-
1
-
-
0036791850
-
Focal adhesion kinase: Protein interactions and cellular functions
-
Abbi S, Guan JL. 2002. Focal adhesion kinase: protein interactions and cellular functions. Histol Histopathol 17: 1163–1171.
-
(2002)
Histol Histopathol
, vol.17
, pp. 1163-1171
-
-
Abbi, S.1
Guan, J.L.2
-
2
-
-
84880376355
-
Emerging regulation and functions of autophagy
-
Boya P, Reggiori F, Codogno P. 2013. Emerging regulation and functions of autophagy. Nat Cell Biol 15: 713–720.
-
(2013)
Nat Cell Biol
, vol.15
, pp. 713-720
-
-
Boya, P.1
Reggiori, F.2
Codogno, P.3
-
3
-
-
84901386193
-
RIPK1 blocks early postnatal lethality mediated by caspase- 8 and RIPK3
-
Dillon CP, Weinlich R, Rodriguez DA, Cripps JG, Quarato G, Gurung P, Verbist KC, Brewer TL, Llambi F, Gong YN, et al. 2014. RIPK1 blocks early postnatal lethality mediated by caspase- 8 and RIPK3. Cell 157: 1189–1202.
-
(2014)
Cell
, vol.157
, pp. 1189-1202
-
-
Dillon, C.P.1
Weinlich, R.2
Rodriguez, D.A.3
Cripps, J.G.4
Quarato, G.5
Gurung, P.6
Verbist, K.C.7
Brewer, T.L.8
Llambi, F.9
Gong, Y.N.10
-
4
-
-
84873313062
-
Function of focal adhesion kinase scaffolding to mediate endophilin A2 phosphorylation promotes epithelial–mesenchymal transition and mammary cancer stem cell activities in vivo
-
Fan H, Zhao X, Sun S, Luo M, Guan JL. 2013. Function of focal adhesion kinase scaffolding to mediate endophilin A2 phosphorylation promotes epithelial–mesenchymal transition and mammary cancer stem cell activities in vivo. J Biol Chem 288: 3322–3333.
-
(2013)
J Biol Chem
, vol.288
, pp. 3322-3333
-
-
Fan, H.1
Zhao, X.2
Sun, S.3
Luo, M.4
Guan, J.L.5
-
5
-
-
39749119904
-
FIP200, a key signaling node to coordinately regulate various cellular processes
-
Gan B, Guan JL. 2008. FIP200, a key signaling node to coordinately regulate various cellular processes. Cell Signal 20: 787–794.
-
(2008)
Cell Signal
, vol.20
, pp. 787-794
-
-
Gan, B.1
Guan, J.L.2
-
6
-
-
23744454765
-
Identification of FIP200 interaction with the TSC1–TSC2 complex and its role in regulation of cell size control
-
Gan B, Melkoumian ZK, Wu X, Guan KL, Guan JL. 2005. Identification of FIP200 interaction with the TSC1–TSC2 complex and its role in regulation of cell size control. J Cell Biol 170: 379–389.
-
(2005)
J Cell Biol
, vol.170
, pp. 379-389
-
-
Gan, B.1
Melkoumian, Z.K.2
Wu, X.3
Guan, K.L.4
Guan, J.L.5
-
7
-
-
33749562122
-
Role of FIP200 in cardiac and liver development and its regulation of TNFα and TSC–mTOR signaling pathways
-
Gan B, Peng X, Nagy T, Alcaraz A, Gu H, Guan JL. 2006. Role of FIP200 in cardiac and liver development and its regulation of TNFα and TSC–mTOR signaling pathways. J Cell Biol 175: 121–133.
-
(2006)
J Cell Biol
, vol.175
, pp. 121-133
-
-
Gan, B.1
Peng, X.2
Nagy, T.3
Alcaraz, A.4
Gu, H.5
Guan, J.L.6
-
8
-
-
66449083078
-
ULK1⋅ATG13⋅FIP200 complex mediates mTOR signaling and is essential for autophagy
-
Ganley IG, Lam du H, Wang J, Ding X, Chen S, Jiang X. 2009. ULK1⋅ATG13⋅FIP200 complex mediates mTOR signaling and is essential for autophagy. J Biol Chem 284: 12297–12305.
-
(2009)
J Biol Chem
, vol.284
, pp. 12297-12305
-
-
Ganley, I.G.1
Lam Du, H.2
Wang, J.3
Ding, X.4
Chen, S.5
Jiang, X.6
-
9
-
-
43149090064
-
FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells
-
Hara T, Takamura A, Kishi C, Iemura S, Natsume T, Guan JL, Mizushima N. 2008. FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells. J Cell Biol 181: 497–510.
-
(2008)
J Cell Biol
, vol.181
, pp. 497-510
-
-
Hara, T.1
Takamura, A.2
Kishi, C.3
Iemura, S.4
Natsume, T.5
Guan, J.L.6
Mizushima, N.7
-
10
-
-
72549095406
-
Regulation mechanisms and signaling pathways of autophagy
-
He C, Klionsky DJ. 2009. Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet 43: 67–93.
-
(2009)
Annu Rev Genet
, vol.43
, pp. 67-93
-
-
He, C.1
Klionsky, D.J.2
-
11
-
-
77951237303
-
The Beclin 1 interactome
-
He C, Levine B. 2010. The Beclin 1 interactome. Curr Opin Cell Biol 22: 140–149.
-
(2010)
Curr Opin Cell Biol
, vol.22
, pp. 140-149
-
-
He, C.1
Levine, B.2
-
12
-
-
84947590219
-
Expression of a ULK1/2 binding-deficient ATG13 variant can partially restore autophagic activity in ATG13-deficient cells
-
Hieke N, Loffler AS, Kaizuka T, Berleth N, Bohler P, Driessen S, Stuhldreier F, Friesen O, Assani K, Schmitz K, et al. 2015. Expression of a ULK1/2 binding-deficient ATG13 variant can partially restore autophagic activity in ATG13-deficient cells. Autophagy 11: 1471–1483.
-
(2015)
Autophagy
, vol.11
, pp. 1471-1483
-
-
Hieke, N.1
Loffler, A.S.2
Kaizuka, T.3
Berleth, N.4
Bohler, P.5
Driessen, S.6
Stuhldreier, F.7
Friesen, O.8
Assani, K.9
Schmitz, K.10
-
13
-
-
33645068866
-
Context-specific requirements for Fgfr1 signaling through Frs2 and Frs3 during mouse development
-
Hoch RV, Soriano P. 2006. Context-specific requirements for Fgfr1 signaling through Frs2 and Frs3 during mouse development. Development 133: 663–673.
-
(2006)
Development
, vol.133
, pp. 663-673
-
-
Hoch, R.V.1
Soriano, P.2
-
14
-
-
65249119430
-
Nutrient-dependent mTORC1 association with the ULK1–Atg13–FIP200 complex required for autophagy
-
Hosokawa N, Hara T, Kaizuka T, Kishi C, Takamura A, Miura Y, Iemura S, Natsume T, Takehana K, Yamada N, et al. 2009a. Nutrient-dependent mTORC1 association with the ULK1–Atg13–FIP200 complex required for autophagy. Mol Biol Cell 20: 1981–1991.
-
(2009)
Mol Biol Cell
, vol.20
, pp. 1981-1991
-
-
Hosokawa, N.1
Hara, T.2
Kaizuka, T.3
Kishi, C.4
Takamura, A.5
Miura, Y.6
Iemura, S.7
Natsume, T.8
Takehana, K.9
Yamada, N.10
-
15
-
-
70349644856
-
Atg101, a novel mammalian autophagy protein interacting with Atg13
-
Hosokawa N, Sasaki T, Iemura S, Natsume T, Hara T, Mizushima N. 2009b. Atg101, a novel mammalian autophagy protein interacting with Atg13. Autophagy 5: 973–979.
-
(2009)
Autophagy
, vol.5
, pp. 973-979
-
-
Hosokawa, N.1
Sasaki, T.2
Iemura, S.3
Natsume, T.4
Hara, T.5
Mizushima, N.6
-
17
-
-
65249176304
-
ULK–Atg13–FIP200 complexes mediate mTOR signaling to the autophagy machinery
-
Jung CH, Jun CB, Ro SH, Kim YM, Otto NM, Cao J, Kundu M, Kim DH. 2009. ULK–Atg13–FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol Biol Cell 20: 1992–2003.
-
(2009)
Mol Biol Cell
, vol.20
, pp. 1992-2003
-
-
Jung, C.H.1
Jun, C.B.2
Ro, S.H.3
Kim, Y.M.4
Otto, N.M.5
Cao, J.6
Kundu, M.7
Kim, D.H.8
-
18
-
-
84957900248
-
Atg13 is essential for autophagy and cardiac development in mice
-
Kaizuka T, Mizushima N. 2015. Atg13 is essential for autophagy and cardiac development in mice. Mol Cell Biol 36: 585–595.
-
(2015)
Mol Cell Biol
, vol.36
, pp. 585-595
-
-
Kaizuka, T.1
Mizushima, N.2
-
19
-
-
84918827750
-
Cellular and metabolic functions for autophagy in cancer cells
-
Kenific CM, Debnath J. 2015. Cellular and metabolic functions for autophagy in cancer cells. Trends Cell Biol 25: 37–45.
-
(2015)
Trends Cell Biol
, vol.25
, pp. 37-45
-
-
Kenific, C.M.1
Debnath, J.2
-
20
-
-
21044455137
-
Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice
-
Komatsu M, Waguri S, Ueno T, Iwata J, Murata S, Tanida I, Ezaki J, Mizushima N, Ohsumi Y, Uchiyama Y, et al. 2005. Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J Cell Biol 169: 425–434.
-
(2005)
J Cell Biol
, vol.169
, pp. 425-434
-
-
Komatsu, M.1
Waguri, S.2
Ueno, T.3
Iwata, J.4
Murata, S.5
Tanida, I.6
Ezaki, J.7
Mizushima, N.8
Ohsumi, Y.9
Uchiyama, Y.10
-
21
-
-
11144245626
-
The role of autophagy during the early neonatal starvation period
-
Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H, Yoshimori T, Ohsumi Y, Tokuhisa T, Mizushima N. 2004a. The role of autophagy during the early neonatal starvation period. Nature 432: 1032–1036.
-
(2004)
Nature
, vol.432
, pp. 1032-1036
-
-
Kuma, A.1
Hatano, M.2
Matsui, M.3
Yamamoto, A.4
Nakaya, H.5
Yoshimori, T.6
Ohsumi, Y.7
Tokuhisa, T.8
Mizushima, N.9
-
22
-
-
11144245626
-
The role of autophagy during the early neonatal starvation period
-
Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H, Yoshimori T, Ohsumi Y, Tokuhisa T, Mizushima N. 2004b. The role of autophagy during the early neonatal starvation period. Nature 432: 1032–1036.
-
(2004)
Nature
, vol.432
, pp. 1032-1036
-
-
Kuma, A.1
Hatano, M.2
Matsui, M.3
Yamamoto, A.4
Nakaya, H.5
Yoshimori, T.6
Ohsumi, Y.7
Tokuhisa, T.8
Mizushima, N.9
-
23
-
-
72549115018
-
Dicer1 functions as a haploinsufficient tumor suppressor
-
Kumar MS, Pester RE, Chen CY, Lane K, Chin C, Lu J, Kirsch DG, Golub TR, Jacks T. 2009. Dicer1 functions as a haploinsufficient tumor suppressor. Genes Dev 23: 2700–2704.
-
(2009)
Genes Dev
, vol.23
, pp. 2700-2704
-
-
Kumar, M.S.1
Pester, R.E.2
Chen, C.Y.3
Lane, K.4
Chin, C.5
Lu, J.6
Kirsch, D.G.7
Golub, T.R.8
Jacks, T.9
-
24
-
-
84859639962
-
Atg7 modulates p53 activity to regulate cell cycle and survival during metabolic stress
-
Lee IH, Kawai Y, Fergusson MM, Rovira II, Bishop AJ, Motoyama N, Cao L, Finkel T. 2012. Atg7 modulates p53 activity to regulate cell cycle and survival during metabolic stress. Science 336: 225–228.
-
(2012)
Science
, vol.336
, pp. 225-228
-
-
Lee, I.H.1
Kawai, Y.2
Fergusson, M.M.3
Rovira, I.I.4
Bishop, A.J.5
Motoyama, N.6
Cao, L.7
Finkel, T.8
-
25
-
-
37649005234
-
Autophagy in the pathogenesis of disease
-
Levine B, Kroemer G. 2008. Autophagy in the pathogenesis of disease. Cell 132: 27–42.
-
(2008)
Cell
, vol.132
, pp. 27-42
-
-
Levine, B.1
Kroemer, G.2
-
26
-
-
77449094358
-
Neural-specific deletion of FIP200 leads to cerebellar degeneration caused by increased neuronal death and axon degeneration
-
Liang CC, Wang C, Peng X, Gan B, Guan JL. 2010. Neural-specific deletion of FIP200 leads to cerebellar degeneration caused by increased neuronal death and axon degeneration. J Biol Chem 285: 3499–3509.
-
(2010)
J Biol Chem
, vol.285
, pp. 3499-3509
-
-
Liang, C.C.1
Wang, C.2
Peng, X.3
Gan, B.4
Guan, J.L.5
-
27
-
-
78649689953
-
FIP200 is required for the cell-autonomous maintenance of fetal hematopoietic stem cells
-
Liu F, Lee JY, Wei H, Tanabe O, Engel JD, Morrison SJ, Guan JL. 2010. FIP200 is required for the cell-autonomous maintenance of fetal hematopoietic stem cells. Blood 116: 4806–4814.
-
(2010)
Blood
, vol.116
, pp. 4806-4814
-
-
Liu, F.1
Lee, J.Y.2
Wei, H.3
Tanabe, O.4
Engel, J.D.5
Morrison, S.J.6
Guan, J.L.7
-
28
-
-
80053501671
-
Beclin1 controls the levels of p53 by regulating the deubiquitination activity of USP10 and USP13
-
Liu J, Xia H, Kim M, Xu L, Li Y, Zhang L, Cai Y, Norberg HV, Zhang T, Furuya T, et al. 2011. Beclin1 controls the levels of p53 by regulating the deubiquitination activity of USP10 and USP13. Cell 147: 223–234.
-
(2011)
Cell
, vol.147
, pp. 223-234
-
-
Liu, J.1
Xia, H.2
Kim, M.3
Xu, L.4
Li, Y.5
Zhang, L.6
Cai, Y.7
Norberg, H.V.8
Zhang, T.9
Furuya, T.10
-
29
-
-
84886819890
-
Suppression of autophagy by FIP200 deletion leads to osteopenia in mice through the inhibition of osteoblast terminal differentiation
-
Liu F, Fang F, Yuan H, Yang D, Chen Y, Williams L, Goldstein SA, Krebsbach PH, Guan JL. 2013. Suppression of autophagy by FIP200 deletion leads to osteopenia in mice through the inhibition of osteoblast terminal differentiation. J Bone Miner Res 28: 2414–2430.
-
(2013)
J Bone Miner Res
, vol.28
, pp. 2414-2430
-
-
Liu, F.1
Fang, F.2
Yuan, H.3
Yang, D.4
Chen, Y.5
Williams, L.6
Goldstein, S.A.7
Krebsbach, P.H.8
Guan, J.L.9
-
30
-
-
84884763666
-
Autophagy deficiency by hepatic FIP200 deletion uncouples steatosis from liver injury in NAFLD
-
Ma D, Molusky MM, Song J, Hu CR, Fang F, Rui C, Mathew AV, Pennathur S, Liu F, Cheng JX, et al. 2013. Autophagy deficiency by hepatic FIP200 deletion uncouples steatosis from liver injury in NAFLD. Mol Endocrinol 27: 1643–1654.
-
(2013)
Mol Endocrinol
, vol.27
, pp. 1643-1654
-
-
Ma, D.1
Molusky, M.M.2
Song, J.3
Hu, C.R.4
Fang, F.5
Rui, C.6
Mathew, A.V.7
Pennathur, S.8
Liu, F.9
Cheng, J.X.10
-
31
-
-
23044453057
-
Mechanism of cell cycle regulation by FIP200 in human breast cancer cells
-
Melkoumian ZK, Peng X, Gan B, Wu X, Guan JL. 2005. Mechanism of cell cycle regulation by FIP200 in human breast cancer cells. Cancer Res 65: 6676–6684.
-
(2005)
Cancer Res
, vol.65
, pp. 6676-6684
-
-
Melkoumian, Z.K.1
Peng, X.2
Gan, B.3
Wu, X.4
Guan, J.L.5
-
32
-
-
67549110195
-
Anovel, human Atg13 binding protein, Atg101, interacts with ULK1 and is essential for macroautophagy
-
Mercer CA, Kaliappan A, Dennis PB. 2009. Anovel, human Atg13 binding protein, Atg101, interacts with ULK1 and is essential for macroautophagy. Autophagy 5: 649–662.
-
(2009)
Autophagy
, vol.5
, pp. 649-662
-
-
Mercer, C.A.1
Kaliappan, A.2
Dennis, P.B.3
-
33
-
-
4344712684
-
Methods for monitoring autophagy
-
Mizushima N. 2004. Methods for monitoring autophagy. Int J Biochem Cell Biol 36: 2491–2502.
-
(2004)
Int J Biochem Cell Biol
, vol.36
, pp. 2491-2502
-
-
Mizushima, N.1
-
34
-
-
59249095218
-
Methods for monitoring autophagy using GFP-LC3 transgenic mice
-
Mizushima N. 2009. Methods for monitoring autophagy using GFP-LC3 transgenic mice. Methods Enzymol 452: 13–23.
-
(2009)
Methods Enzymol
, vol.452
, pp. 13-23
-
-
Mizushima, N.1
-
35
-
-
81055144784
-
Autophagy: Renovation of cells and tissues
-
Mizushima N, Komatsu M. 2011. Autophagy: renovation of cells and tissues. Cell 147: 728–741.
-
(2011)
Cell
, vol.147
, pp. 728-741
-
-
Mizushima, N.1
Komatsu, M.2
-
36
-
-
77956416339
-
Autophagy in mammalian development and differentiation
-
Mizushima N, Levine B. 2010. Autophagy in mammalian development and differentiation. Nat Cell Biol 12: 823–830.
-
(2010)
Nat Cell Biol
, vol.12
, pp. 823-830
-
-
Mizushima, N.1
Levine, B.2
-
37
-
-
75749122303
-
Methods in mammalian autophagy research
-
Mizushima N, Yoshimori T, Levine B. 2010. Methods in mammalian autophagy research. Cell 140: 313–326.
-
(2010)
Cell
, vol.140
, pp. 313-326
-
-
Mizushima, N.1
Yoshimori, T.2
Levine, B.3
-
39
-
-
84907995994
-
HOIP deficiency causes embryonic lethality by aberrant TNFR1-mediated endothelial cell death
-
Peltzer N, Rieser E, Taraborrelli L, Draber P, Darding M, Pernaute B, Shimizu Y, Sarr A, Draberova H, Montinaro A, et al. 2014. HOIP deficiency causes embryonic lethality by aberrant TNFR1-mediated endothelial cell death. Cell Rep 9: 153–165.
-
(2014)
Cell Rep
, vol.9
, pp. 153-165
-
-
Peltzer, N.1
Rieser, E.2
Taraborrelli, L.3
Draber, P.4
Darding, M.5
Pernaute, B.6
Shimizu, Y.7
Sarr, A.8
Draberova, H.9
Montinaro, A.10
-
40
-
-
0031985413
-
TNF receptor-deficient mice reveal divergent roles for p55 and p75 in several models of inflammation
-
Peschon JJ, Torrance DS, Stocking KL, Glaccum MB, Otten C, Willis CR, Charrier K, Morrissey PJ, Ware CB, Mohler KM. 1998. TNF receptor-deficient mice reveal divergent roles for p55 and p75 in several models of inflammation. J Immunol 160: 943–952.
-
(1998)
J Immunol
, vol.160
, pp. 943-952
-
-
Peschon, J.J.1
Torrance, D.S.2
Stocking, K.L.3
Glaccum, M.B.4
Otten, C.5
Willis, C.R.6
Charrier, K.7
Morrissey, P.J.8
Ware, C.B.9
Mohler, K.M.10
-
42
-
-
84873407151
-
Non-autophagic roles of autophagy- related proteins
-
Subramani S, Malhotra V. 2013. Non-autophagic roles of autophagy- related proteins. EMBO Rep 14: 143–151.
-
(2013)
EMBO Rep
, vol.14
, pp. 143-151
-
-
Subramani, S.1
Malhotra, V.2
-
43
-
-
84936846861
-
Structure of the Atg101–Atg13 complex reveals essential roles of Atg101 in autophagy initiation
-
Suzuki H, Kaizuka T, Mizushima N, Noda NN. 2015. Structure of the Atg101–Atg13 complex reveals essential roles of Atg101 in autophagy initiation. Nat Struct Mol Biol 22: 572–580.
-
(2015)
Nat Struct Mol Biol
, vol.22
, pp. 572-580
-
-
Suzuki, H.1
Kaizuka, T.2
Mizushima, N.3
Noda, N.N.4
-
44
-
-
33846899456
-
Restoration of p53 function leads to tumour regression in vivo
-
Ventura A, Kirsch DG, McLaughlin ME, Tuveson DA, Grimm J, Lintault L, Newman J, Reczek EE, Weissleder R, Jacks T. 2007. Restoration of p53 function leads to tumour regression in vivo. Nature 445: 661–665.
-
(2007)
Nature
, vol.445
, pp. 661-665
-
-
Ventura, A.1
Kirsch, D.G.2
McLaughlin, M.E.3
Tuveson, D.A.4
Grimm, J.5
Lintault, L.6
Newman, J.7
Reczek, E.E.8
Weissleder, R.9
Jacks, T.10
-
45
-
-
84876893671
-
FIP200 is required for maintenance and differentiation of postnatal neural stem cells
-
Wang C, Liang CC, Bian ZC, Zhu Y, Guan JL. 2013. FIP200 is required for maintenance and differentiation of postnatal neural stem cells. Nat Neurosci 16: 532–542.
-
(2013)
Nat Neurosci
, vol.16
, pp. 532-542
-
-
Wang, C.1
Liang, C.C.2
Bian, Z.C.3
Zhu, Y.4
Guan, J.L.5
-
46
-
-
65549159637
-
Inactivation of FIP200 leads to inflammatory skin disorder, but not tumorigenesis, in conditional knock-out mouse models
-
Wei H, Gan B, Wu X, Guan JL. 2009. Inactivation of FIP200 leads to inflammatory skin disorder, but not tumorigenesis, in conditional knock-out mouse models. J Biol Chem 284: 6004–6013.
-
(2009)
J Biol Chem
, vol.284
, pp. 6004-6013
-
-
Wei, H.1
Gan, B.2
Wu, X.3
Guan, J.L.4
-
47
-
-
79960401862
-
Suppression of autophagy by FIP200 deletion inhibits mammary tumorigenesis
-
Wei H, Wei S, Gan B, Peng X, Zou W, Guan JL. 2011. Suppression of autophagy by FIP200 deletion inhibits mammary tumorigenesis. Genes Dev 25: 1510–1527.
-
(2011)
Genes Dev
, vol.25
, pp. 1510-1527
-
-
Wei, H.1
Wei, S.2
Gan, B.3
Peng, X.4
Zou, W.5
Guan, J.L.6
-
48
-
-
84901782394
-
P62/SQSTM1 synergizes with autophagy for tumor growth in vivo
-
Wei H, Wang C, Croce CM, Guan JL. 2014. p62/SQSTM1 synergizes with autophagy for tumor growth in vivo. Genes Dev 28: 1204–1216.
-
(2014)
Genes Dev
, vol.28
, pp. 1204-1216
-
-
Wei, H.1
Wang, C.2
Croce, C.M.3
Guan, J.L.4
-
49
-
-
84861526009
-
Deconvoluting the context-dependent role for autophagy in cancer
-
White E. 2012. Deconvoluting the context-dependent role for autophagy in cancer. Nat Rev Cancer 12: 401–410.
-
(2012)
Nat Rev Cancer
, vol.12
, pp. 401-410
-
-
White, E.1
-
50
-
-
84920415711
-
The role for autophagy in cancer
-
White E. 2015. The role for autophagy in cancer. J Clin Invest 125: 42–46.
-
(2015)
J Clin Invest
, vol.125
, pp. 42-46
-
-
White, E.1
-
51
-
-
0345166111
-
Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor
-
Yue Z, Jin S, Yang C, Levine AJ, Heintz N. 2003. Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci 100: 15077–15082.
-
(2003)
Proc Natl Acad Sci
, vol.100
, pp. 15077-15082
-
-
Yue, Z.1
Jin, S.2
Yang, C.3
Levine, A.J.4
Heintz, N.5
-
52
-
-
77953601228
-
Role of kinase-independent and -dependent functions of FAK in endothelial cell survival and barrier function during embryonic development
-
Zhao X, Peng X, Sun S, Park AY, Guan JL. 2010. Role of kinase-independent and -dependent functions of FAK in endothelial cell survival and barrier function during embryonic development. J Cell Biol 189: 955–965.
-
(2010)
J Cell Biol
, vol.189
, pp. 955-965
-
-
Zhao, X.1
Peng, X.2
Sun, S.3
Park, A.Y.4
Guan, J.L.5
|