메뉴 건너뛰기




Volumn 5, Issue , 2015, Pages

Engineering an in vitro air-blood barrier by 3D bioprinting

Author keywords

[No Author keywords available]

Indexed keywords

BIOPRINTING; CELL COMMUNICATION; CELL CULTURE; CELL LINE; CELL PROLIFERATION; CELL SHAPE; CELL SURVIVAL; COCULTURE; CONFOCAL MICROSCOPY; HUMAN; LUNG GAS EXCHANGE; PHYSIOLOGY; PROCEDURES; THREE DIMENSIONAL PRINTING; TISSUE ENGINEERING;

EID: 84942297050     PISSN: None     EISSN: 20452322     Source Type: Journal    
DOI: 10.1038/srep07974     Document Type: Article
Times cited : (272)

References (58)
  • 1
    • 69349104947 scopus 로고    scopus 로고
    • Chemical regulators have overreached
    • Hartung, T., Rovida, C. Chemical regulators have overreached. Nature 460, 1080-1081, doi:10.1038/4601080a (2009).
    • (2009) Nature , vol.460 , pp. 1080-1081
    • Hartung, T.1    Rovida, C.2
  • 2
    • 77953987939 scopus 로고    scopus 로고
    • Calling on Science: Making Alternatives the New Gold Standard
    • Andersen, M. E. Calling on Science: Making "Alternatives" the New Gold Standard. ALTEX 27, 135-143 (2010).
    • (2010) ALTEX , vol.27 , pp. 135-143
    • Andersen, M.E.1
  • 6
    • 84877709973 scopus 로고    scopus 로고
    • Nanomaterials and the human lung: What is known and what must be deciphered to realise their potential advantages Swiss
    • Jud, C.,Clift, M. J., Petri-Fink, A.&Rothen-Rutishauser, B. Nanomaterials and the human lung: what is known and what must be deciphered to realise their potential advantages Swiss Med. Wkly. 143, w13758, doi:10.4414/smw.2013.13758 (2013).
    • (2013) Med. Wkly. , vol.143 , pp. w13758
    • Jud, C.1    Clift, M.J.2    Petri-Fink, A.3    Rothen-Rutishauser, B.4
  • 7
    • 84908253462 scopus 로고    scopus 로고
    • Carrier interactions with the biological barriers of the lung: Advanced in vitro models and challenges for pulmonary drug delivery
    • de Souza Carvalho, C., Daum, N., Lehr, C. M. Carrier interactions with the biological barriers of the lung: Advanced in vitro models and challenges for pulmonary drug delivery. Adv. Drug Deliv. Rev. 75C, 129-140, doi:10.1016/j.addr.2014.05.014 (2014).
    • (2014) Adv. Drug Deliv. Rev. , vol.75 C , pp. 129-140
    • De Souza Carvalho, C.1    Daum, N.2    Lehr, C.M.3
  • 8
    • 84861921279 scopus 로고    scopus 로고
    • Endocytosis of environmental and engineered micro-and nanosized particles
    • Gehr, P. et al. Endocytosis of environmental and engineered micro-and nanosized particles. Compr. Physiol. 1, 1159-1174, doi:10.1002/cphy.c100035 (2011).
    • (2011) Compr. Physiol. , vol.1 , pp. 1159-1174
    • Gehr, P.1
  • 9
    • 0030971513 scopus 로고    scopus 로고
    • Respiratory effects are associated with the number of ultrafine particles
    • Peters, A.,Wichmann,H. E., Tuch, T.,Heinrich, J.& Heyder, J. Respiratory effects are associated with the number of ultrafine particles. Am. J. Respir. Crit. Care Med. 155, 1376-1383, doi:10.1164/ajrccm.155.4.9105082 (1997).
    • (1997) Am. J. Respir. Crit. Care Med. , vol.155 , pp. 1376-1383
    • Peters, A.1    Wichmann, H.E.2    Tuch, T.3    Heinrich, J.4    Heyder, J.5
  • 10
    • 20044395769 scopus 로고    scopus 로고
    • Cardiovascular effects of fine and ultrafine particles
    • Schulz, H. et al. Cardiovascular effects of fine and ultrafine particles. J. Aerosol Med. 18, 1-22, doi:10.1089/jam.2005.18.1 (2005).
    • (2005) J. Aerosol Med. , vol.18 , pp. 1-22
    • Schulz, H.1
  • 11
    • 84877702437 scopus 로고    scopus 로고
    • Human epithelial cell in vitro-Are they an advantageous tool to help understand the nanomaterial-biological barrier interaction
    • Rothen-Rutishauser, B., Clift, M. J. D., Jud, C., Fink, A., Wick, P. Human epithelial cell in vitro-Are they an advantageous tool to help understand the nanomaterial-biological barrier interaction Euro Nano Tox Letters 4, 1-20 (2012).
    • (2012) Euro Nano Tox Letters , vol.4 , pp. 1-20
    • Rothen-Rutishauser, B.1    Clift, M.J.D.2    Jud, C.3    Fink, A.4    Wick, P.5
  • 13
    • 21344471653 scopus 로고    scopus 로고
    • Cell culture models of the respiratory tract relevant to pulmonary drug delivery
    • Steimer, A., Haltner, E., Lehr, C. M. Cell culture models of the respiratory tract relevant to pulmonary drug delivery. J. Aerosol Med. 18, 137-182, doi:10.1089/jam.2005.18.137 (2005).
    • (2005) J. Aerosol Med. , vol.18 , pp. 137-182
    • Steimer, A.1    Haltner, E.2    Lehr, C.M.3
  • 14
    • 2642518040 scopus 로고    scopus 로고
    • Lung epithelial cell lines in coculture with human pulmonary microvascular endothelial cells: Development of an alveolo-capillary barrier in vitro
    • Hermanns, M. I., Unger, R. E., Kehe, K., Peters, K., Kirkpatrick, C. J. Lung epithelial cell lines in coculture with human pulmonary microvascular endothelial cells: development of an alveolo-capillary barrier in vitro. Lab. Invest. 84, 736-752, doi:10.1038/labinvest.3700081 (2004).
    • (2004) Lab. Invest. , vol.84 , pp. 736-752
    • Hermanns, M.I.1    Unger, R.E.2    Kehe, K.3    Peters, K.4    Kirkpatrick, C.J.5
  • 15
    • 84880874906 scopus 로고    scopus 로고
    • An improved 3D tetraculture system mimicking the cellular organisation at the alveolar barrier to study the potential toxic effects of particles on the lung
    • Klein, S.G., Serchi, T.,Hoffmann, L., Blomeke, B.&Gutleb, A. C. An improved 3D tetraculture system mimicking the cellular organisation at the alveolar barrier to study the potential toxic effects of particles on the lung. Part. Fibre Toxicol. 10, 31, doi:10.1186/1743-8977-10-31 (2013).
    • (2013) Part. Fibre Toxicol. , vol.10 , pp. 31
    • Klein, S.G.1    Serchi, T.2    Hoffmann, L.3    Blomeke, B.4    Gutleb, A.C.5
  • 16
    • 51049107647 scopus 로고    scopus 로고
    • In vitro models of the human epithelial airway barrier to study the toxic potential of particulate matter
    • Rothen-Rutishauser, B., Blank, F., Muhlfeld, C., Gehr, P. In vitro models of the human epithelial airway barrier to study the toxic potential of particulate matter. Expert Opin. Drug Metab. Toxicol. 4, 1075-1089, doi:10.1517/17425255.4.8.1075 (2008).
    • (2008) Expert Opin. Drug Metab. Toxicol. , vol.4 , pp. 1075-1089
    • Rothen-Rutishauser, B.1    Blank, F.2    Muhlfeld, C.3    Gehr, P.4
  • 17
    • 84907016366 scopus 로고    scopus 로고
    • Modeling the lung: Design and development of tissue engineered macro-and micro-physiologic lung models for research use
    • Nichols, J. E. et al. Modeling the lung: Design and development of tissue engineered macro-and micro-physiologic lung models for research use. Exp. Biol. Med. (Maywood) 239, 1135-1169, doi:10.1177/1535370214536679 (2014).
    • (2014) Exp. Biol. Med. (Maywood) , vol.239 , pp. 1135-1169
    • Nichols, J.E.1
  • 18
    • 0017879956 scopus 로고
    • The normal human lung: Ultrastructure and morphometric estimation of diffusion capacity
    • Gehr, P., Bachofen, M., Weibel, E. R. The normal human lung: ultrastructure and morphometric estimation of diffusion capacity. Respir. Physiol. 32, 121-140 (1978).
    • (1978) Respir. Physiol. , vol.32 , pp. 121-140
    • Gehr, P.1    Bachofen, M.2    Weibel, E.R.3
  • 19
    • 67650447649 scopus 로고    scopus 로고
    • Whatmakes a good lung Swiss
    • doi:smw-12270
    • Weibel, E. R. Whatmakes a good lung Swiss Med. Wkly. 139, 375-386, doi:smw-12270 (2009).
    • (2009) Med. Wkly. , vol.139 , pp. 375-386
    • Weibel, E.R.1
  • 20
    • 77954038080 scopus 로고    scopus 로고
    • Reconstituting organ-level lung functions on a chip
    • Huh, D. et al. Reconstituting organ-level lung functions on a chip. Science 328, 1662-1668, doi:10.1126/science.1188302 (2010).
    • (2010) Science , vol.328 , pp. 1662-1668
    • Huh, D.1
  • 21
    • 84869126274 scopus 로고    scopus 로고
    • A human disease model of drug toxicity-induced pulmonary edema in a lung-on-a-chip microdevice
    • Huh, D. et al. A human disease model of drug toxicity-induced pulmonary edema in a lung-on-a-chip microdevice. Sci. Transl. Med. 4, 159-147, doi:10.1126/scitranslmed.3004249 (2012).
    • (2012) Sci. Transl. Med. , vol.4 , pp. 159-167
    • Huh, D.1
  • 22
    • 84887012341 scopus 로고    scopus 로고
    • Microfabrication of human organs-on-chips
    • Huh, D. et al. Microfabrication of human organs-on-chips. Nat. Protoc. 8, 2135-2157, doi:10.1038/nprot.2013.137 (2013).
    • (2013) Nat. Protoc. , vol.8 , pp. 2135-2157
    • Huh, D.1
  • 23
    • 84929669982 scopus 로고    scopus 로고
    • Microfluidic platforms for advanced risk assessments of nanomaterials
    • Mahto, S. K. et al. Microfluidic platforms for advanced risk assessments of nanomaterials. Nanotoxicology, 1-15, doi:10.3109/17435390.2014.940402 (2014).
    • (2014) Nanotoxicology , pp. 1-15
    • Mahto, S.K.1
  • 24
    • 84899861699 scopus 로고    scopus 로고
    • Modeling nanoparticle-alveolar epithelial cell interactions under breathing conditions using captive bubble surfactometry
    • Schurch,D. et al.Modeling nanoparticle-alveolar epithelial cell interactions under breathing conditions using captive bubble surfactometry. Langmuir 30, 4924-4932, doi:10.1021/la500307q (2014).
    • (2014) Langmuir , vol.30 , pp. 4924-4932
    • Schurch, D.1
  • 25
    • 77957562650 scopus 로고    scopus 로고
    • Biofabrication: A 21st century manufacturing paradigm
    • Mironov, V. et al. Biofabrication: a 21st century manufacturing paradigm. Biofabrication 1, 022001, doi:10.1088/1758-5082/1/2/022001 (2009).
    • (2009) Biofabrication , vol.1 , pp. 022001
    • Mironov, V.1
  • 26
    • 84880237098 scopus 로고    scopus 로고
    • Bioprinting toward organ fabrication: Challenges and future trends
    • Ozbolat, I. T.&Yu, Y. Bioprinting toward organ fabrication: challenges and future trends. IEEE Trans. Biomed. Eng. 60, 691-699, doi:10.1109/TBME.2013.2243912 (2013).
    • (2013) IEEE Trans. Biomed. Eng. , vol.60 , pp. 691-699
    • Ozbolat, I.T.1    Yu, Y.2
  • 27
    • 84871703021 scopus 로고    scopus 로고
    • Bioprinting for stem cell research
    • Tasoglu, S.&Demirci, U. Bioprinting for stem cell research. Trends Biotechnol. 31, 10-19, doi:10.1016/j.tibtech.2012.10.005 (2013).
    • (2013) Trends Biotechnol , vol.31 , pp. 10-19
    • Tasoglu, S.1    Demirci, U.2
  • 28
    • 84896549846 scopus 로고    scopus 로고
    • Tunable hydrogel composite with two-step processing in combination with innovative hardware upgrade for cell-based three-dimensional bioprinting
    • Wust, S., Godla, M. E., Muller, R., Hofmann, S. Tunable hydrogel composite with two-step processing in combination with innovative hardware upgrade for cell-based three-dimensional bioprinting. Acta Biomater. 10, 630-640, doi:10.1016/j.actbio.2013.10.016 (2014).
    • (2014) Acta Biomater , vol.10 , pp. 630-640
    • Wust, S.1    Godla, M.E.2    Muller, R.3    Hofmann, S.4
  • 29
    • 79952700142 scopus 로고    scopus 로고
    • Cell patterning technologies for organotypic tissue fabrication
    • Guillotin, B., Guillemot, F. Cell patterning technologies for organotypic tissue fabrication. Trends Biotechnol. 29, 183-190, doi:10.1016/j.tibtech.2010.12.008 (2011).
    • (2011) Trends Biotechnol , vol.29 , pp. 183-190
    • Guillotin, B.1    Guillemot, F.2
  • 30
    • 84905725612 scopus 로고    scopus 로고
    • 3D bioprinting of tissues and organs
    • Murphy, S. V., Atala, A. 3D bioprinting of tissues and organs. Nat. Biotechnol. 32, 773-785, doi:10.1038/nbt.2958 (2014).
    • (2014) Nat. Biotechnol. , vol.32 , pp. 773-785
    • Murphy, S.V.1    Atala, A.2
  • 31
    • 84904308833 scopus 로고    scopus 로고
    • 3D biofabrication strategies for tissue engineering and regenerative medicine
    • Bajaj, P., Schweller, R. M., Khademhosseini, A., West, J. L., Bashir, R. 3D biofabrication strategies for tissue engineering and regenerative medicine. Annu. Rev. Biomed. Eng. 16, 247-276, doi:10.1146/annurev-bioeng-071813-105155 (2014).
    • (2014) Annu. Rev. Biomed. Eng. , vol.16 , pp. 247-276
    • Bajaj, P.1    Schweller, R.M.2    Khademhosseini, A.3    West, J.L.4    Bashir, R.5
  • 33
    • 84898059103 scopus 로고    scopus 로고
    • Three-dimensional printed trileaflet valve conduits using biological hydrogels and human valve interstitial cells
    • Duan, B., Kapetanovic, E., Hockaday, L. A., Butcher, J. T. Three-dimensional printed trileaflet valve conduits using biological hydrogels and human valve interstitial cells. Acta Biomater. 10, 1836-1846, doi:10.1016/j.actbio.2013.12.005 (2014).
    • (2014) Acta Biomater , vol.10 , pp. 1836-1846
    • Duan, B.1    Kapetanovic, E.2    Hockaday, L.A.3    Butcher, J.T.4
  • 34
    • 80053604735 scopus 로고    scopus 로고
    • Patterning human stem cells and endothelial cells with laser printing for cardiac regeneration
    • Gaebel, R. et al. Patterning human stem cells and endothelial cells with laser printing for cardiac regeneration. Biomaterials 32, 9218-9230, doi:10.1016/j.biomaterials.2011.08.071 (2011).
    • (2011) Biomaterials , vol.32 , pp. 9218-9230
    • Gaebel, R.1
  • 35
    • 83555177196 scopus 로고    scopus 로고
    • Cardiac tissue engineering using tissue printing technology and human cardiac progenitor cells
    • Gaetani, R. et al. Cardiac tissue engineering using tissue printing technology and human cardiac progenitor cells. Biomaterials 33, 1782-1790, doi:10.1016/j.biomaterials.2011.11.003 (2012).
    • (2012) Biomaterials , vol.33 , pp. 1782-1790
    • Gaetani, R.1
  • 36
    • 84901923061 scopus 로고    scopus 로고
    • Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink
    • Pati, F. et al. Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat. Commun. 5, 3935, doi:10.1038/ncomms4935 (2014).
    • (2014) Nat. Commun. , vol.5 , pp. 3935
    • Pati, F.1
  • 37
    • 38349195609 scopus 로고    scopus 로고
    • Threedimensional fiber deposition of cell-laden, viable, patterned constructs for bone tissue printing
    • Fedorovich, N. E., De Wijn, J. R., Verbout, A. J., Alblas, J., Dhert, W. J. Threedimensional fiber deposition of cell-laden, viable, patterned constructs for bone tissue printing. Tissue Eng. Part A 14, 127-133, doi:10.1089/ten.a.2007.0158 (2008).
    • (2008) Tissue Eng. Part A , vol.14 , pp. 127-133
    • Fedorovich, N.E.1    De Wijn, J.R.2    Verbout, A.J.3    Alblas, J.4    Dhert, W.J.5
  • 38
    • 84855396802 scopus 로고    scopus 로고
    • Biofabrication of osteochondral tissue equivalents by printing topologically defined cell-laden hydrogel scaffolds
    • Fedorovich, N. E. et al. Biofabrication of osteochondral tissue equivalents by printing topologically defined, cell-laden hydrogel scaffolds. Tissue Eng. Part C, Methods 18, 33-44, doi:10.1089/ten.TEC.2011.0060 (2012).
    • (2012) Tissue Eng. Part C, Methods , vol.18 , pp. 33-44
    • Fedorovich, N.E.1
  • 39
    • 38349076688 scopus 로고    scopus 로고
    • Microenvironments engineered by inkjet bioprinting spatially direct adult stem cells toward muscle-and bone-like subpopulations
    • Phillippi, J. A. et al.Microenvironments engineered by inkjet bioprinting spatially direct adult stem cells toward muscle-and bone-like subpopulations. Stem Cells 26, 127-134, doi:10.1634/stemcells.2007-0520 (2008).
    • (2008) Stem Cells , vol.26 , pp. 127-134
    • Phillippi, J.A.1
  • 40
    • 84870316597 scopus 로고    scopus 로고
    • Hybrid printing ofmechanically and biologically improved constructs for cartilage tissue engineering applications
    • Xu, T. et al.Hybrid printing ofmechanically and biologically improved constructs for cartilage tissue engineering applications. Biofabrication 5, 015001, doi:10.1088/1758-5082/5/1/015001 (2013).
    • (2013) Biofabrication , vol.5 , pp. 015001
    • Xu, T.1
  • 41
    • 69649100202 scopus 로고    scopus 로고
    • Human microvasculature fabrication using thermal inkjet printing technology
    • Cui, X., Boland, T. Human microvasculature fabrication using thermal inkjet printing technology. Biomaterials 30, 6221-6227, doi:10.1016/j.biomaterials.2009.07.056 (2009).
    • (2009) Biomaterials , vol.30 , pp. 6221-6227
    • Cui, X.1    Boland, T.2
  • 42
    • 69249208450 scopus 로고    scopus 로고
    • Scaffold-free vascular tissue engineering using bioprinting
    • Norotte, C.,Marga, F. S., Niklason, L. E., Forgacs, G. Scaffold-free vascular tissue engineering using bioprinting. Biomaterials 30, 5910-5917, doi:10.1016/j.biomaterials.2009.06.034 (2009).
    • (2009) Biomaterials , vol.30 , pp. 5910-5917
    • Norotte, C.1    Marga, F.S.2    Niklason, L.E.3    Forgacs, G.4
  • 43
    • 84901915693 scopus 로고    scopus 로고
    • Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs
    • Bertassoni, L. E. et al. Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs. Lab Chip 14, 2202-2211, doi:10.1039/c4lc00030g (2014).
    • (2014) Lab Chip , vol.14 , pp. 2202-2211
    • Bertassoni, L.E.1
  • 44
    • 58249093214 scopus 로고    scopus 로고
    • Multi-layered culture of human skin fibroblasts and keratinocytes through three-dimensional freeform fabrication
    • Lee, W. et al. Multi-layered culture of human skin fibroblasts and keratinocytes through three-dimensional freeform fabrication. Biomaterials 30, 1587-1595, doi:10.1016/j.biomaterials.2008.12.009 (2009).
    • (2009) Biomaterials , vol.30 , pp. 1587-1595
    • Lee, W.1
  • 45
    • 84858779329 scopus 로고    scopus 로고
    • Toward engineering functional organ modules by additive manufacturing
    • Marga, F. et al. Toward engineering functional organ modules by additive manufacturing. Biofabrication 4, 022001, doi:10.1088/1758-5082/4/2/022001 (2012).
    • (2012) Biofabrication , vol.4 , pp. 022001
    • Marga, F.1
  • 46
    • 84889012321 scopus 로고    scopus 로고
    • Biofabrication and testing of a fully cellular nerve graft
    • Owens, C.M., Marga, F., Forgacs, G.&Heesch, C.M. Biofabrication and testing of a fully cellular nerve graft. Biofabrication 5, 045007, doi:10.1088/1758-5082/5/4/045007 (2013).
    • (2013) Biofabrication , vol.5 , pp. 045007
    • Owens, C.M.1    Marga, F.2    Forgacs, G.3    Heesch, C.M.4
  • 47
    • 79551649124 scopus 로고    scopus 로고
    • A three-dimensional in vitro ovarian cancer coculture model using a high-throughput cell patterning platform
    • Xu, F. et al. A three-dimensional in vitro ovarian cancer coculture model using a high-throughput cell patterning platform. Biotechnol. J. 6, 204-212, doi:10.1002/biot.201000340 (2011).
    • (2011) Biotechnol. J. , vol.6 , pp. 204-212
    • Xu, F.1
  • 48
    • 84899560969 scopus 로고    scopus 로고
    • Three-dimensional printing of Hela cells for cervical tumor model in vitro
    • Zhao, Y. et al. Three-dimensional printing of Hela cells for cervical tumor model in vitro. Biofabrication 6, 035001, doi:10.1088/1758-5082/6/3/035001 (2014).
    • (2014) Biofabrication , vol.6 , pp. 035001
    • Zhao, Y.1
  • 49
    • 45249122800 scopus 로고    scopus 로고
    • Direct cell writing of 3D microorgan for in vitro pharmacokinetic model
    • Chang, R., Nam, J., Sun, W. Direct cell writing of 3D microorgan for in vitro pharmacokinetic model. Tissue Eng. Part C, Methods 14, 157-166, doi:10.1089/ten.tec.2007.0392 (2008).
    • (2008) Tissue Eng. Part C Methods , vol.14 , pp. 157-166
    • Chang, R.1    Nam, J.2    Sun, W.3
  • 50
    • 79953002875 scopus 로고    scopus 로고
    • Biofabrication of a three-dimensional liver micro-organ as an in vitro drug metabolism model
    • Chang, R., Emami, K., Wu, H., Sun, W. Biofabrication of a three-dimensional liver micro-organ as an in vitro drug metabolism model. Biofabrication 2, 045004, doi:10.1088/1758-5082/2/4/045004 (2010).
    • (2010) Biofabrication , vol.2 , pp. 045004
    • Chang, R.1    Emami, K.2    Wu, H.3    Sun, W.4
  • 51
    • 84873914826 scopus 로고    scopus 로고
    • Development of a valve-based cell printer for the formation of human embryonic stem cell spheroid aggregates
    • Faulkner-Jones, A. et al. Development of a valve-based cell printer for the formation of human embryonic stem cell spheroid aggregates. Biofabrication 5, 015013, doi:10.1088/1758-5082/5/1/015013 (2013).
    • (2013) Biofabrication , vol.5 , pp. 015013
    • Faulkner-Jones, A.1
  • 52
    • 16444371242 scopus 로고    scopus 로고
    • A three-dimensional cellular model of the human respiratory tract to study the interaction with particles
    • Rothen-Rutishauser, B. M., Kiama, S. G., Gehr, P. A three-dimensional cellular model of the human respiratory tract to study the interaction with particles. Am. J. Respir. Cell Mol. Biol. 32, 281-289, doi:10.1165/rcmb.2004-0187OC (2005).
    • (2005) Am. J. Respir. Cell Mol. Biol. , vol.32 , pp. 281-289
    • Rothen-Rutishauser, B.M.1    Kiama, S.G.2    Gehr, P.3
  • 54
    • 77956399506 scopus 로고    scopus 로고
    • Matrigel: A complex protein mixture required for optimal growth of cell culture
    • Hughes, C. S., Postovit, L. M., Lajoie, G. A. Matrigel: a complex protein mixture required for optimal growth of cell culture. Proteomics 10, 1886-1890, doi:10.1002/pmic.200900758 (2010).
    • (2010) Proteomics , vol.10 , pp. 1886-1890
    • Hughes, C.S.1    Postovit, L.M.2    Lajoie, G.A.3
  • 56
    • 0017275417 scopus 로고
    • A continuous tumor-cell line from a human lung carcinoma with properties of type II alveolar epithelial cells
    • Lieber, M., Smith, B., Szakal, A., Nelson-Rees, W., Todaro, G. A continuous tumor-cell line from a human lung carcinoma with properties of type II alveolar epithelial cells. Int. J. Cancer 17, 62-70 (1976).
    • (1976) Int. J. Cancer , vol.17 , pp. 62-70
    • Lieber, M.1    Smith, B.2    Szakal, A.3    Nelson-Rees, W.4    Todaro, G.5
  • 57
    • 0001637870 scopus 로고
    • Permanent cell line expressing human factor VIII-related antigen established by hybridization
    • Edgell, C. J., McDonald, C. C., Graham, J. B. Permanent cell line expressing human factor VIII-related antigen established by hybridization. Proc. Natl. Acad. Sci. U. S. A. 80, 3734-3737 (1983).
    • (1983) Proc. Natl. Acad. Sci. U. S. A. , vol.80 , pp. 3734-3737
    • Edgell, C.J.1    McDonald, C.C.2    Graham, J.B.3
  • 58
    • 0032838364 scopus 로고    scopus 로고
    • Use of transepithelial electrical resistance in the study of pentachlorophenol toxicity
    • Velarde, G. et al. Use of transepithelial electrical resistance in the study of pentachlorophenol toxicity. Toxicol. In Vitro 13, 723-727 (1999).
    • (1999) Toxicol in Vitro , vol.13 , pp. 723-727
    • Velarde, G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.