Colla, A.2
-
14
-
-
0033557210
-
A self-organization algorithm for real-time flood forecast
-
Chang,F. J. and Hwang,Y. Y.: A self-organization algorithm for real-time flood forecast, Hydrol. Process., 13, 123-138, 1999.
-
(1999)
Hydrol. Process.
, vol.13
, pp. 123-138
-
-
Chang, F.J.1
Hwang, Y.Y.2
-
15
-
-
33748133361
-
A hybrid ARIMA and support vector machines in forecasting the production values of the machinery industry in Taiwan
-
Chen,K. Y. and Wang,C. H.: A hybrid ARIMA and support vector machines in forecasting the production values of the machinery industry in Taiwan, Expert Syst. Appl., 32, 254-264, 2007.
-
(2007)
Expert Syst. Appl.
, vol.32
, pp. 254-264
-
-
Chen, K.Y.1
Wang, C.H.2
-
16
-
-
34250818666
-
Comparison of neural network methods for infilling missing daily weather records
-
DOI 10.1016/j.jhydrol.2007.04.020, PII S0022169407002557
-
Coulibaly, P. and Evora, N. D.: Comparison of neural network methods for infilling missing daily weather records, J. Hydrol., 341, 27-41, 2007. (Pubitemid 46990403)
-
(2007)
Journal of Hydrology
, vol.341
, Issue.1-2
, pp. 27-41
-
-
Coulibaly, P.1
Evora, N.D.2
-
17
-
-
23744444467
-
Constraints of artificial neural networks for rainfall-runoff modelling: Trade-offs in hydrological state representation and model evaluation
-
de Vos, N. J. and Rientjes, T. H. M.: Constraints of artificial neural networks for rainfall-runoff modelling: trade-offs in hydrological state representation and model evaluation, Hydrol. Earth Syst. Sci., 9, 111-126, doi: 10.5194/hess-9-111-2005, 2005. (Pubitemid 41122744)
-
(2005)
Hydrology and Earth System Sciences
, vol.9
, Issue.1-2
, pp. 111-126
-
-
De Vos, N.J.1
Rientjes, T.H.M.2
-
18
-
-
0035398081
-
Model induction with support vector machines: Introduction and applications
-
DOI 10.1061/(ASCE)0887-3801(2001)15:3(208), Reportnr 22146
-
Dibike, Y. B., Velickov, S., Solomatine, D. P., and Abbott, M. B.: Model induction with support vector machines: introduction and applications, ASCE J. Comput. Civil Eng., 15(2), 208-216, 2001. (Pubitemid 32583199)
-
(2001)
Journal of Computing in Civil Engineering
, vol.15
, Issue.3
, pp. 208-216
-
-
Dibike, Y.B.1
Velickov, S.2
Solomatine, D.3
Abbott, M.B.4
-
19
-
-
0038502200
-
Artificial neural networks for streamflow prediction
-
Dolling,O. R. and Varas,E. A.: Artificial neural networks for streamflow prediction, J. Hydraul. Res., 40( 5), 547-554, 2003.
-
(2003)
J. Hydraul. Res.
, vol.40
, Issue.5
, pp. 547-554
-
-
Dolling, O.R.1
Varas, E.A.2
-
20
-
-
71149110298
-
Streamflow drought time series forecasting: A case study in a small watershed in north west spain
-
Fernandez,C. and Vega,J. A. : Streamflow drought time series forecasting: a case study in a small watershed in north west spain, Stoch. Environ. Res. Risk Assess., 23, 1063-1070, 2009.
-
(2009)
Stoch. Environ. Res. Risk Assess.
, vol.23
, pp. 1063-1070
-
-
Fernandez, C.1
Vega, J.A.2
-
21
-
-
38849167375
-
Comparison of Artificial Intelligence Techniques for river flow forecasting
-
doi:10.5194/hess-12-123-2008
-
Firat,M.: Comparison of Artificial Intelligence Techniques for river flow forecasting, Hydrol. Earth Syst. Sci., 12, 123-139, doi:10.5194/hess-12-123- 2008, 2008.
-
(2008)
Hydrol. Earth Syst. Sci.
, vol.12
, pp. 123-139
-
-
Firat, M.1
-
22
-
-
34249943593
-
River flow estimation using adaptive neuro fuzzy inference system
-
DOI 10.1016/j.matcom.2006.09.003, PII S0378475406002394
-
Firat, M. and Gungor, M.: River flow estimation using adaptive neuro fuzzy inference system, Math. Comput. Simulat., 75(3-4), 87-96, 2007. (Pubitemid 46880072)
-
(2007)
Mathematics and Computers in Simulation
, vol.75
, Issue.3-4
, pp. 87-96
-
-
Firat, M.1
Gungor, M.2
-
23
-
-
77953949991
-
Monthly river flow forecasting by an adaptive neuro-fuzzy inference system
-
Firat,M. and Turan,M. E.: Monthly river flow forecasting by an adaptive neuro-fuzzy inference system, Water Environ. J., 24, 116-125, 2010.
-
(2010)
Water Environ. J.
, vol.24
, pp. 116-125
-
-
Firat, M.1
Turan, M.E.2
-
24
-
-
67349260019
-
Prediction of flashover voltage of insulators using least squares support vector machines
-
Gencoglu,M. T. and Uyar,M.: Prediction of flashover voltage of insulators using least squares support vector machines, Expert Syst. Appl., 36, 10789-10798, 2009.
-
(2009)
Expert Syst. Appl.
, vol.36
, pp. 10789-10798
-
-
Gencoglu, M.T.1
Uyar, M.2
-
25
-
-
0035392694
-
Financial time series prediction using least squares support vector machines within the evidence framework
-
DOI 10.1109/72.935093, PII S1045922701050147
-
Gestel, T. V., Suykens, J. A. K., Baestaens, D. E., Lambrechts, A., Lanckriet, G., Vandaele, B., Moor, B. D., and Vandewalle, J.: Financial time series prediction using Least Squares Support Vector Machines within the evidence framework, IEEE T. Neural Netw., 12(4), 809-821, 2001. (Pubitemid 32732822)
-
(2001)
IEEE Transactions on Neural Networks
, vol.12
, Issue.4
, pp. 809-821
-
-
Van Gestel, T.1
Suykens, J.A.K.2
Baestaens, D.-E.3
Lambrechts, A.4
Lanckriet, G.5
Vandaele, B.6
De Moor, B.7
Vandewalle, J.8
-
26
-
-
56349101899
-
Analysis and modeling of multivariate chaotic time series based on neural network
-
Han,M. and Wang,M.: Analysis and modeling of multivariate chaotic time series based on neural network, Expert Syst. Appl., 2( 36), 1280-1290, 2009.
-
(2009)
Expert Syst. Appl.
, vol.2
, Issue.36
, pp. 1280-1290
-
-
Han, M.1
Wang, M.2
-
27
-
-
0029413797
-
Artificial neural network modeling of the rainfall-runoff process
-
DOI 10.1029/95WR01955
-
Hsu, K. L., Gupta, H. V., and Sorooshian, S.: Artificial neural network modeling of the rainfall runoff process, Water Resour. Res., 31(10), 2517-2530, 1995. (Pubitemid 26475080)
-
(1995)
Water Resources Research
, vol.31
, Issue.10
, pp. 2517-2530
-
-
Kuo-Lin, H.1
Gupta, H.V.2
Sorooshian, S.3
-
28
-
-
4644299731
-
Forecasting flows in Apalachicola River using neural networks
-
DOI 10.1002/hyp.1492
-
Huang, W., Bing Xu, B., and Hilton, A.: Forecasting flow in apalachicola river using neural networks, Hydrol. Process., 18, 2545-2564, 2004. (Pubitemid 39267227)
-
(2004)
Hydrological Processes
, vol.18
, Issue.13
, pp. 2545-2564
-
-
Huang, W.1
Xu, B.2
Chan-Hilton, A.3
-
29
-
-
77951872732
-
An artificial neural network model for rainfall forecasting in Bangkok, Thailand
-
doi:10.5194/hess-13-1413-2009
-
Hung,N. Q., Babel,M. S., Weesakul,S., and Tripathi,N. K.: An artificial neural network model for rainfall forecasting in Bangkok, Thailand, Hydrol. Earth Syst. Sci., 13, 1413-1425, doi:10.5194/hess-13-1413-2009, 2009.
-
(2009)
Hydrol. Earth Syst. Sci.
, vol.13
, pp. 1413-1425
-
-
Hung, N.Q.1
Babel, M.S.2
Weesakul, S.3
Tripathi, N.K.4
-
30
-
-
0015142058
-
Polynomial theory of complex system
-
Ivanenko,A. G.: Polynomial theory of complex system, IEEE Trans. Syst., Man Cybern. SMCI-1, No. 1, 364-378, 1971.
-
(1971)
IEEE Trans. Syst., Man Cybern.
, vol.SMCI-1
, Issue.1
, pp. 364-378
-
-
Ivanenko, A.G.1
-
31
-
-
0006826682
-
A review of problems solved by algorithms of the GMDH
-
IvakhenekoA. G. and Ivakheneko,G. A.: A review of problems solved by algorithms of the GMDH, S. Mach. Pere, 5( 4), 527-535, 1995.
-
(1995)
S. Mach. Pere
, vol.5
, Issue.4
, pp. 527-535
-
-
Ivakheneko, A.G.1
Ivakheneko, G.A.2
-
32
-
-
33644655239
-
An evaluation of artificial neural network technique for the determination of infiltration model parameters
-
DOI 10.1016/j.asoc.2004.12.007, PII S1568494605000177
-
Jain, A. and Kumar, A.: An evaluation of artificial neural network technique for the determination of infiltration model parameters, Appl. Soft Comput., 6, 272-282, 2006. (Pubitemid 43326126)
-
(2006)
Applied Soft Computing Journal
, vol.6
, Issue.3
, pp. 272-282
-
-
Jain, A.1
Kumar, A.2
-
33
-
-
33846813334
-
Hybrid neural network models for hydrologic time series forecasting
-
DOI 10.1016/j.asoc.2006.03.002, PII S1568494606000317
-
Jain, A. and Kumar, A. M.: Hybrid neural network models for hydrologie time series forecasting, Appl. Soft Comput., 7, 585-592, 2007. (Pubitemid 46205467)
-
(2007)
Applied Soft Computing Journal
, vol.7
, Issue.2
, pp. 585-592
-
-
Jain, A.1
Kumar, A.M.2
-
35
-
-
33646572227
-
Chaotic time series prediction with a global model: Artificial neural network
-
DOI 10.1016/j.jhydrol.2005.07.048, PII S0022169405004142
-
Karunasinghe, D. S. K. and Liong, S. Y.: Chaotic time series prediction with a global model: Artificial neural network, J. Hydrol., 323, 92-105, 2006. (Pubitemid 43728879)
-
(2006)
Journal of Hydrology
, vol.323
, Issue.1-4
, pp. 92-105
-
-
Karunasinghe, D.S.K.1
Liong, S.-Y.2
-
36
-
-
67649135194
-
Artifical models for interbasin flow prediction in southern turkey
-
Keskin,M. E. and Taylan,D.: Artifical models for interbasin flow prediction in southern turkey, J. Hydrol. Eng., 14( 7), 752-758, 2009.
-
(2009)
J. Hydrol. Eng.
, vol.14
, Issue.7
, pp. 752-758
-
-
Keskin, M.E.1
Taylan, D.2
-
37
-
-
1642497522
-
River flow modeling using artificial neural networks
-
Kisi,O.: River flow modeling using artificial neural networks, J. Hydrol. Eng., 9( 1), 60-63, 2004.
-
(2004)
J. Hydrol. Eng.
, vol.9
, Issue.1
, pp. 60-63
-
-
Kisi, O.1
-
38
-
-
41949142664
-
River flow forecasting and estimation using different artificial neural network technique
-
Kisi,O.: River flow forecasting and estimation using different artificial neural network technique, Hydrol. Res., 39. 1, 27-10, 2008.
-
(2008)
Hydrol. Res.
, vol.39
, Issue.1
, pp. 27-110
-
-
Kisi, O.1
-
39
-
-
71649094330
-
Wavelet regression model as an alternative to neural networks for monthly streamflow forecasting
-
Kisi,O.: Wavelet regression model as an alternative to neural networks for monthly streamflow forecasting, Hydrol. Process., 23, 3583-3597, 2009.
-
(2009)
Hydrol. Process.
, vol.23
, pp. 3583-3597
-
-
Kisi, O.1
-
40
-
-
69049113766
-
Using least squares support vector machines for adaptive communication channel equalization
-
Lin,C. J., Hong,S. J., and Lee,C. Y.: Using least squares support vector machines for adaptive communication channel equalization, Int. J. Appl. Sci. Eng., 3( 1), 51-59, 2005.
-
(2005)
Int. J. Appl. Sci. Eng.
, vol.3
, Issue.1
, pp. 51-59
-
-
Lin, C.J.1
Hong, S.J.2
Lee, C.Y.3
-
41
-
-
33746830757
-
Using support vector machines for long-term discharge prediction
-
Lin,J. Y., Cheng,C. T., and Chau,K. W.: Using support vector machines for long-term discharge prediction, Hydrolog. Sei. J., 51( 4), 599-612, 2006.
-
(2006)
Hydrolog. Sei. J.
, vol.51
, Issue.4
, pp. 599-612
-
-
Lin, J.Y.1
Cheng, C.T.2
Chau, K.W.3
-
42
-
-
0036202123
-
Flood stage forecasting with support vector machines
-
Liong,S.Y. and Sivapragasam,C.: Flood stage forecasting with support vector machines, J. Am. Water Resour. Assoc., 38( 1), 173-196, 2002.
-
(2002)
J. Am. Water Resour. Assoc.
, vol.38
, Issue.1
, pp. 173-196
-
-
Liong, S.Y.1
Sivapragasam, C.2
-
43
-
-
0023331258
-
An introduction to computing with neural nets
-
Lippmann,R. P.: An introduction to computing with neural nets, IEEE ASSP Magazine, April, 4-22, 1987.
-
(1987)
IEEE ASSP Magazine
, Issue.APRIL
, pp. 4-22
-
-
Lippmann, R.P.1
-
45
-
-
0033957764
-
Neural networks for the prediction and forecasting of water resources variables: A review of modelling issues and applications
-
DOI 10.1016/S1364-8152(99)00007-9, PII S1364815299000079
-
Maier, H. R. and Dandy, G. C.: Neural networks for the production and forecasting of water resource variables: a review and modelling issues and application, Environ. Modell. Softw., 15, 101-124, 2000. (Pubitemid 30018318)
-
(2000)
Environmental Modelling and Software
, vol.15
, Issue.1
, pp. 101-124
-
-
Maier, H.R.1
Dandy, G.C.2
-
46
-
-
67650621579
-
Application and analysis of support vector machine based simulation for runoff and sediment yield
-
Misra,D., Oommen,T., Agarwal,A., Mishra,S. K., and Thompson,A. M.: Application and analysis of support vector machine based simulation for runoff and sediment yield, Biosyst. Eng., 103, 527-535, 2009.
-
(2009)
Biosyst. Eng.
, vol.103
, pp. 527-535
-
-
Misra, D.1
Oommen, T.2
Agarwal, A.3
Mishra, S.K.4
Thompson, A.M.5
-
47
-
-
33846093833
-
Streamflow drought time series forecasting
-
Modarres,R.: Streamflow drought time series forecasting, Stoch. Environ. Res. Risk Assess., 21, 223-233, 2007.
-
(2007)
Stoch. Environ. Res. Risk Assess.
, vol.21
, pp. 223-233
-
-
Modarres, R.1
-
48
-
-
84867245302
-
Khabur River flow using artificial neural networks
-
Muhamad,J. R. and Hassan,J. N.: Khabur River flow using artificial neural networks, Al-Rafidain Engineering, 13( 2), 33-12, 2005.
-
(2005)
Al-Rafidain Engineering
, vol.13
, Issue.2
, pp. 33-112
-
-
Muhamad, J.R.1
Hassan, J.N.2
-
49
-
-
0036853424
-
Polynomial modelling of explosive compaction process of metallic powders using GMDH-type neural networks and singular value decomposition
-
DOI 10.1088/0965-0393/10/6/308, PII S0965039302392283
-
Nariman-Zadeh, N., Darvizeh, A., Felezi, M. E., and Gharababaei, H.: Polynomial modelling of explosive process of metalic powders using GMDH-type neural networks and singular value decomposition, Model. Simul. Sci. Eng., 10, 727-744, 2002. (Pubitemid 35373297)
-
(2002)
Modelling and Simulation in Materials Science and Engineering
, vol.10
, Issue.6
, pp. 727-744
-
-
Nariman-Zadeh, N.1
Darvizeh, A.2
Felezi, M.E.3
Gharababaei, H.4
-
50
-
-
46949093808
-
Design of hybrid differential evolution and group method of data handling networks for modeling and prediction
-
Onwubolu,G. C.: Design of hybrid differential evolution and group method of data handling networks for modeling and prediction, Information Sci., 178, 3616-3634, 2008.
-
(2008)
Information Sci.
, vol.178
, pp. 3616-3634
-
-
Onwubolu, G.C.1
-
51
-
-
85090738173
-
Self-organizing data mining for weather forecasting
-
Onwubolu,G. C., Buryan,P., Garimella,S., Ramachandran,V., Buadromo,V., and Abraham,A.: Self-organizing data mining for weather forecasting, IADIS European Conference Data Ming, 81-88, 2007.
-
(2007)
IADIS European Conference Data Ming
, pp. 81-88
-
-
Onwubolu, G.C.1
Buryan, P.2
Garimella, S.3
Ramachandran, V.4
Buadromo, V.5
Abraham, A.6
-
52
-
-
2642567971
-
-
last access: 31 September 2010: toolbox updated to LS-SVMlab vl.7
-
Pelckmans,K., Suykens,J., Van,G., De Brabanter,J., Lukas,L., Hanmers,B., De Moor,B., and Vandewalle,J.: LS-SVMlab: a MATLAB/C toolbox for Least Square Support Vector Machines; http://www.esat.kuleuven.ac.be/sista/lssvmlab ( last access: 31 September 2010: toolbox updated to LS-SVMlab vl.7), 2003.
-
(2003)
LS-SVMlab: A MATLAB/C Toolbox for Least Square Support Vector Machines
-
-
Pelckmans, K.1
Suykens, J.2
Van, G.3
De Brabanter, J.4
Lukas, L.5
Hanmers, B.6
De Moor, B.7
Vandewalle, J.8
-
53
-
-
19944402842
-
-
Ph.D. thesis, Delft University of Technology, Delft, The Netherlands
-
Rientjes,T. H. M.: Inverse modelling of the rainfall-runoff relation; a multi objective model calibration approach, Ph.D. thesis, Delft University of Technology, Delft, The Netherlands, 2004.
-
(2004)
Inverse Modelling of the Rainfall-runoff Relation; a Multi Objective Model Calibration Approach
-
-
Rientjes, T.H.M.1
-
54
-
-
38649141876
-
Soft-computing techniques and ARMA model for time series prediction
-
DOI 10.1016/j.neucom.2007.07.018, PII S0925231207002858
-
Rojas, I., Valenzuela, O., Rojas, F., Guillen, A., Herrera, L. J., Pomares, H., Marquez, L., and Pasadas, M.: Soft-computing techniques and ARMA model for time series prediction, Neurocomputing, 71(4-6), 519-537, 2008. (Pubitemid 351168441)
-
(2008)
Neurocomputing
, vol.71
, Issue.4-6
, pp. 519-537
-
-
Rojas, I.1
Valenzuela, O.2
Rojas, F.3
Guillen, A.4
Herrera, L.J.5
Pomares, H.6
Marquez, L.7
Pasadas, M.8
-
55
-
-
0034254025
-
A hybrid multi-model approach to river level forecasting
-
See,L. and Openshaw,S.: A hybrid multi-model approach to river level forecasting, Hydrolog. Sci. J., 45( 4), 523-536, 2009.
-
(2009)
Hydrolog. Sci. J.
, vol.45
, Issue.4
, pp. 523-536
-
-
See, L.1
Openshaw, S.2
-
56
-
-
0342506462
-
Application of neural network technique to rainfall-runoff modelling
-
Shamseldin,A. Y: Application of Neural Network Technique to Rainfall-Runoff Modelling, J. Hydrol., 199, 272-294, 1997.
-
(1997)
J. Hydrol.
, vol.199
, pp. 272-294
-
-
Shamseldin, A.Y.1
-
57
-
-
0031250747
-
Combination of time series and neural network for reliability forecasting modeling
-
Su,C. T., Tong,L. I., and Leou,C. M.: Combination of time series and neural network for reliability forecasting modeling, J. Chinese Ind. Eng., 14, 419-429, 1997.
-
(1997)
J. Chinese Ind. Eng.
, vol.14
, pp. 419-429
-
-
Su, C.T.1
Tong, L.I.2
Leou, C.M.3
-
58
-
-
21244454892
-
Robust mobile geo-location algorithm based on LS-SVM
-
DOI 10.1109/TVT.2005.844676
-
Sun, G. and Guo, W.: Robust mobile geo-location algorithm based on LSSVM, IEEE T. Veh. Technol., 54(2), 1037-1041, 2005. (Pubitemid 40889779)
-
(2005)
IEEE Transactions on Vehicular Technology
, vol.54
, Issue.3
, pp. 1037-1041
-
-
Sun, G.1
Guo, W.2
-
59
-
-
0032638628
-
Least squares support vector machine classifiers
-
Suykens,J. A. K. and Vandewalle,J.: Least squares support vector machine classifiers, Neural Process. Lett, 9( 2), 293-300, 1999.
-
(1999)
Neural Process. Lett
, vol.9
, Issue.2
, pp. 293-300
-
-
Suykens, J.A.K.1
Vandewalle, J.2
-
60
-
-
0037695279
-
-
World Scientific, Singapore
-
Suykens,J. A. K., Van Gestel,T., De Brabanter,J., De Moor,B., and Vandewalle,J.: Least squares support vector machines, World Scientific, Singapore, 2002.
-
(2002)
Least Squares Support Vector Machines
-
-
Suykens, J.A.K.1
Van Gestel, T.2
De Brabanter, J.3
De Moor, B.4
Vandewalle, J.5
-
61
-
-
0019056830
-
Heuristics free group method of data handling algorithm of generating optimal partial polynomials with application to air pollution prediction
-
Tamura, H. and Kondo, T.: Heuristic free group method of data handling algorithm of generating optional partial polynomials with application to air pollution prediction, Int. J. Syst. Sci., 11, 1095-1111, 1980. (Pubitemid 11458164)
-
(1980)
International Journal of Systems Science
, vol.11
, Issue.9
, pp. 1095-1111
-
-
Tamura, H.1
Kondo, T.2
-
62
-
-
0000393458
-
Feedforward Neural Nets as Models for Time Series Forecasting
-
Tang,Z. and Fishwick,P. A.: Feedforward Neural Nets as Models for Time Series Forecasting, ORSA J. Comput., 5( 4), 374-385, 1993.
-
(1993)
ORSA J. Comput.
, vol.5
, Issue.4
, pp. 374-385
-
-
Tang, Z.1
Fishwick, P.A.2
-
63
-
-
0001023715
-
Application of support vector machines in financial time series forecasting
-
DOI 10.1016/S0305-0483(01)00026-3, PII S0305048301000263
-
Tay, F. and Cao, L. : Application of support vector machines in financial time series forecasting, Omega Int. J. Manage. Sei., 29(4), 309-317, 2001. (Pubitemid 33628757)
-
(2001)
Omega
, vol.29
, Issue.4
, pp. 309-317
-
-
Tay, F.E.H.1
Cao, L.2
-
64
-
-
0142184418
-
Using support vector machines for time series prediction
-
Thiessen,U. and Van Brakel,R.: Using support vector machines for time series prediction, Chemometr. Intell. Lab., 69, 35-49, 2003.
-
(2003)
Chemometr. Intell. Lab.
, vol.69
, pp. 35-49
-
-
Thiessen, U.1
Van Brakel, R.2
-
66
-
-
1542325048
-
A new methodology for emergent system identification using particle swarm optimization (PSO) and the group method data handling (GMDH)
-
Voss,M. S. and Feng,X.: A new methodology for emergent system identification using particle swarm optimization (PSO) and the group method data handling (GMDH), Gecco 2002, 1227-1232, 2002.
-
(2002)
Gecco
, vol.2002
, pp. 1227-1232
-
-
Voss, M.S.1
Feng, X.2
-
67
-
-
33847122958
-
Comparison of SVM and LS-SVM for Regression
-
Wang,H. and Hu,D.: Comparison of SVM and LS-SVM for Regression, Ieee, 279-283, 2005.
-
(2005)
Ieee
, pp. 279-283
-
-
Wang, H.1
Hu, D.2
-
68
-
-
84873918104
-
Mproving daily stream flow forecasts by combining ARMA and ANN models
-
Wang,W., Gelder,P. V, and Vrijling,J. K.: I mproving daily stream flow forecasts by combining ARMA and ANN models, International Conference on Innovation Advances and Implementation of Flood Forecasting Technology, 2005.
-
(2005)
International Conference on Innovation Advances and Implementation of Flood Forecasting Technology
-
-
Wang, W.1
Gelder, P.V.2
Vrijling, J.K.I.3
-
69
-
-
33646547633
-
Forecasting daily streamflow using hybrid ANN models
-
DOI 10.1016/j.jhydrol.2005.09.032, PII S0022169405004981
-
Wang, W., Gelder, V. P., and Vrijling, J. K.: Forecasting daily stream flow using hybrid ANN models, J. Hydrol., 324, 383-399, 2006. (Pubitemid 43729372)
-
(2006)
Journal of Hydrology
, vol.324
, Issue.1-4
, pp. 383-399
-
-
Wang, W.1
Gelder, P.H.A.J.M.V.2
Vrijling, J.K.3
Ma, J.4
-
70
-
-
68349105875
-
A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series
-
Wang,W. C., Chau,K. W., Cheng,C. T., and Qiu,L.: A Comparison of Performance of Several Artificial Intelligence Methods for Forecasting Monthly Discharge Time Series, J. Hydrol., 374, 294-306, 2009.
-
(2009)
J. Hydrol.
, vol.374
, pp. 294-306
-
-
Wang, W.C.1
Chau, K.W.2
Cheng, C.T.3
Qiu, L.4
-
71
-
-
52249106429
-
Selforganizing polynomial neural network for modeling complex hydrological processes
-
Wang,X., Li,L., Lockington,D., Pullar,D., and Jeng,D.S.: Selforganizing polynomial neural network for modeling complex hydrological processes, Research Report No. R861:1-29, 2005.
-
(2005)
Research Report No. R861:1-29
-
-
Wang, X.1
Li, L.2
Lockington, D.3
Pullar, D.4
Jeng, D.S.5
-
72
-
-
0001242140
-
Time series forecasting using backpropagation neural network
-
Wong,F. S.: Time series forecasting using backpropagation neural network, Neurocomputing, 2, 147-159, 1991.
-
(1991)
Neurocomputing
, vol.2
, pp. 147-159
-
-
Wong, F.S.1
-
73
-
-
70349777454
-
Predicting monthly streamflow using data-driven models coupled with datapreprocessing techniques
-
doi:10.1029/2007WR006737
-
Wu,C. L., Chau,K. W., and Li,Y. S.: Predicting monthly streamflow using data-driven models coupled with datapreprocessing techniques, Water Resour. Res., 45, W08432, doi:10.1029/2007WR006737, 2009.
-
(2009)
Water Resour. Res.
, vol.45
-
-
Wu, C.L.1
Chau, K.W.2
Li, Y.S.3
-
74
-
-
33748947101
-
Hybrid fuzzy neural network control for complex industrial process
-
China
-
Yang,Q., Lincang Ju,L., Ge,S., Shi,R., and Yuanli Cai,Y: Hybrid fuzzy neural network control for complex industrial process, International conference on intelligent computing, Kunming, China, 533-538, 2006.
-
(2006)
International Conference on Intelligent Computing, Kunming
, pp. 533-538
-
-
Yang, Q.1
Lincang Ju, L.2
Ge, S.3
Shi, R.4
Yuanli Cai, Y.5
-
75
-
-
33746916489
-
Support vector regression for real-time flood stage forecasting
-
Yu,P. S., Chen,S. T., and Chang,I. F.: Support vector regression for real-time flood stage forecasting, J. Hydrol., 328( 3-4), 704-716, 2006.
-
(2006)
J. Hydrol.
, vol.328
, Issue.3-4
, pp. 704-716
-
-
Yu, P.S.1
Chen, S.T.2
Chang, I.F.3
-
77
-
-
77953977940
-
Prediction of daily streamflow based on stochastic approaches
-
Yurekli,K., Kurunc,A., and Simsek,H.: Prediction of Daily Streamflow Based on Stochastic Approaches, J. Spatial Hydrol., 4( 2), 1-12, 2004.
-
(2004)
J. Spatial Hydrol.
, vol.4
, Issue.2
, pp. 1-12
-
-
Yurekli, K.1
Kurunc, A.2
Simsek, H.3
-
78
-
-
0034100712
-
Prediction of watershed runoff using Bayesian concepts and modular neural networks
-
DOI 10.1029/1999WR900264
-
Zhang, B. and Govindaraju, G.: Prediction of watershed runoff using bayesian concepts and modular neural networks, Water Resour. Res., 36(2), 753-762, 2000. (Pubitemid 30149761)
-
(2000)
Water Resources Research
, vol.36
, Issue.3
, pp. 753-762
-
-
Zhang, B.1
Govindaraju, R.S.2
-
79
-
-
0003123930
-
Forecasting with artificial neural networks: The state of the art
-
PII S0169207097000447
-
Zhang, G., Patuwo, B. E., and Hu, M. Y: Forecasting with artificial neural networks: the state of the art, Int. J. Forecast., 14, 35-62, 1998. (Pubitemid 128340470)
-
(1998)
International Journal of Forecasting
, vol.14
, Issue.1
, pp. 35-62
-
-
Zhang, G.1
Eddy, P.B.2
Y, H.M.3
-
80
-
-
0037243071
-
Time series forecasting using a hybrid ARIMA and neural network model
-
Zhang,G. P.: Time series forecasting using a hybrid ARIMA and neural network model, Neurocomputing, 50, 159-175, 2003.
-
(2003)
Neurocomputing
, vol.50
, pp. 159-175
-
-
Zhang, G.P.1
-
81
-
-
0035314205
-
Simulation study of artificial neural networks for nonlinear time-series forecasting
-
DOI 10.1016/S0305-0548(99)00123-9
-
Zhang, G. P., Patuwo, B. E., and Hu, M. Y: A simulation study of artificial neural networks for nonlinear time-series forecasting, Comput. Oper. Res., 28(4), 381-396, 2001. (Pubitemid 32033793)
-
(2001)
Computers and Operations Research
, vol.28
, Issue.4
, pp. 381-396
-
-
Zhang, G.P.1
Patuwo, B.E.2
Hu, M.Y.3
-
82
-
-
34548167332
-
An investigation and comparison of artificial neural network and time series models for Chinese food grain price forecasting
-
DOI 10.1016/j.neucom.2007.01.009, PII S0925231207000136
-
Zou, H. F., Xia, G. P., Yang, F. T., and Wang, H. Y: An investigation and comparison of artificial neural network and time series models for chinese food grain price forecasting, Neurocomputing, 70, 2913-2923, 2007. (Pubitemid 47308610)
-
(2007)
Neurocomputing
, vol.70
, Issue.16-18
, pp. 2913-2923
-
-
Zou, H.F.1
Xia, G.P.2
Yang, F.T.3
Wang, H.Y.4
|