-
1
-
-
84954338945
-
Nonalcoholic Fatty Liver Disease: Pros and Cons of Histologic Systems of Evaluation
-
[CrossRef] [PubMed]
-
Brunt, E.M. Nonalcoholic Fatty Liver Disease: Pros and Cons of Histologic Systems of Evaluation. Int. J. Mol. Sci. 2015, 17, 97[CrossRef] [PubMed]
-
(2015)
Int. J. Mol. Sci
, vol.17
, pp. 97
-
-
Brunt, E.M.1
-
2
-
-
43249092409
-
Hepatic triglyceride synthesis and nonalcoholic fatty liver disease
-
[CrossRef] [PubMed]
-
Choi, S.S.; Diehl, A.M. Hepatic triglyceride synthesis and nonalcoholic fatty liver disease. Curr. Opin. Lipidol. 2008, 19, 295–300[CrossRef] [PubMed]
-
(2008)
Curr. Opin. Lipidol
, vol.19
, pp. 295-300
-
-
Choi, S.S.1
Diehl, A.M.2
-
3
-
-
84904070301
-
Molecular pathways in non-alcoholic fatty liver disease
-
[PubMed]
-
Berlanga, A.; Guiu-Jurado, E.; Porras, J.A.; Auguet, T. Molecular pathways in non-alcoholic fatty liver disease. Clin. Exp. Gastroenterol. 2014, 7, 221–239[PubMed]
-
(2014)
Clin. Exp. Gastroenterol
, vol.7
, pp. 221-239
-
-
Berlanga, A.1
Guiu-Jurado, E.2
Porras, J.A.3
Auguet, T.4
-
4
-
-
66949165559
-
Autophagy in disease: A double-edged sword with therapeutic potential
-
[CrossRef] [PubMed]
-
Martinet, W.; Agostinis, P.; Vanhoecke, B.; Dewaele, M.; de Meyer, G.R. Autophagy in disease: A double-edged sword with therapeutic potential. Clin. Sci. 2009, 116, 697–712[CrossRef] [PubMed]
-
(2009)
Clin. Sci
, vol.116
, pp. 697-712
-
-
Martinet, W.1
Agostinis, P.2
Vanhoecke, B.3
Dewaele, M.4
De Meyer, G.R.5
-
5
-
-
79954475565
-
Autophagy in nonalcoholic steatohepatitis
-
[CrossRef] [PubMed]
-
Amir, M.; Czaja, M.J. Autophagy in nonalcoholic steatohepatitis. Expert Rev. Gastroenterol. Hepatol. 2011, 5, 159–166[CrossRef] [PubMed]
-
(2011)
Expert Rev. Gastroenterol. Hepatol
, vol.5
, pp. 159-166
-
-
Amir, M.1
Czaja, M.J.2
-
6
-
-
84866122688
-
Autophagy modulation as a potential therapeutic target for diverse diseases
-
[CrossRef] [PubMed]
-
Rubinsztein, D.C.; Codogno, P.; Levine, B. Autophagy modulation as a potential therapeutic target for diverse diseases. Nat. Rev. Drug Discov. 2012, 11, 709–30[CrossRef] [PubMed]
-
(2012)
Nat. Rev. Drug Discov
, vol.11
, pp. 709-730
-
-
Rubinsztein, D.C.1
Codogno, P.2
Levine, B.3
-
7
-
-
84873660610
-
Autophagy in human health and disease
-
[CrossRef] [PubMed]
-
Choi, A.M.; Ryter, S.W.; Levine, B. Autophagy in human health and disease. N. Engl. J. Med. 2013, 368, 1845–1846[CrossRef] [PubMed]
-
(2013)
N. Engl. J. Med
, vol.368
, pp. 1845-1846
-
-
Choi, A.M.1
Ryter, S.W.2
Levine, B.3
-
8
-
-
65949095803
-
Autophagy regulates lipid metabolism
-
[CrossRef] [PubMed]
-
Singh, R.; Kaushik, S.; Wang, Y.; Xiang, Y.; Novak, I.; Komatsu, M.; Tanaka, K.; Cuervo, A.M.; Czaja, M.J. Autophagy regulates lipid metabolism. Nature 2009, 458, 1131–1135[CrossRef] [PubMed]
-
(2009)
Nature
, vol.458
, pp. 1131-1135
-
-
Singh, R.1
Kaushik, S.2
Wang, Y.3
Xiang, Y.4
Novak, I.5
Komatsu, M.6
Tanaka, K.7
Cuervo, A.M.8
Czaja, M.J.9
-
9
-
-
77955789211
-
Altered lipid content inhibits autophagic vesicular fusion
-
[CrossRef] [PubMed]
-
Koga, H.; Kaushik, S.; Cuervo, A.M. Altered lipid content inhibits autophagic vesicular fusion. FASEB J. 2010, 24, 3052–3065[CrossRef] [PubMed]
-
(2010)
FASEB J
, vol.24
, pp. 3052-3065
-
-
Koga, H.1
Kaushik, S.2
Cuervo, A.M.3
-
10
-
-
77956400005
-
Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance
-
[CrossRef] [PubMed]
-
Yang, L.; Li, P.; Fu, S.; Calay, E.S.; Hotamisligil, G.S. Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance. Cell Metab. 2010, 11, 467–478[CrossRef] [PubMed]
-
(2010)
Cell Metab
, vol.11
, pp. 467-478
-
-
Yang, L.1
Li, P.2
Fu, S.3
Calay, E.S.4
Hotamisligil, G.S.5
-
11
-
-
80052617116
-
Hepatic steatosis inhibits autophagic proteolysis via impairment of autophagosomal acidification and cathepsin expression
-
[CrossRef] [PubMed]
-
Inami, Y.; Yamashina, S.; Izumi, K.; Ueno, T.; Tanida, I.; Ikejima, K.; Watanabe, S. Hepatic steatosis inhibits autophagic proteolysis via impairment of autophagosomal acidification and cathepsin expression. Biochem. Biophys. Res. Commun. 2011, 412, 618–625[CrossRef] [PubMed]
-
(2011)
Biochem. Biophys. Res. Commun
, vol.412
, pp. 618-625
-
-
Inami, Y.1
Yamashina, S.2
Izumi, K.3
Ueno, T.4
Tanida, I.5
Ikejima, K.6
Watanabe, S.7
-
12
-
-
46249115957
-
Autophagy activation by rapamycin eliminates mouse Mallory-Denk bodies and blocks their proteasome inhibitor-mediated formation
-
[CrossRef] [PubMed]
-
Harada, M.; Hanada, S.; Toivola, D.M.; Ghori, N.; Omary, M.B. Autophagy activation by rapamycin eliminates mouse Mallory-Denk bodies and blocks their proteasome inhibitor-mediated formation. Hepatology 2008, 47, 2026–2035[CrossRef] [PubMed]
-
(2008)
Hepatology
, vol.47
, pp. 2026-2035
-
-
Harada, M.1
Hanada, S.2
Toivola, D.M.3
Ghori, N.4
Omary, M.B.5
-
13
-
-
84876287362
-
Pharmacological promotion of autophagy alleviates steatosis and injury in alcoholic and non-alcoholic fatty liver conditions in mice
-
[CrossRef] [PubMed]
-
Lin, C.W.; Zhang, H.; Li, M.; Xiong, X.; Chen, X.; Chen, X.; Dong, X.C.; Yin, X.M. Pharmacological promotion of autophagy alleviates steatosis and injury in alcoholic and non-alcoholic fatty liver conditions in mice. J. Hepatol. 2013, 58, 993–999[CrossRef] [PubMed]
-
(2013)
J. Hepatol
, vol.58
, pp. 993-999
-
-
Lin, C.W.1
Zhang, H.2
Li, M.3
Xiong, X.4
Chen, X.5
Chen, X.6
Dong, X.C.7
Yin, X.M.8
-
14
-
-
84952927680
-
Protective role of autophagy in methionine-choline deficient diet-induced advanced nonalcoholic steatohepatitis in mice
-
[CrossRef] [PubMed]
-
Chen, R.; Wang, Q.; Song, S.; Liu, F.; He, B.; Gao, X. Protective role of autophagy in methionine-choline deficient diet-induced advanced nonalcoholic steatohepatitis in mice. Eur. J. Pharmacol. 2016, 770, 126–133[CrossRef] [PubMed]
-
(2016)
Eur. J. Pharmacol
, vol.770
, pp. 126-133
-
-
Chen, R.1
Wang, Q.2
Song, S.3
Liu, F.4
He, B.5
Gao, X.6
-
15
-
-
84921946984
-
TFE3 is a bHLH-ZIP-type transcription factor that regulates the mammalian Golgi stress response
-
[CrossRef] [PubMed]
-
Taniguchi, M.; Nadanaka, S.; Tanakura, S.; Sawaguchi, S.; Midori, S.; Kawai, Y.; Yamaguchi, S.; Shimada, Y.; Nakamura, Y.; Matsumura, Y.; et al. TFE3 is a bHLH-ZIP-type transcription factor that regulates the mammalian Golgi stress response. Cell Struct. Funct. 2015, 40, 13–30[CrossRef] [PubMed]
-
(2015)
Cell Struct. Funct
, vol.40
, pp. 13-30
-
-
Taniguchi, M.1
Nadanaka, S.2
Tanakura, S.3
Sawaguchi, S.4
Midori, S.5
Kawai, Y.6
Yamaguchi, S.7
Shimada, Y.8
Nakamura, Y.9
Matsumura, Y.10
-
16
-
-
84893055506
-
The nutrient-responsive transcription factor TFE3 promotes autophagy, lysosomal biogenesis, and clearance of cellular debris
-
ra9[CrossRef] [PubMed]
-
Martina, J.A.; Diab, H.I.; Lishu, L.; Jeong, A.L.; Patange, S.; Raben, N.; Puertollano, R. The nutrient-responsive transcription factor TFE3 promotes autophagy, lysosomal biogenesis, and clearance of cellular debris. Sci. Signal. 2014, 7, ra9[CrossRef] [PubMed]
-
(2014)
Sci. Signal
, pp. 7
-
-
Martina, J.A.1
Diab, H.I.2
Lishu, L.3
Jeong, A.L.4
Patange, S.5
Raben, N.6
Puertollano, R.7
-
17
-
-
84978144234
-
Role of chaperone-mediated autophagy in metabolism
-
[CrossRef] [PubMed]
-
Tasset, I.; Cuervo, A.M. Role of chaperone-mediated autophagy in metabolism. FEBS J. 2016[CrossRef] [PubMed]
-
(2016)
FEBS J
-
-
Tasset, I.1
Cuervo, A.M.2
-
18
-
-
3242888703
-
LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form-II formation
-
[CrossRef] [PubMed]
-
Kabeya, Y.; Mizushima, N.; Yamamoto, A.; Oshitani-Okamoto, S.; Ohsumi, Y.; Yoshimori, T. LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form-II formation. J. Cell Sci. 2004, 117, 2805–2812[CrossRef] [PubMed]
-
(2004)
J. Cell Sci
, vol.117
, pp. 2805-2812
-
-
Kabeya, Y.1
Mizushima, N.2
Yamamoto, A.3
Oshitani-Okamoto, S.4
Ohsumi, Y.5
Yoshimori, T.6
-
19
-
-
84864947432
-
Autophagy-lysosomal pathway is involved in lipid degradation in rat liver
-
[PubMed]
-
Skop, V.; Cahova, M.; Papackova, Z.; Palenickova, E.; Dankova, H.; Baranowski, M.; Zabielski, P.; Zdychova, J.; Zidkova, J.; Kazdova, L. Autophagy-lysosomal pathway is involved in lipid degradation in rat liver. Physiol. Res. 2012, 61, 287–297[PubMed]
-
(2012)
Physiol. Res
, vol.61
, pp. 287-297
-
-
Skop, V.1
Cahova, M.2
Papackova, Z.3
Palenickova, E.4
Dankova, H.5
Baranowski, M.6
Zabielski, P.7
Zdychova, J.8
Zidkova, J.9
Kazdova, L.10
-
20
-
-
84907881796
-
Abnormality of autophagic function and cathepsin expression in the liver from patients with non-alcoholic fatty liver disease
-
[CrossRef] [PubMed]
-
Fukuo, Y.; Yamashina, S.; Sonoue, H.; Arakawa, A.; Nakadera, E.; Aoyama, T.; Uchiyama, A.; Kon, K.; Ikejima, K.; Watanabe, S. Abnormality of autophagic function and cathepsin expression in the liver from patients with non-alcoholic fatty liver disease. Hepatol. Res. 2014, 44, 1026–1036[CrossRef] [PubMed]
-
(2014)
Hepatol. Res
, vol.44
, pp. 1026-1036
-
-
Fukuo, Y.1
Yamashina, S.2
Sonoue, H.3
Arakawa, A.4
Nakadera, E.5
Aoyama, T.6
Uchiyama, A.7
Kon, K.8
Ikejima, K.9
Watanabe, S.10
-
21
-
-
84921475513
-
Autophagy and non-alcoholic fatty liver disease
-
Lavallard, V.J.; Gual, P. Autophagy and non-alcoholic fatty liver disease. BioMed Res. Int. 2014, 2014, 120179
-
(2014)
Biomed Res. Int
-
-
Lavallard, V.J.1
Gual, P.2
-
22
-
-
84903314885
-
Novel roles for the MiTF/TFE family of transcription factors in organelle biogenesis, nutrient sensing, and energy homeostasis
-
[CrossRef] [PubMed]
-
Martina, J.A.; Diab, H.I.; Li, H.; Puertollano, R. Novel roles for the MiTF/TFE family of transcription factors in organelle biogenesis, nutrient sensing, and energy homeostasis. Cell. Mol. Life Sci. 2014, 71, 2483–2497[CrossRef] [PubMed]
-
(2014)
Cell. Mol. Life Sci
, vol.71
, pp. 2483-2497
-
-
Martina, J.A.1
Diab, H.I.2
Li, H.3
Puertollano, R.4
-
23
-
-
83555176010
-
Lipotoxicity in NASH
-
[CrossRef] [PubMed]
-
Fuchs, M.; Sanyal, A.J. Lipotoxicity in NASH. J. Hepatol. 2012, 56, 291–293[CrossRef] [PubMed]
-
(2012)
J. Hepatol
, vol.56
, pp. 291-293
-
-
Fuchs, M.1
Sanyal, A.J.2
-
24
-
-
84929082829
-
Essential role of Nrf2 in the protective effect of lipoic acid against lipoapoptosis in hepatocytes
-
[CrossRef] [PubMed]
-
Valdecantos, M.P.; Prieto-Hontoria, P.L.; Pardo, V.; Modol, T.; Santamaria, B.; Weber, M.; Herrero, L.; Serra, D.; Muntane, J.; Cuadrado, A.; et al. Essential role of Nrf2 in the protective effect of lipoic acid against lipoapoptosis in hepatocytes. Free Radic. Biol. Med. 2015, 84, 263–278[CrossRef] [PubMed]
-
(2015)
Free Radic. Biol. Med
, vol.84
, pp. 263-278
-
-
Valdecantos, M.P.1
Prieto-Hontoria, P.L.2
Pardo, V.3
Modol, T.4
Santamaria, B.5
Weber, M.6
Herrero, L.7
Serra, D.8
Muntane, J.9
Cuadrado, A.10
-
25
-
-
84900404551
-
Hugan Qingzhi medication ameliorates hepatic steatosis by activating AMPK and PPARα pathways in L02 cells and HepG2 cells
-
[CrossRef] [PubMed]
-
Yin, J.; Luo, Y.; Deng, H.; Qin, S.; Tang, W.; Zeng, L.; Zhou, B. Hugan Qingzhi medication ameliorates hepatic steatosis by activating AMPK and PPARα pathways in L02 cells and HepG2 cells. J. Ethnopharmacol. 2014, 154, 229–239[CrossRef] [PubMed]
-
(2014)
J. Ethnopharmacol
, vol.154
, pp. 229-239
-
-
Yin, J.1
Luo, Y.2
Deng, H.3
Qin, S.4
Tang, W.5
Zeng, L.6
Zhou, B.7
-
26
-
-
33644660537
-
PGC-1 coactivators: Inducible regulators of energy metabolism in health and disease
-
[CrossRef] [PubMed]
-
Finck, B.N.; Kelly, D.P. PGC-1 coactivators: Inducible regulators of energy metabolism in health and disease. J. Clin. Investig. 2006, 116, 615–622[CrossRef] [PubMed]
-
(2006)
J. Clin. Investig
, vol.116
, pp. 615-622
-
-
Finck, B.N.1
Kelly, D.P.2
-
27
-
-
84655169624
-
Role of oxidative stress in the pathogenesis of nonalcoholic steatohepatitis
-
[CrossRef] [PubMed]
-
Rolo, A.P.; Teodoro, J.S.; Palmeira, C.M. Role of oxidative stress in the pathogenesis of nonalcoholic steatohepatitis. Free Radic. Biol. Med. 2012, 52, 59–69[CrossRef] [PubMed]
-
(2012)
Free Radic. Biol. Med
, vol.52
, pp. 59-69
-
-
Rolo, A.P.1
Teodoro, J.S.2
Palmeira, C.M.3
-
28
-
-
46749125376
-
Transcriptional control of mitochondrial biogenesis: The central role of PGC-1α
-
[CrossRef] [PubMed]
-
Ventura-Clapier, R.; Garnier, A.; Veksler, V. Transcriptional control of mitochondrial biogenesis: The central role of PGC-1α. Cardiovasc. Res. 2008, 79, 208–217[CrossRef] [PubMed]
-
(2008)
Cardiovasc. Res
, vol.79
, pp. 208-217
-
-
Ventura-Clapier, R.1
Garnier, A.2
Veksler, V.3
-
29
-
-
79957960940
-
Metabolic control of mitochondrial biogenesis through the PGC-1 family regulatory network
-
[CrossRef] [PubMed]
-
Scarpulla, R.C. Metabolic control of mitochondrial biogenesis through the PGC-1 family regulatory network. Biochim. Biophys. Acta Mol. Cell Res. 2011, 1813, 1269–1278[CrossRef] [PubMed]
-
(2011)
Biochim. Biophys. Acta Mol. Cell Res
, vol.1813
, pp. 1269-1278
-
-
Scarpulla, R.C.1
-
30
-
-
30044437308
-
TFE3 transcriptionally activates hepatic IRS-2, participates in insulin signaling and ameliorates diabetes
-
[CrossRef] [PubMed]
-
Nakagawa, Y.; Shimano, H.; Yoshikawa, T.; Ide, T.; Tamura, M.; Furusawa, M.; Yamamoto, T.; Inoue, N.; Matsuzaka, T.; Takahashi, A.; et al. TFE3 transcriptionally activates hepatic IRS-2, participates in insulin signaling and ameliorates diabetes. Nat. Med. 2006, 12, 107–113[CrossRef] [PubMed]
-
(2006)
Nat. Med
, vol.12
, pp. 107-113
-
-
Nakagawa, Y.1
Shimano, H.2
Yoshikawa, T.3
Ide, T.4
Tamura, M.5
Furusawa, M.6
Yamamoto, T.7
Inoue, N.8
Matsuzaka, T.9
Takahashi, A.10
-
31
-
-
84859470878
-
TFE3 regulates muscle metabolic gene expression, increases glycogen stores, and enhances insulin sensitivity in mice
-
[CrossRef] [PubMed]
-
Iwasaki, H.; Naka, A.; Iida, K.T.; Nakagawa, Y.; Matsuzaka, T.; Ishii, K.A.; Kobayashi, K.; Takahashi, A.; Yatoh, S.; Yahagi, N.; et al. TFE3 regulates muscle metabolic gene expression, increases glycogen stores, and enhances insulin sensitivity in mice. Am. J. Physiol. Endoc. Metab. 2012, 302, E896–E902[CrossRef] [PubMed]
-
(2012)
Am. J. Physiol. Endoc. Metab
, vol.302
, pp. E896-E902
-
-
Iwasaki, H.1
Naka, A.2
Iida, K.T.3
Nakagawa, Y.4
Matsuzaka, T.5
Ishii, K.A.6
Kobayashi, K.7
Takahashi, A.8
Yatoh, S.9
Yahagi, N.10
-
32
-
-
0031724470
-
Targeting the microphthalmia basic helix-loop-helix-leucine zipper transcription factor to a subset of E-box elements in vitro and in vivo
-
[CrossRef] [PubMed]
-
Aksan, I.; Goding, C.R. Targeting the microphthalmia basic helix-loop-helix-leucine zipper transcription factor to a subset of E-box elements in vitro and in vivo. Mol. Cell. Biol. 1998, 18, 6930–6938[CrossRef] [PubMed]
-
(1998)
Mol. Cell. Biol
, vol.18
, pp. 6930-6938
-
-
Aksan, I.1
Goding, C.R.2
-
33
-
-
84896488935
-
Caffeine stimulates hepatic lipid metabolism by the autophagy-lysosomal pathway in mice
-
[CrossRef] [PubMed]
-
Sinha, R.A.; Farah, B.L.; Singh, B.K.; Siddique, M.M.; Li, Y.; Wu, Y.; Ilkayeva, O.R.; Gooding, J.; Ching, J.; Zhou, J.; et al. Caffeine stimulates hepatic lipid metabolism by the autophagy-lysosomal pathway in mice. Hepatology 2014, 59, 1366–1380[CrossRef] [PubMed]
-
(2014)
Hepatology
, vol.59
, pp. 1366-1380
-
-
Sinha, R.A.1
Farah, B.L.2
Singh, B.K.3
Siddique, M.M.4
Li, Y.5
Wu, Y.6
Ilkayeva, O.R.7
Gooding, J.8
Ching, J.9
Zhou, J.10
|