-
1
-
-
33749048664
-
Genetical implications of the structure of deoxyribonucleic acid
-
J.D. Watson, and F.H. Crick Genetical implications of the structure of deoxyribonucleic acid Nature 171 1953 964 967
-
(1953)
Nature
, vol.171
, pp. 964-967
-
-
Watson, J.D.1
Crick, F.H.2
-
3
-
-
84877613987
-
A structural role for the PHP domain in E. Coli DNA polymerase III
-
T. Barros, J. Guenther, B. Kelch, J. Anaya, A. Prabhakar, M. O'Donnell, J. Kuriyan, and M.H. Lamers A structural role for the PHP domain in E. coli DNA polymerase III BMC Struct. Biol. 13 2013 8
-
(2013)
BMC Struct. Biol.
, vol.13
, pp. 8
-
-
Barros, T.1
Guenther, J.2
Kelch, B.3
Anaya, J.4
Prabhakar, A.5
O'Donnell, M.6
Kuriyan, J.7
Lamers, M.H.8
-
5
-
-
85042340667
-
Comparison of bacterial and eukaryotic replisome components
-
R.A. Bradshaw, P.D. Stahl, Academic Press
-
N.Y. Yao, and M.E. O'Donnell Comparison of bacterial and eukaryotic replisome components R.A. Bradshaw, P.D. Stahl, Encyclopedia of Cell Biology 2015 Academic Press 396 417
-
(2015)
Encyclopedia of Cell Biology
, pp. 396-417
-
-
Yao, N.Y.1
O'Donnell, M.E.2
-
6
-
-
84878939444
-
Mechanisms for initiating cellular DNA replication
-
A. Costa, I.V. Hood, and J.M. Berger Mechanisms for initiating cellular DNA replication Annu. Rev. Biochem. 82 2013 25 54
-
(2013)
Annu. Rev. Biochem.
, vol.82
, pp. 25-54
-
-
Costa, A.1
Hood, I.V.2
Berger, J.M.3
-
7
-
-
70549085855
-
Eukaryotic DNA replication control: Lock and load, then fire
-
D. Remus, and J.F. Diffley Eukaryotic DNA replication control: lock and load, then fire Curr. Opin. Cell Biol. 21 2009 771 777
-
(2009)
Curr. Opin. Cell Biol.
, vol.21
, pp. 771-777
-
-
Remus, D.1
Diffley, J.F.2
-
8
-
-
84962559908
-
A conserved Pol binding module in Ctf18-RFC is required for S-phase checkpoint activation downstream of Mec1
-
L.J. Garcia-Rodriguez, G. De Piccoli, V. Marchesi, R.C. Jones, R.D. Edmondson, and K. Labib A conserved Pol binding module in Ctf18-RFC is required for S-phase checkpoint activation downstream of Mec1 Nucleic Acids Res. 43 2015 8830 8838
-
(2015)
Nucleic Acids Res.
, vol.43
, pp. 8830-8838
-
-
Garcia-Rodriguez, L.J.1
De Piccoli, G.2
Marchesi, V.3
Jones, R.C.4
Edmondson, R.D.5
Labib, K.6
-
9
-
-
84899846910
-
Domain within the helicase subunit Mcm4 integrates multiple kinase signals to control DNA replication initiation and fork progression
-
Y.J. Sheu, J.B. Kinney, A. Lengronne, P. Pasero, and B. Stillman Domain within the helicase subunit Mcm4 integrates multiple kinase signals to control DNA replication initiation and fork progression Proc. Natl. Acad. Sci. USA 111 2014 E1899 E1908
-
(2014)
Proc. Natl. Acad. Sci. USA
, vol.111
, pp. E1899-E1908
-
-
Sheu, Y.J.1
Kinney, J.B.2
Lengronne, A.3
Pasero, P.4
Stillman, B.5
-
10
-
-
84870747425
-
Helicase loading at chromosomal origins of replication
-
S.P. Bell, and J.M. Kaguni Helicase loading at chromosomal origins of replication Cold Spring Harb. Perspect. Biol. 5 2013 a010124
-
(2013)
Cold Spring Harb. Perspect. Biol.
, vol.5
, pp. a010124
-
-
Bell, S.P.1
Kaguni, J.M.2
-
11
-
-
50249180325
-
SnapShot: Nucleic acid helicases and translocases
-
J.M. Berger SnapShot: nucleic acid helicases and translocases Cell 134 2008 888
-
(2008)
Cell
, vol.134
, pp. 888
-
-
Berger, J.M.1
-
12
-
-
34548638261
-
Structure and mechanism of helicases and nucleic acid translocases
-
M.R. Singleton, M.S. Dillingham, and D.B. Wigley Structure and mechanism of helicases and nucleic acid translocases Annu. Rev. Biochem. 76 2007 23 50
-
(2007)
Annu. Rev. Biochem.
, vol.76
, pp. 23-50
-
-
Singleton, M.R.1
Dillingham, M.S.2
Wigley, D.B.3
-
14
-
-
33645717628
-
GINS maintains association of Cdc45 with MCM in replisome progression complexes at eukaryotic DNA replication forks
-
A. Gambus, R.C. Jones, A. Sanchez-Diaz, M. Kanemaki, F. van Deursen, R.D. Edmondson, and K. Labib GINS maintains association of Cdc45 with MCM in replisome progression complexes at eukaryotic DNA replication forks Nat. Cell Biol. 8 2006 358 366
-
(2006)
Nat. Cell Biol.
, vol.8
, pp. 358-366
-
-
Gambus, A.1
Jones, R.C.2
Sanchez-Diaz, A.3
Kanemaki, M.4
Van Deursen, F.5
Edmondson, R.D.6
Labib, K.7
-
15
-
-
74749095240
-
Activation of the MCM2-7 helicase by association with Cdc45 and GINS proteins
-
I. Ilves, T. Petojevic, J.J. Pesavento, and M.R. Botchan Activation of the MCM2-7 helicase by association with Cdc45 and GINS proteins Mol. Cell 37 2010 247 258
-
(2010)
Mol. Cell
, vol.37
, pp. 247-258
-
-
Ilves, I.1
Petojevic, T.2
Pesavento, J.J.3
Botchan, M.R.4
-
16
-
-
33745925880
-
Isolation of the Cdc45/Mcm2-7/GINS (CMG) complex, a candidate for the eukaryotic DNA replication fork helicase
-
S.E. Moyer, P.W. Lewis, and M.R. Botchan Isolation of the Cdc45/Mcm2-7/GINS (CMG) complex, a candidate for the eukaryotic DNA replication fork helicase Proc. Natl. Acad. Sci. USA 103 2006 10236 10241
-
(2006)
Proc. Natl. Acad. Sci. USA
, vol.103
, pp. 10236-10241
-
-
Moyer, S.E.1
Lewis, P.W.2
Botchan, M.R.3
-
17
-
-
52649096993
-
Subunit organization of Mcm2-7 and the unequal role of active sites in ATP hydrolysis and viability
-
M.L. Bochman, S.P. Bell, and A. Schwacha Subunit organization of Mcm2-7 and the unequal role of active sites in ATP hydrolysis and viability Mol. Cell. Biol. 28 2008 5865 5873
-
(2008)
Mol. Cell. Biol.
, vol.28
, pp. 5865-5873
-
-
Bochman, M.L.1
Bell, S.P.2
Schwacha, A.3
-
18
-
-
47349114465
-
The Mcm2-7 complex has in vitro helicase activity
-
M.L. Bochman, and A. Schwacha The Mcm2-7 complex has in vitro helicase activity Mol. Cell 31 2008 287 293
-
(2008)
Mol. Cell
, vol.31
, pp. 287-293
-
-
Bochman, M.L.1
Schwacha, A.2
-
19
-
-
84859980381
-
Properties of the human Cdc45/Mcm2-7/GINS helicase complex and its action with DNA polymerase epsilon in rolling circle DNA synthesis
-
Y.H. Kang, W.C. Galal, A. Farina, I. Tappin, and J. Hurwitz Properties of the human Cdc45/Mcm2-7/GINS helicase complex and its action with DNA polymerase epsilon in rolling circle DNA synthesis Proc. Natl. Acad. Sci. USA 109 2012 6042 6047
-
(2012)
Proc. Natl. Acad. Sci. USA
, vol.109
, pp. 6042-6047
-
-
Kang, Y.H.1
Galal, W.C.2
Farina, A.3
Tappin, I.4
Hurwitz, J.5
-
20
-
-
0034652354
-
A double-hexamer archaeal minichromosome maintenance protein is an ATP-dependent DNA helicase
-
J.P. Chong, M.K. Hayashi, M.N. Simon, R.M. Xu, and B. Stillman A double-hexamer archaeal minichromosome maintenance protein is an ATP-dependent DNA helicase Proc. Natl. Acad. Sci. USA 97 2000 1530 1535
-
(2000)
Proc. Natl. Acad. Sci. USA
, vol.97
, pp. 1530-1535
-
-
Chong, J.P.1
Hayashi, M.K.2
Simon, M.N.3
Xu, R.M.4
Stillman, B.5
-
21
-
-
0033593053
-
The single minichromosome maintenance protein of Methanobacterium thermoautotrophicum DeltaH contains DNA helicase activity
-
Z. Kelman, J.K. Lee, and J. Hurwitz The single minichromosome maintenance protein of Methanobacterium thermoautotrophicum DeltaH contains DNA helicase activity Proc. Natl. Acad. Sci. USA 96 1999 14783 14788
-
(1999)
Proc. Natl. Acad. Sci. USA
, vol.96
, pp. 14783-14788
-
-
Kelman, Z.1
Lee, J.K.2
Hurwitz, J.3
-
23
-
-
33746375404
-
Mechanism of DNA translocation in a replicative hexameric helicase
-
E.J. Enemark, and L. Joshua-Tor Mechanism of DNA translocation in a replicative hexameric helicase Nature 442 2006 270 275
-
(2006)
Nature
, vol.442
, pp. 270-275
-
-
Enemark, E.J.1
Joshua-Tor, L.2
-
24
-
-
80052942659
-
Selective bypass of a lagging strand roadblock by the eukaryotic replicative DNA helicase
-
Y.V. Fu, H. Yardimci, D.T. Long, T.V. Ho, A. Guainazzi, V.P. Bermudez, J. Hurwitz, A. van Oijen, O.D. Scharer, and J.C. Walter Selective bypass of a lagging strand roadblock by the eukaryotic replicative DNA helicase Cell 146 2011 931 941
-
(2011)
Cell
, vol.146
, pp. 931-941
-
-
Fu, Y.V.1
Yardimci, H.2
Long, D.T.3
Ho, T.V.4
Guainazzi, A.5
Bermudez, V.P.6
Hurwitz, J.7
Van Oijen, A.8
Scharer, O.D.9
Walter, J.C.10
-
25
-
-
84867538324
-
The hexameric helicase DnaB adopts a nonplanar conformation during translocation
-
O. Itsathitphaisarn, R.A. Wing, W.K. Eliason, J. Wang, and T.A. Steitz The hexameric helicase DnaB adopts a nonplanar conformation during translocation Cell 151 2012 267 277
-
(2012)
Cell
, vol.151
, pp. 267-277
-
-
Itsathitphaisarn, O.1
Wing, R.A.2
Eliason, W.K.3
Wang, J.4
Steitz, T.A.5
-
26
-
-
0034636979
-
The 3'-tail of a forked-duplex sterically determines whether one or two DNA strands pass through the central channel of a replication-fork helicase
-
D.L. Kaplan The 3'-tail of a forked-duplex sterically determines whether one or two DNA strands pass through the central channel of a replication-fork helicase J. Mol. Biol. 301 2000 285 299
-
(2000)
J. Mol. Biol.
, vol.301
, pp. 285-299
-
-
Kaplan, D.L.1
-
27
-
-
0347157844
-
Mcm4,6,7 uses a "pump in ring" mechanism to unwind DNA by steric exclusion and actively translocate along a duplex
-
D.L. Kaplan, M.J. Davey, and M. O'Donnell Mcm4,6,7 uses a "pump in ring" mechanism to unwind DNA by steric exclusion and actively translocate along a duplex J. Biol. Chem. 278 2003 49171 49182
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 49171-49182
-
-
Kaplan, D.L.1
Davey, M.J.2
O'Donnell, M.3
-
28
-
-
0036753338
-
DnaB drives DNA branch migration and dislodges proteins while encircling two DNA strands
-
D.L. Kaplan, and M. O'Donnell DnaB drives DNA branch migration and dislodges proteins while encircling two DNA strands Mol. Cell 10 2002 647 657
-
(2002)
Mol. Cell
, vol.10
, pp. 647-657
-
-
Kaplan, D.L.1
O'Donnell, M.2
-
29
-
-
1542782549
-
Substrate requirements for duplex DNA translocation by the eukaryal and archaeal minichromosome maintenance helicases
-
J.H. Shin, Y. Jiang, B. Grabowski, J. Hurwitz, and Z. Kelman Substrate requirements for duplex DNA translocation by the eukaryal and archaeal minichromosome maintenance helicases J. Biol. Chem. 278 2003 49053 49062
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 49053-49062
-
-
Shin, J.H.1
Jiang, Y.2
Grabowski, B.3
Hurwitz, J.4
Kelman, Z.5
-
30
-
-
4444226952
-
Mechanisms of conformational change for a replicative hexameric helicase of SV40 large tumor antigen
-
D. Gai, R. Zhao, D. Li, C.V. Finkielstein, and X.S. Chen Mechanisms of conformational change for a replicative hexameric helicase of SV40 large tumor antigen Cell 119 2004 47 60
-
(2004)
Cell
, vol.119
, pp. 47-60
-
-
Gai, D.1
Zhao, R.2
Li, D.3
Finkielstein, C.V.4
Chen, X.S.5
-
31
-
-
22744445013
-
Pumps, paradoxes and ploughshares: Mechanism of the MCM2-7 DNA helicase
-
T.S. Takahashi, D.B. Wigley, and J.C. Walter Pumps, paradoxes and ploughshares: mechanism of the MCM2-7 DNA helicase Trends Biochem. Sci. 30 2005 437 444
-
(2005)
Trends Biochem. Sci.
, vol.30
, pp. 437-444
-
-
Takahashi, T.S.1
Wigley, D.B.2
Walter, J.C.3
-
32
-
-
70350344051
-
Running in reverse: The structural basis for translocation polarity in hexameric helicases
-
N.D. Thomsen, and J.M. Berger Running in reverse: the structural basis for translocation polarity in hexameric helicases Cell 139 2009 523 534
-
(2009)
Cell
, vol.139
, pp. 523-534
-
-
Thomsen, N.D.1
Berger, J.M.2
-
33
-
-
33845657428
-
UvrD helicase unwinds DNA one base pair at a time by a two-part power stroke
-
J.Y. Lee, and W. Yang UvrD helicase unwinds DNA one base pair at a time by a two-part power stroke Cell 127 2006 1349 1360
-
(2006)
Cell
, vol.127
, pp. 1349-1360
-
-
Lee, J.Y.1
Yang, W.2
-
34
-
-
0033515425
-
Crystal structures of complexes of PcrA DNA helicase with a DNA substrate indicate an inchworm mechanism
-
S.S. Velankar, P. Soultanas, M.S. Dillingham, H.S. Subramanya, and D.B. Wigley Crystal structures of complexes of PcrA DNA helicase with a DNA substrate indicate an inchworm mechanism Cell 97 1999 75 84
-
(1999)
Cell
, vol.97
, pp. 75-84
-
-
Velankar, S.S.1
Soultanas, P.2
Dillingham, M.S.3
Subramanya, H.S.4
Wigley, D.B.5
-
35
-
-
0034625236
-
Crystal structure of T7 gene 4 ring helicase indicates a mechanism for sequential hydrolysis of nucleotides
-
M.R. Singleton, M.R. Sawaya, T. Ellenberger, and D.B. Wigley Crystal structure of T7 gene 4 ring helicase indicates a mechanism for sequential hydrolysis of nucleotides Cell 101 2000 589 600
-
(2000)
Cell
, vol.101
, pp. 589-600
-
-
Singleton, M.R.1
Sawaya, M.R.2
Ellenberger, T.3
Wigley, D.B.4
-
36
-
-
78650240871
-
DNA replication: Making two forks from one prereplication complex
-
M. Botchan, and J. Berger DNA replication: making two forks from one prereplication complex Mol. Cell 40 2010 860 861
-
(2010)
Mol. Cell
, vol.40
, pp. 860-861
-
-
Botchan, M.1
Berger, J.2
-
37
-
-
73949091058
-
A double-hexameric MCM2-7 complex is loaded onto origin DNA during licensing of eukaryotic DNA replication
-
C. Evrin, P. Clarke, J. Zech, R. Lurz, J. Sun, S. Uhle, H. Li, B. Stillman, and C. Speck A double-hexameric MCM2-7 complex is loaded onto origin DNA during licensing of eukaryotic DNA replication Proc. Natl. Acad. Sci. USA 106 2009 20240 20245
-
(2009)
Proc. Natl. Acad. Sci. USA
, vol.106
, pp. 20240-20245
-
-
Evrin, C.1
Clarke, P.2
Zech, J.3
Lurz, R.4
Sun, J.5
Uhle, S.6
Li, H.7
Stillman, B.8
Speck, C.9
-
38
-
-
70350751416
-
Concerted loading of Mcm2-7 double hexamers around DNA during DNA replication origin licensing
-
D. Remus, F. Beuron, G. Tolun, J.D. Griffith, E.P. Morris, and J.F. Diffley Concerted loading of Mcm2-7 double hexamers around DNA during DNA replication origin licensing Cell 139 2009 719 730
-
(2009)
Cell
, vol.139
, pp. 719-730
-
-
Remus, D.1
Beuron, F.2
Tolun, G.3
Griffith, J.D.4
Morris, E.P.5
Diffley, J.F.6
-
39
-
-
84925813600
-
Regulated eukaryotic DNA replication origin firing with purified proteins
-
J.T. Yeeles, T.D. Deegan, A. Janska, A. Early, and J.F. Diffley Regulated eukaryotic DNA replication origin firing with purified proteins Nature 519 2015 431 435
-
(2015)
Nature
, vol.519
, pp. 431-435
-
-
Yeeles, J.T.1
Deegan, T.D.2
Janska, A.3
Early, A.4
Diffley, J.F.5
-
40
-
-
84939545029
-
Structure of the eukaryotic MCM complex at 3.8 A
-
N. Li, Y. Zhai, Y. Zhang, W. Li, M. Yang, J. Lei, B.K. Tye, and N. Gao Structure of the eukaryotic MCM complex at 3.8 A Nature 524 2015 186 191
-
(2015)
Nature
, vol.524
, pp. 186-191
-
-
Li, N.1
Zhai, Y.2
Zhang, Y.3
Li, W.4
Yang, M.5
Lei, J.6
Tye, B.K.7
Gao, N.8
-
41
-
-
84898451718
-
A conserved MCM single-stranded DNA binding element is essential for replication initiation
-
C.A. Froelich, S. Kang, L.B. Epling, S.P. Bell, and E.J. Enemark A conserved MCM single-stranded DNA binding element is essential for replication initiation Elife 3 2014 e01993
-
(2014)
Elife
, vol.3
, pp. e01993
-
-
Froelich, C.A.1
Kang, S.2
Epling, L.B.3
Bell, S.P.4
Enemark, E.J.5
-
42
-
-
79953769723
-
The structural basis for MCM2-7 helicase activation by GINS and Cdc45
-
A. Costa, I. Ilves, N. Tamberg, T. Petojevic, E. Nogales, M.R. Botchan, and J.M. Berger The structural basis for MCM2-7 helicase activation by GINS and Cdc45 Nat. Struct. Mol. Biol. 18 2011 471 477
-
(2011)
Nat. Struct. Mol. Biol.
, vol.18
, pp. 471-477
-
-
Costa, A.1
Ilves, I.2
Tamberg, N.3
Petojevic, T.4
Nogales, E.5
Botchan, M.R.6
Berger, J.M.7
-
43
-
-
84949535090
-
The architecture of a eukaryotic replisome
-
J. Sun, Y. Shi, R.E. Georgescu, Z. Yuan, B.T. Chait, H. Li, and M.E. O'Donnell The architecture of a eukaryotic replisome Nat. Struct. Mol. Biol. 22 2015 976 982
-
(2015)
Nat. Struct. Mol. Biol.
, vol.22
, pp. 976-982
-
-
Sun, J.1
Shi, Y.2
Georgescu, R.E.3
Yuan, Z.4
Chait, B.T.5
Li, H.6
O'Donnell, M.E.7
-
44
-
-
84905255551
-
A unique DNA entry gate serves for regulated loading of the eukaryotic replicative helicase MCM2-7 onto DNA
-
S.A. Samel, A. Fernandez-Cid, J. Sun, A. Riera, S. Tognetti, M.C. Herrera, H. Li, and C. Speck A unique DNA entry gate serves for regulated loading of the eukaryotic replicative helicase MCM2-7 onto DNA Genes Dev. 28 2014 1653 1666
-
(2014)
Genes Dev.
, vol.28
, pp. 1653-1666
-
-
Samel, S.A.1
Fernandez-Cid, A.2
Sun, J.3
Riera, A.4
Tognetti, S.5
Herrera, M.C.6
Li, H.7
Speck, C.8
-
45
-
-
84921486481
-
Cdc45 (cell division cycle protein 45) guards the gate of the Eukaryote Replisome helicase stabilizing leading strand engagement
-
T. Petojevic, J.J. Pesavento, A. Costa, J. Liang, Z. Wang, J.M. Berger, and M.R. Botchan Cdc45 (cell division cycle protein 45) guards the gate of the Eukaryote Replisome helicase stabilizing leading strand engagement Proc. Natl. Acad. Sci. USA 112 2015 E249 E258
-
(2015)
Proc. Natl. Acad. Sci. USA
, vol.112
, pp. E249-E258
-
-
Petojevic, T.1
Pesavento, J.J.2
Costa, A.3
Liang, J.4
Wang, Z.5
Berger, J.M.6
Botchan, M.R.7
-
46
-
-
63249130106
-
Polymerase dynamics at the eukaryotic DNA replication fork
-
P.M. Burgers Polymerase dynamics at the eukaryotic DNA replication fork J. Biol. Chem. 284 2009 4041 4045
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 4041-4045
-
-
Burgers, P.M.1
-
47
-
-
84924180985
-
Tracking replication enzymology in vivo by genome-wide mapping of ribonucleotide incorporation
-
A.R. Clausen, S.A. Lujan, A.B. Burkholder, C.D. Orebaugh, J.S. Williams, M.F. Clausen, E.P. Malc, P.A. Mieczkowski, D.C. Fargo, D.J. Smith, and et al. Tracking replication enzymology in vivo by genome-wide mapping of ribonucleotide incorporation Nat. Struct. Mol. Biol. 22 2015 185 191
-
(2015)
Nat. Struct. Mol. Biol.
, vol.22
, pp. 185-191
-
-
Clausen, A.R.1
Lujan, S.A.2
Burkholder, A.B.3
Orebaugh, C.D.4
Williams, J.S.5
Clausen, M.F.6
Malc, E.P.7
Mieczkowski, P.A.8
Fargo, D.C.9
Smith, D.J.10
-
48
-
-
54249092768
-
Dividing the workload at a eukaryotic replication fork
-
T.A. Kunkel, and P.M. Burgers Dividing the workload at a eukaryotic replication fork Trends Cell Biol. 18 2008 521 527
-
(2008)
Trends Cell Biol.
, vol.18
, pp. 521-527
-
-
Kunkel, T.A.1
Burgers, P.M.2
-
49
-
-
84855267435
-
The major roles of DNA polymerases epsilon and delta at the eukaryotic replication fork are evolutionarily conserved
-
I. Miyabe, T.A. Kunkel, and A.M. Carr The major roles of DNA polymerases epsilon and delta at the eukaryotic replication fork are evolutionarily conserved PLoS Genet. 7 2011 e1002407
-
(2011)
PLoS Genet.
, vol.7
, pp. e1002407
-
-
Miyabe, I.1
Kunkel, T.A.2
Carr, A.M.3
-
50
-
-
42949119884
-
Division of labor at the eukaryotic replication fork
-
S.A. Nick McElhinny, D.A. Gordenin, C.M. Stith, P.M. Burgers, and T.A. Kunkel Division of labor at the eukaryotic replication fork Mol. Cell 30 2008 137 144
-
(2008)
Mol. Cell
, vol.30
, pp. 137-144
-
-
Nick McElhinny, S.A.1
Gordenin, D.A.2
Stith, C.M.3
Burgers, P.M.4
Kunkel, T.A.5
-
51
-
-
34447336941
-
Yeast DNA polymerase epsilon participates in leading-strand DNA replication
-
Z.F. Pursell, I. Isoz, E.B. Lundstrom, E. Johansson, and T.A. Kunkel Yeast DNA polymerase epsilon participates in leading-strand DNA replication Science 317 2007 127 130
-
(2007)
Science
, vol.317
, pp. 127-130
-
-
Pursell, Z.F.1
Isoz, I.2
Lundstrom, E.B.3
Johansson, E.4
Kunkel, T.A.5
-
52
-
-
84937413584
-
A major role of DNA polymerase delta in replication of both the leading and lagging DNA
-
R.E. Johnson, R. Klassen, L. Prakash, and S. Prakash A major role of DNA polymerase delta in replication of both the leading and lagging DNA Strands. Mol. Cell 59 2015 163 175
-
(2015)
Strands. Mol. Cell
, vol.59
, pp. 163-175
-
-
Johnson, R.E.1
Klassen, R.2
Prakash, L.3
Prakash, S.4
-
53
-
-
0026717535
-
Three-dimensional structure of the beta subunit of E. Coli DNA polymerase III holoenzyme: A sliding DNA clamp
-
X.P. Kong, R. Onrust, M. O'Donnell, and J. Kuriyan Three-dimensional structure of the beta subunit of E. coli DNA polymerase III holoenzyme: a sliding DNA clamp Cell 69 1992 425 437
-
(1992)
Cell
, vol.69
, pp. 425-437
-
-
Kong, X.P.1
Onrust, R.2
O'Donnell, M.3
Kuriyan, J.4
-
54
-
-
0025809742
-
Mechanism of the sliding beta-clamp of DNA polymerase III holoenzyme
-
P.T. Stukenberg, P.S. Studwell-Vaughan, and M. O'Donnell Mechanism of the sliding beta-clamp of DNA polymerase III holoenzyme J. Biol. Chem. 266 1991 11328 11334
-
(1991)
J. Biol. Chem.
, vol.266
, pp. 11328-11334
-
-
Stukenberg, P.T.1
Studwell-Vaughan, P.S.2
O'Donnell, M.3
-
55
-
-
0020120855
-
A DNA primase activity associated with DNA polymerase alpha from Drosophila melanogaster embryos
-
R.C. Conaway, and I.R. Lehman A DNA primase activity associated with DNA polymerase alpha from Drosophila melanogaster embryos Proc. Natl. Acad. Sci. USA 79 1982 2523 2527
-
(1982)
Proc. Natl. Acad. Sci. USA
, vol.79
, pp. 2523-2527
-
-
Conaway, R.C.1
Lehman, I.R.2
-
56
-
-
84885048683
-
Structures of human primase reveal design of nucleotide elongation site and mode of Pol alpha tethering
-
M.L. Kilkenny, M.A. Longo, R.L. Perera, and L. Pellegrini Structures of human primase reveal design of nucleotide elongation site and mode of Pol alpha tethering Proc. Natl. Acad. Sci. USA 110 2013 15961 15966
-
(2013)
Proc. Natl. Acad. Sci. USA
, vol.110
, pp. 15961-15966
-
-
Kilkenny, M.L.1
Longo, M.A.2
Perera, R.L.3
Pellegrini, L.4
-
57
-
-
84962623734
-
-
University of Cambridge UK
-
R.L. Perera, R. Torella, S. Klinge, M.L. Kilkenny, J.D. Maman, and L. Pellegrini Mechanism for priming DNA synthesis by yeast DNA Polymerase alpha 2013 University of Cambridge UK
-
(2013)
Mechanism for Priming DNA Synthesis by Yeast DNA Polymerase Alpha
-
-
Perera, R.L.1
Torella, R.2
Klinge, S.3
Kilkenny, M.L.4
Maman, J.D.5
Pellegrini, L.6
-
58
-
-
67650409702
-
3D architecture of DNA Pol alpha reveals the functional core of multi-subunit replicative polymerases
-
S. Klinge, R. Nunez-Ramirez, O. Llorca, and L. Pellegrini 3D architecture of DNA Pol alpha reveals the functional core of multi-subunit replicative polymerases EMBO J. 28 2009 1978 1987
-
(2009)
EMBO J.
, vol.28
, pp. 1978-1987
-
-
Klinge, S.1
Nunez-Ramirez, R.2
Llorca, O.3
Pellegrini, L.4
-
59
-
-
80053260652
-
Flexible tethering of primase and DNA Pol alpha in the eukaryotic primosome
-
R. Nunez-Ramirez, S. Klinge, L. Sauguet, R. Melero, M.A. Recuero-Checa, M. Kilkenny, R.L. Perera, B. Garcia-Alvarez, R.J. Hall, E. Nogales, and et al. Flexible tethering of primase and DNA Pol alpha in the eukaryotic primosome Nucleic Acids Res. 39 2011 8187 8199
-
(2011)
Nucleic Acids Res.
, vol.39
, pp. 8187-8199
-
-
Nunez-Ramirez, R.1
Klinge, S.2
Sauguet, L.3
Melero, R.4
Recuero-Checa, M.A.5
Kilkenny, M.6
Perera, R.L.7
Garcia-Alvarez, B.8
Hall, R.J.9
Nogales, E.10
-
60
-
-
0022970582
-
Yeast DNA primase and DNA polymerase activities. An analysis of RNA priming and its coupling to DNA synthesis
-
H. Singh, R.G. Brooke, M.H. Pausch, G.T. Williams, C. Trainor, and L.B. Dumas Yeast DNA primase and DNA polymerase activities. An analysis of RNA priming and its coupling to DNA synthesis J. Biol. Chem. 261 1986 8564 8569
-
(1986)
J. Biol. Chem.
, vol.261
, pp. 8564-8569
-
-
Singh, H.1
Brooke, R.G.2
Pausch, M.H.3
Williams, G.T.4
Trainor, C.5
Dumas, L.B.6
-
61
-
-
84902304914
-
A Ctf4 trimer couples the CMG helicase to DNA polymerase alpha in the eukaryotic replisome
-
A.C. Simon, J.C. Zhou, R.L. Perera, F. van Deursen, C. Evrin, M.E. Ivanova, M.L. Kilkenny, L. Renault, S. Kjaer, D. Matak-Vinkovic, and et al. A Ctf4 trimer couples the CMG helicase to DNA polymerase alpha in the eukaryotic replisome Nature 510 2014 293 297
-
(2014)
Nature
, vol.510
, pp. 293-297
-
-
Simon, A.C.1
Zhou, J.C.2
Perera, R.L.3
Van Deursen, F.4
Evrin, C.5
Ivanova, M.E.6
Kilkenny, M.L.7
Renault, L.8
Kjaer, S.9
Matak-Vinkovic, D.10
-
62
-
-
0026502128
-
Protein affinity chromatography with purified yeast DNA polymerase alpha detects proteins that bind to DNA polymerase
-
J. Miles, and T. Formosa Protein affinity chromatography with purified yeast DNA polymerase alpha detects proteins that bind to DNA polymerase Proc. Natl. Acad. Sci. USA 89 1992 1276 1280
-
(1992)
Proc. Natl. Acad. Sci. USA
, vol.89
, pp. 1276-1280
-
-
Miles, J.1
Formosa, T.2
-
63
-
-
70350572751
-
A key role for Ctf4 in coupling the MCM2-7 helicase to DNA polymerase alpha within the eukaryotic replisome
-
A. Gambus, F. van Deursen, D. Polychronopoulos, M. Foltman, R.C. Jones, R.D. Edmondson, A. Calzada, and K. Labib A key role for Ctf4 in coupling the MCM2-7 helicase to DNA polymerase alpha within the eukaryotic replisome EMBO J. 28 2009 2992 3004
-
(2009)
EMBO J.
, vol.28
, pp. 2992-3004
-
-
Gambus, A.1
Van Deursen, F.2
Polychronopoulos, D.3
Foltman, M.4
Jones, R.C.5
Edmondson, R.D.6
Calzada, A.7
Labib, K.8
-
64
-
-
84889643278
-
Interaction between human Ctf4 and the Cdc45/Mcm2-7/GINS (CMG) replicative helicase
-
Y.H. Kang, A. Farina, V.P. Bermudez, I. Tappin, F. Du, W.C. Galal, and J. Hurwitz Interaction between human Ctf4 and the Cdc45/Mcm2-7/GINS (CMG) replicative helicase Proc. Natl. Acad. Sci. USA 110 2013 19760 19765
-
(2013)
Proc. Natl. Acad. Sci. USA
, vol.110
, pp. 19760-19765
-
-
Kang, Y.H.1
Farina, A.2
Bermudez, V.P.3
Tappin, I.4
Du, F.5
Galal, W.C.6
Hurwitz, J.7
-
65
-
-
84936988349
-
A proposal: Evolution of PCNA's role as a marker of newly replicated DNA
-
R. Georgescu, L. Langston, and M. O'Donnell A proposal: Evolution of PCNA's role as a marker of newly replicated DNA DNA Repair (Amst). 29 2015 4 15
-
(2015)
DNA Repair (Amst).
, vol.29
, pp. 4-15
-
-
Georgescu, R.1
Langston, L.2
O'Donnell, M.3
-
66
-
-
0041885325
-
Proliferating cell nuclear antigen (PCNA): A dancer with many partners
-
G. Maga, and U. Hubscher Proliferating cell nuclear antigen (PCNA): a dancer with many partners J. Cell Sci. 116 2003 3051 3060
-
(2003)
J. Cell Sci.
, vol.116
, pp. 3051-3060
-
-
Maga, G.1
Hubscher, U.2
-
67
-
-
65349186567
-
Evolution of DNA polymerases: An inactivated polymerase-exonuclease module in Pol epsilon and a chimeric origin of eukaryotic polymerases from two classes of archaeal ancestors
-
T.H. Tahirov, K.S. Makarova, I.B. Rogozin, Y.I. Pavlov, and E.V. Koonin Evolution of DNA polymerases: an inactivated polymerase-exonuclease module in Pol epsilon and a chimeric origin of eukaryotic polymerases from two classes of archaeal ancestors Biol. Direct. 4 2009 11
-
(2009)
Biol. Direct.
, vol.4
, pp. 11
-
-
Tahirov, T.H.1
Makarova, K.S.2
Rogozin, I.B.3
Pavlov, Y.I.4
Koonin, E.V.5
-
68
-
-
84893772675
-
Structural basis for processive DNA synthesis by yeast DNA polymerase varepsilon
-
M. Hogg, P. Osterman, G.O. Bylund, R.A. Ganai, E.B. Lundstrom, A.E. Sauer-Eriksson, and E. Johansson Structural basis for processive DNA synthesis by yeast DNA polymerase varepsilon Nat. Struct. Mol. Biol. 21 2014 49 55
-
(2014)
Nat. Struct. Mol. Biol.
, vol.21
, pp. 49-55
-
-
Hogg, M.1
Osterman, P.2
Bylund, G.O.3
Ganai, R.A.4
Lundstrom, E.B.5
Sauer-Eriksson, A.E.6
Johansson, E.7
-
69
-
-
69949128706
-
Structural basis of high-fidelity DNA synthesis by yeast DNA polymerase delta
-
M.K. Swan, R.E. Johnson, L. Prakash, S. Prakash, and A.K. Aggarwal Structural basis of high-fidelity DNA synthesis by yeast DNA polymerase delta Nat. Struct. Mol. Biol. 16 2009 979 986
-
(2009)
Nat. Struct. Mol. Biol.
, vol.16
, pp. 979-986
-
-
Swan, M.K.1
Johnson, R.E.2
Prakash, L.3
Prakash, S.4
Aggarwal, A.K.5
-
70
-
-
84899660104
-
Crystal structure of yeast DNA polymerase epsilon catalytic domain
-
R. Jain, K.R. Rajashankar, A. Buku, R.E. Johnson, L. Prakash, S. Prakash, and A.K. Aggarwal Crystal structure of yeast DNA polymerase epsilon catalytic domain PLoS One 9 2014 e94835
-
(2014)
PLoS One
, vol.9
, pp. e94835
-
-
Jain, R.1
Rajashankar, K.R.2
Buku, A.3
Johnson, R.E.4
Prakash, L.5
Prakash, S.6
Aggarwal, A.K.7
-
71
-
-
83655212423
-
Eukaryotic DNA polymerases require an iron-sulfur cluster for the formation of active complexes
-
D.J. Netz, C.M. Stith, M. Stumpfig, G. Kopf, D. Vogel, H.M. Genau, J.L. Stodola, R. Lill, P.M. Burgers, and A.J. Pierik Eukaryotic DNA polymerases require an iron-sulfur cluster for the formation of active complexes Nat. Chem. Biol. 8 2011 125 132
-
(2011)
Nat. Chem. Biol.
, vol.8
, pp. 125-132
-
-
Netz, D.J.1
Stith, C.M.2
Stumpfig, M.3
Kopf, G.4
Vogel, D.5
Genau, H.M.6
Stodola, J.L.7
Lill, R.8
Burgers, P.M.9
Pierik, A.J.10
-
72
-
-
84906101503
-
Mechanism of asymmetric polymerase assembly at the eukaryotic replication fork
-
R.E. Georgescu, L. Langston, N.Y. Yao, O. Yurieva, D. Zhang, J. Finkelstein, T. Agarwal, and M.E. O'Donnell Mechanism of asymmetric polymerase assembly at the eukaryotic replication fork Nat. Struct. Mol. Biol. 21 2014 664 670
-
(2014)
Nat. Struct. Mol. Biol.
, vol.21
, pp. 664-670
-
-
Georgescu, R.E.1
Langston, L.2
Yao, N.Y.3
Yurieva, O.4
Zhang, D.5
Finkelstein, J.6
Agarwal, T.7
O'Donnell, M.E.8
-
73
-
-
84928139350
-
Reconstitution of a eukaryotic replisome reveals suppression mechanisms that define leading/lagging strand operation
-
R.E. Georgescu, G.D. Schauer, N.Y. Yao, L.D. Langston, O. Yurieva, D. Zhang, J. Finkelstein, and M.E. O'Donnell Reconstitution of a eukaryotic replisome reveals suppression mechanisms that define leading/lagging strand operation Elife 4 2015 e04988
-
(2015)
Elife
, vol.4
, pp. e04988
-
-
Georgescu, R.E.1
Schauer, G.D.2
Yao, N.Y.3
Langston, L.D.4
Yurieva, O.5
Zhang, D.6
Finkelstein, J.7
O'Donnell, M.E.8
-
74
-
-
84908271207
-
CMG helicase and DNA polymerase epsilon form a functional 15-subunit holoenzyme for eukaryotic leading-strand DNA replication
-
L.D. Langston, D. Zhang, O. Yurieva, R.E. Georgescu, J. Finkelstein, N.Y. Yao, C. Indiani, and M.E. O'Donnell CMG helicase and DNA polymerase epsilon form a functional 15-subunit holoenzyme for eukaryotic leading-strand DNA replication Proc. Natl. Acad. Sci. USA 111 2014 15390 15395
-
(2014)
Proc. Natl. Acad. Sci. USA
, vol.111
, pp. 15390-15395
-
-
Langston, L.D.1
Zhang, D.2
Yurieva, O.3
Georgescu, R.E.4
Finkelstein, J.5
Yao, N.Y.6
Indiani, C.7
O'Donnell, M.E.8
-
75
-
-
84910595462
-
Structural characterization by cross-linking reveals the detailed architecture of a coatomer-related heptameric module from the nuclear pore complex
-
Y. Shi, J. Fernandez-Martinez, E. Tjioe, R. Pellarin, S.J. Kim, R. Williams, D. Schneidman-Duhovny, A. Sali, M.P. Rout, and B.T. Chait Structural characterization by cross-linking reveals the detailed architecture of a coatomer-related heptameric module from the nuclear pore complex Mol. Cell Proteomics 13 2014 2927 2943
-
(2014)
Mol. Cell Proteomics
, vol.13
, pp. 2927-2943
-
-
Shi, Y.1
Fernandez-Martinez, J.2
Tjioe, E.3
Pellarin, R.4
Kim, S.J.5
Williams, R.6
Schneidman-Duhovny, D.7
Sali, A.8
Rout, M.P.9
Chait, B.T.10
-
76
-
-
27644596379
-
The histone fold subunits of Drosophila CHRAC facilitate nucleosome sliding through dynamic DNA interactions
-
K.F. Hartlepp, C. Fernandez-Tornero, A. Eberharter, T. Grune, C.W. Muller, and P.B. Becker The histone fold subunits of Drosophila CHRAC facilitate nucleosome sliding through dynamic DNA interactions Mol. Cell. Biol. 25 2005 9886 9896
-
(2005)
Mol. Cell. Biol.
, vol.25
, pp. 9886-9896
-
-
Hartlepp, K.F.1
Fernandez-Tornero, C.2
Eberharter, A.3
Grune, T.4
Muller, C.W.5
Becker, P.B.6
-
77
-
-
30044434363
-
Structure of Saccharomyces cerevisiae DNA polymerase epsilon by cryo-electron microscopy
-
F.J. Asturias, I.K. Cheung, N. Sabouri, O. Chilkova, D. Wepplo, and E. Johansson Structure of Saccharomyces cerevisiae DNA polymerase epsilon by cryo-electron microscopy Nat. Struct. Mol. Biol. 13 2006 35 43
-
(2006)
Nat. Struct. Mol. Biol.
, vol.13
, pp. 35-43
-
-
Asturias, F.J.1
Cheung, I.K.2
Sabouri, N.3
Chilkova, O.4
Wepplo, D.5
Johansson, E.6
-
78
-
-
84882735325
-
The mini-chromosome maintenance (Mcm) complexes interact with DNA polymerase alpha-primase and stimulate its ability to synthesize RNA primers
-
Z. You, M. De Falco, K. Kamada, F.M. Pisani, and H. Masai The mini-chromosome maintenance (Mcm) complexes interact with DNA polymerase alpha-primase and stimulate its ability to synthesize RNA primers PLoS One 8 2013 e72408
-
(2013)
PLoS One
, vol.8
, pp. e72408
-
-
You, Z.1
De Falco, M.2
Kamada, K.3
Pisani, F.M.4
Masai, H.5
-
79
-
-
84908100701
-
DNA binding polarity, dimerization, and ATPase ring remodeling in the CMG helicase of the eukaryotic replisome
-
A. Costa, L. Renault, P. Swuec, T. Petojevic, J. Pesavento, I. Ilves, K. MacLellan-Gibson, R.A. Fleck, M.R. Botchan, and J.M. Berger DNA binding polarity, dimerization, and ATPase ring remodeling in the CMG helicase of the eukaryotic replisome Elife 3 2014 e03273
-
(2014)
Elife
, vol.3
, pp. e03273
-
-
Costa, A.1
Renault, L.2
Swuec, P.3
Petojevic, T.4
Pesavento, J.5
Ilves, I.6
MacLellan-Gibson, K.7
Fleck, R.A.8
Botchan, M.R.9
Berger, J.M.10
-
80
-
-
36348987861
-
MCM forked substrate specificity involves dynamic interaction with the 5'-tail
-
E. Rothenberg, M.A. Trakselis, S.D. Bell, and T. Ha MCM forked substrate specificity involves dynamic interaction with the 5'-tail J. Biol. Chem. 282 2007 34229 34234
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 34229-34234
-
-
Rothenberg, E.1
Trakselis, M.A.2
Bell, S.D.3
Ha, T.4
-
81
-
-
84875805105
-
Eukaryotic replisome components cooperate to process histones during chromosome replication
-
M. Foltman, C. Evrin, G. De Piccoli, R.C. Jones, R.D. Edmondson, Y. Katou, R. Nakato, K. Shirahige, and K. Labib Eukaryotic replisome components cooperate to process histones during chromosome replication Cell Rep. 3 2013 892 904
-
(2013)
Cell Rep.
, vol.3
, pp. 892-904
-
-
Foltman, M.1
Evrin, C.2
De Piccoli, G.3
Jones, R.C.4
Edmondson, R.D.5
Katou, Y.6
Nakato, R.7
Shirahige, K.8
Labib, K.9
-
82
-
-
17644367887
-
Proteomic and genomic characterization of chromatin complexes at a boundary
-
A.J. Tackett, D.J. Dilworth, M.J. Davey, M. O'Donnell, J.D. Aitchison, M.P. Rout, and B.T. Chait Proteomic and genomic characterization of chromatin complexes at a boundary J. Cell Biol. 169 2005 35 47
-
(2005)
J. Cell Biol.
, vol.169
, pp. 35-47
-
-
Tackett, A.J.1
Dilworth, D.J.2
Davey, M.J.3
O'Donnell, M.4
Aitchison, J.D.5
Rout, M.P.6
Chait, B.T.7
-
83
-
-
0346363763
-
Noncompetitive counteractions of DNA polymerase epsilon and ISW2/yCHRAC for epigenetic inheritance of telomere position effect in Saccharomyces cerevisiae
-
T. Iida, and H. Araki Noncompetitive counteractions of DNA polymerase epsilon and ISW2/yCHRAC for epigenetic inheritance of telomere position effect in Saccharomyces cerevisiae Mol. Cell. Biol. 24 2004 217 227
-
(2004)
Mol. Cell. Biol.
, vol.24
, pp. 217-227
-
-
Iida, T.1
Araki, H.2
-
84
-
-
33845925515
-
Double-stranded DNA binding, an unusual property of DNA polymerase epsilon, promotes epigenetic silencing in Saccharomyces cerevisiae
-
T. Tsubota, R. Tajima, K. Ode, H. Kubota, N. Fukuhara, T. Kawabata, S. Maki, and H. Maki Double-stranded DNA binding, an unusual property of DNA polymerase epsilon, promotes epigenetic silencing in Saccharomyces cerevisiae J. Biol. Chem. 281 2006 32898 32908
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 32898-32908
-
-
Tsubota, T.1
Tajima, R.2
Ode, K.3
Kubota, H.4
Fukuhara, N.5
Kawabata, T.6
Maki, S.7
Maki, H.8
-
85
-
-
84938692151
-
A unique binding mode enables MCM2 to chaperone histones H3-H4 at replication forks
-
H. Huang, C.B. Stromme, G. Saredi, M. Hodl, A. Strandsby, C. Gonzalez-Aguilera, S. Chen, A. Groth, and D.J. Patel A unique binding mode enables MCM2 to chaperone histones H3-H4 at replication forks Nat. Struct. Mol. Biol. 22 2015 618 626
-
(2015)
Nat. Struct. Mol. Biol.
, vol.22
, pp. 618-626
-
-
Huang, H.1
Stromme, C.B.2
Saredi, G.3
Hodl, M.4
Strandsby, A.5
Gonzalez-Aguilera, C.6
Chen, S.7
Groth, A.8
Patel, D.J.9
-
86
-
-
84939262978
-
Structure of the quaternary complex of histone H3-H4 heterodimer with chaperone ASF1 and the replicative helicase subunit MCM2
-
H. Wang, M. Wang, N. Yang, and R.M. Xu Structure of the quaternary complex of histone H3-H4 heterodimer with chaperone ASF1 and the replicative helicase subunit MCM2 Protein Cell 6 2015 693 697
-
(2015)
Protein Cell
, vol.6
, pp. 693-697
-
-
Wang, H.1
Wang, M.2
Yang, N.3
Xu, R.M.4
-
87
-
-
0030272047
-
Nucleosome assembly by a complex of CAF-1 and acetylated histones H3/H4
-
A. Verreault, P.D. Kaufman, R. Kobayashi, and B. Stillman Nucleosome assembly by a complex of CAF-1 and acetylated histones H3/H4 Cell 87 1996 95 104
-
(1996)
Cell
, vol.87
, pp. 95-104
-
-
Verreault, A.1
Kaufman, P.D.2
Kobayashi, R.3
Stillman, B.4
-
88
-
-
0030920334
-
The Saccharomyces cerevisiae DNA polymerase alpha catalytic subunit interacts with Cdc68/Spt16 and with Pob3, a protein similar to an HMG1-like protein
-
J. Wittmeyer, and T. Formosa The Saccharomyces cerevisiae DNA polymerase alpha catalytic subunit interacts with Cdc68/Spt16 and with Pob3, a protein similar to an HMG1-like protein Mol. Cell. Biol. 17 1997 4178 4190
-
(1997)
Mol. Cell. Biol.
, vol.17
, pp. 4178-4190
-
-
Wittmeyer, J.1
Formosa, T.2
-
89
-
-
22344434704
-
Histone deposition protein Asf1 maintains DNA replisome integrity and interacts with replication factor C
-
A.A. Franco, W.M. Lam, P.M. Burgers, and P.D. Kaufman Histone deposition protein Asf1 maintains DNA replisome integrity and interacts with replication factor C Genes Dev. 19 2005 1365 1375
-
(2005)
Genes Dev.
, vol.19
, pp. 1365-1375
-
-
Franco, A.A.1
Lam, W.M.2
Burgers, P.M.3
Kaufman, P.D.4
-
90
-
-
1842411320
-
Crystal structure of the nucleosome core particle at 2.8 A resolution
-
K. Luger, A.W. Mader, R.K. Richmond, D.F. Sargent, and T.J. Richmond Crystal structure of the nucleosome core particle at 2.8 A resolution Nature 389 1997 251 260
-
(1997)
Nature
, vol.389
, pp. 251-260
-
-
Luger, K.1
Mader, A.W.2
Richmond, R.K.3
Sargent, D.F.4
Richmond, T.J.5
|