메뉴 건너뛰기




Volumn 7, Issue FEB, 2016, Pages

Bacterial glycosyltransferases: Challenges and Opportunities of a Highly Diverse Enzyme Class Toward Tailoring Natural Products

Author keywords

Bacterial glycosyltransferases; Categorization of glycosyltransferases; Docking experiments; Polysaccharide glycosyltransferases; Screening; Substrate specificity

Indexed keywords

GLYCOSYLTRANSFERASE;

EID: 84962159528     PISSN: None     EISSN: 1664302X     Source Type: Journal    
DOI: 10.3389/fmicb.2016.00182     Document Type: Article
Times cited : (75)

References (79)
  • 1
    • 84903814380 scopus 로고    scopus 로고
    • Protein expression in Pichia pastoris: recent achievements and perspectives for heterologous protein production
    • Ahmad, M., Hirz, M., Pichler, H., and Schwab, H. (2014). Protein expression in Pichia pastoris: recent achievements and perspectives for heterologous protein production. Appl. Microbiol. Biotechnol. 98, 5301-5317. doi: 10.1007/s00253-014-5732-5
    • (2014) Appl. Microbiol. Biotechnol , vol.98 , pp. 5301-5317
    • Ahmad, M.1    Hirz, M.2    Pichler, H.3    Schwab, H.4
  • 2
    • 36048943689 scopus 로고    scopus 로고
    • A miniaturized high-throughput screening assay for fucosyltransferase VII
    • Ahsen, O. V., Voigtmann, U., Klotz, M., Nifantiev, N., Schottelius, A., Ernst, A., et al. (2008). A miniaturized high-throughput screening assay for fucosyltransferase VII. Anal. Biochem. 372, 96-105. doi: 10.1016/j.ab.2007.08.029
    • (2008) Anal. Biochem , vol.372 , pp. 96-105
    • Ahsen, O.V.1    Voigtmann, U.2    Klotz, M.3    Nifantiev, N.4    Schottelius, A.5    Ernst, A.6
  • 3
    • 84933073715 scopus 로고    scopus 로고
    • Reaction mechanisms in carbohydrate-active enzymes: glycoside hydrolases and glycosyltransferases. insights from ab initio quantum mechanics/molecular mechanics dynamic simulations
    • Ardèvol, A., and Rovira, C. (2015). Reaction mechanisms in carbohydrate-active enzymes: glycoside hydrolases and glycosyltransferases. insights from ab initio quantum mechanics/molecular mechanics dynamic simulations. J. Am. Chem. Soc. 137, 7528-7547. doi: 10.1021/jacs.5b01156
    • (2015) J. Am. Chem. Soc , vol.137 , pp. 7528-7547
    • Ardèvol, A.1    Rovira, C.2
  • 4
    • 84865343780 scopus 로고    scopus 로고
    • Discovery of glycosyltransferases using carbohydrate arrays and mass spectrometry
    • Ban, L., Pettit, N., Li, L., Stuparu, A. D., Cai, L., Chen, W., et al. (2012). Discovery of glycosyltransferases using carbohydrate arrays and mass spectrometry. Nat. Chem. Biol. 8, 769-773. doi: 10.1038/nchembio.1022
    • (2012) Nat. Chem. Biol , vol.8 , pp. 769-773
    • Ban, L.1    Pettit, N.2    Li, L.3    Stuparu, A.D.4    Cai, L.5    Chen, W.6
  • 5
    • 0035930576 scopus 로고    scopus 로고
    • Structure of UDP Complex of UDP-galactose:β-Galactoside-a-1, 3-galactosyltransferase at 1.53-Å resolution reveals a conformational change in the catalytically important C terminus
    • Boix, E., Swaminathan, G. J., Zhang, Y., Natesh, R., Brew, K., and Acharya, K. R. (2001). Structure of UDP Complex of UDP-galactose:β-Galactoside-a-1, 3-galactosyltransferase at 1.53-Å resolution reveals a conformational change in the catalytically important C terminus. J. Biol. Chem. 276, 48608-48614.
    • (2001) J. Biol. Chem , vol.276 , pp. 48608-48614
    • Boix, E.1    Swaminathan, G.J.2    Zhang, Y.3    Natesh, R.4    Brew, K.5    Acharya, K.R.6
  • 6
    • 0037008717 scopus 로고    scopus 로고
    • Structural basis of ordered binding of donor and acceptor substrates to the retaining glycosyltransferase, a-1, 3-galactosyltransferase
    • Boix, E., Zhang, Y., Swaminathan, G. J., Brew, K., and Acharya, K. R. (2002). Structural basis of ordered binding of donor and acceptor substrates to the retaining glycosyltransferase, a-1, 3-galactosyltransferase. J. Biol. Chem. 277, 28310-28318. doi: 10.1074/jbc.M202631200
    • (2002) J. Biol. Chem , vol.277 , pp. 28310-28318
    • Boix, E.1    Zhang, Y.2    Swaminathan, G.J.3    Brew, K.4    Acharya, K.R.5
  • 7
    • 31144449168 scopus 로고    scopus 로고
    • Structures and mechanisms of glycosyltransferases
    • Breton, C., Šnajdrová, L., Jeanneau, C., Koca, J., and Imberty, A. (2006). Structures and mechanisms of glycosyltransferases. Glycobiology 16, 29R-37R. doi: 10.1093/glycob/cwj016
    • (2006) Glycobiology , vol.16 , pp. 29R-37R
    • Breton, C.1    Šnajdrová, L.2    Jeanneau, C.3    Koca, J.4    Imberty, A.5
  • 8
    • 84918835683 scopus 로고    scopus 로고
    • Crossroads between bacterial and mammalian glycosyltransferases
    • Brockhausen, I. (2014). Crossroads between bacterial and mammalian glycosyltransferases. Front. Immunol. 5:492. doi: 10.3389/fimmu.2014.00492
    • (2014) Front. Immunol , vol.5 , pp. 492
    • Brockhausen, I.1
  • 9
    • 84866124174 scopus 로고    scopus 로고
    • Radiometric and spectrophotometric in vitro assays of glycosyltransferases involved in plant cell wall carbohydrate biosynthesis
    • Brown, C., Leijon, F., and Bulone, V. (2012). Radiometric and spectrophotometric in vitro assays of glycosyltransferases involved in plant cell wall carbohydrate biosynthesis. Nat. Protoc. 7, 1634-1650. doi: 10.1038/nprot.2012.089
    • (2012) Nat. Protoc , vol.7 , pp. 1634-1650
    • Brown, C.1    Leijon, F.2    Bulone, V.3
  • 10
    • 42949174603 scopus 로고    scopus 로고
    • Combining docking, molecular dynamics and the linear interaction energy method to predict binding modes and affinities for non-nucleoside inhibitors to HIV-1 reverse transcriptase
    • Carlsson, J., Boukharta, L., and Åqvist, J. (2008). Combining docking, molecular dynamics and the linear interaction energy method to predict binding modes and affinities for non-nucleoside inhibitors to HIV-1 reverse transcriptase. J. Med. Chem. 51, 2648-2656. doi: 10.1021/jm7012198
    • (2008) J. Med. Chem , vol.51 , pp. 2648-2656
    • Carlsson, J.1    Boukharta, L.2    Åqvist, J.3
  • 11
    • 47049087906 scopus 로고    scopus 로고
    • A kinetic analysis of regiospecific glucosylation by two glycosyltransferases of Arabidopsis thaliana: domain swapping to introduce new activities
    • Cartwright, A. M., Lim, E. K., Kleanthous, C., and Bowles, D. J. (2008). A kinetic analysis of regiospecific glucosylation by two glycosyltransferases of Arabidopsis thaliana: domain swapping to introduce new activities. J. Biol. Chem. 283, 15724-15731. doi: 10.1074/jbc.M801983200
    • (2008) J. Biol. Chem , vol.283 , pp. 15724-15731
    • Cartwright, A.M.1    Lim, E.K.2    Kleanthous, C.3    Bowles, D.J.4
  • 12
    • 66149095407 scopus 로고    scopus 로고
    • An "Off-On" type UTP/UDP selective fluorescent probe and its application to monitor glycosylation process
    • Chen, X., Jou, M. J., and Yoon, J. (2009). An "Off-On" type UTP/UDP selective fluorescent probe and its application to monitor glycosylation process. Org. Lett. 11, 2181-2184. doi: 10.1021/ol9004849
    • (2009) Org. Lett , vol.11 , pp. 2181-2184
    • Chen, X.1    Jou, M.J.2    Yoon, J.3
  • 13
    • 0037466315 scopus 로고    scopus 로고
    • An evolving hierarchical family classification for glycosyltransferases
    • Coutinho, P. M., Deleury, E., Davies, G. J., and Henrissat, B. (2003). An evolving hierarchical family classification for glycosyltransferases. J. Mol. Biol. 328, 307-317. doi: 10.1016/S0022-2836(03)00307-3
    • (2003) J. Mol. Biol , vol.328 , pp. 307-317
    • Coutinho, P.M.1    Deleury, E.2    Davies, G.J.3    Henrissat, B.4
  • 15
    • 27944434246 scopus 로고    scopus 로고
    • Recent structural insights into the expanding world of carbohydrate-active enzymes
    • Davies, G. J., Gloster, T. M., and Henrissat, B. (2005). Recent structural insights into the expanding world of carbohydrate-active enzymes. Curr. Opin. Struct. Biol. 15, 637-645. doi: 10.1016/j.sbi.2005.10.008
    • (2005) Curr. Opin. Struct. Biol , vol.15 , pp. 637-645
    • Davies, G.J.1    Gloster, T.M.2    Henrissat, B.3
  • 16
    • 2942534432 scopus 로고    scopus 로고
    • A pH-sensitive assay for galactosyltransferase
    • Deng, C., and Chen, R. R. (2004). A pH-sensitive assay for galactosyltransferase. Anal. Biochem. 330, 219-226. doi: 10.1016/j.ab.2004.03.014
    • (2004) Anal. Biochem , vol.330 , pp. 219-226
    • Deng, C.1    Chen, R.R.2
  • 17
    • 70350734277 scopus 로고    scopus 로고
    • A bacterial glycosyltransferase gene toolbox: generation and applications
    • Erb, A., Weiß, H., Härle, J., and Bechthold, A. (2009). A bacterial glycosyltransferase gene toolbox: generation and applications. Phytochemistry 70, 1812-1821. doi: 10.1016/j.phytochem.2009.05.019
    • (2009) Phytochemistry , vol.70 , pp. 1812-1821
    • Erb, A.1    Weiß, H.2    Härle, J.3    Bechthold, A.4
  • 18
    • 34547547069 scopus 로고    scopus 로고
    • Directed evolution can rapidly improve the activity of chimeric assembly-line enzymes
    • Fischbach, M. A., Lai, J. R., Roche, E. D., Walsh, C. T., and Liu, D. R. (2007). Directed evolution can rapidly improve the activity of chimeric assembly-line enzymes. Proc. Natl. Acad. Sci. U.S.A. 104, 11951-11956. doi: 10.1073/pnas.0705348104
    • (2007) Proc. Natl. Acad. Sci. U.S.A , vol.104 , pp. 11951-11956
    • Fischbach, M.A.1    Lai, J.R.2    Roche, E.D.3    Walsh, C.T.4    Liu, D.R.5
  • 19
  • 20
    • 84908673948 scopus 로고    scopus 로고
    • Advances in understanding glycosyltransferases from a structural perspective
    • Gloster, T. M. (2014). Advances in understanding glycosyltransferases from a structural perspective. Curr. Opin. Struct. Biol. 28, 131-141. doi: 10.1016/j.sbi.2014.08.012
    • (2014) Curr. Opin. Struct. Biol , vol.28 , pp. 131-141
    • Gloster, T.M.1
  • 21
    • 0037271276 scopus 로고    scopus 로고
    • Fold recognition methods
    • Godzik, A. (2003). Fold recognition methods. Methods Biochem. Anal. 44, 525-546.
    • (2003) Methods Biochem. Anal , vol.44 , pp. 525-546
    • Godzik, A.1
  • 22
    • 0347511689 scopus 로고    scopus 로고
    • Fluorescence readouts in HTS: no gain without pain?
    • Gribbon, P., and Sewing, A. (2003). Fluorescence readouts in HTS: no gain without pain? Drug Discov. Today 8, 1035-1043. doi: 10.1016/S1359-6446(03)02895-2
    • (2003) Drug Discov. Today , vol.8 , pp. 1035-1043
    • Gribbon, P.1    Sewing, A.2
  • 23
    • 4143085329 scopus 로고    scopus 로고
    • Modulating functional loop movements: the role of highly conserved residues in the correlated loop motions
    • Gunasekaran, K., and Nussinov, R. (2004). Modulating functional loop movements: the role of highly conserved residues in the correlated loop motions. ChemBioChem 5, 224-230. doi: 10.1002/cbic.200300732
    • (2004) ChemBioChem , vol.5 , pp. 224-230
    • Gunasekaran, K.1    Nussinov, R.2
  • 24
    • 62549103791 scopus 로고    scopus 로고
    • Substrate specificities of family 1 UGTs gained by domain swapping
    • Hansen, E. H., Osmani, S. A., Kristensen, C., Møller, B. L., and Hansen, J. (2009). Substrate specificities of family 1 UGTs gained by domain swapping. Phytochemistry 70, 473-482. doi: 10.1016/j.phytochem.2009.01.013
    • (2009) Phytochemistry , vol.70 , pp. 473-482
    • Hansen, E.H.1    Osmani, S.A.2    Kristensen, C.3    Møller, B.L.4    Hansen, J.5
  • 25
    • 0037718345 scopus 로고    scopus 로고
    • Molecular modeling of glycosyltransferases involved in the biosynthesis of blood group A, blood group B, Forssman, and iGb3 antigens and their interaction with substrates
    • Heissigerová, H., Breton, C., Moravcová, J., and Imberty, A. (2003). Molecular modeling of glycosyltransferases involved in the biosynthesis of blood group A, blood group B, Forssman, and iGb3 antigens and their interaction with substrates. Glycobiology 13, 377-386. doi: 10.1093/glycob/cwg042
    • (2003) Glycobiology , vol.13 , pp. 377-386
    • Heissigerová, H.1    Breton, C.2    Moravcová, J.3    Imberty, A.4
  • 26
    • 0034976452 scopus 로고    scopus 로고
    • Two sequence elements of glycosyltransferases involved in urdamycin biosynthesis are responsible for substrate specificity and enzymatic activity
    • Hoffmeister, D., Ichinose, K., and Bechthold, A. (2001). Two sequence elements of glycosyltransferases involved in urdamycin biosynthesis are responsible for substrate specificity and enzymatic activity. Chem. Biol. 8, 557-567. doi: 10.1016/S1074-5521(01)00039-4
    • (2001) Chem. Biol , vol.8 , pp. 557-567
    • Hoffmeister, D.1    Ichinose, K.2    Bechthold, A.3
  • 27
    • 0036009337 scopus 로고    scopus 로고
    • Engineered urdamycin glycosyltransferases are broadened and altered in substrate specificity
    • Hoffmeister, D., Wilkinson, B., Foster, G., Sidebottom, P. J., Ichinose, K., and Bechthold, A. (2002). Engineered urdamycin glycosyltransferases are broadened and altered in substrate specificity. Chem. Biol. 9, 287-295. doi: 10.1016/S1074-5521(02)00114-X
    • (2002) Chem. Biol , vol.9 , pp. 287-295
    • Hoffmeister, D.1    Wilkinson, B.2    Foster, G.3    Sidebottom, P.J.4    Ichinose, K.5    Bechthold, A.6
  • 28
    • 0031964934 scopus 로고    scopus 로고
    • Measurement of a(1-3) fucosyltransferase activity using scintillation proximity
    • Hood, C. M., Kelly, V. A., Bird, M. I., and Britten, C. J. (1998). Measurement of a(1-3) fucosyltransferase activity using scintillation proximity. Anal. Biochem. 255, 8-12. doi: 10.1006/abio.1997.2449
    • (1998) Anal. Biochem , vol.255 , pp. 8-12
    • Hood, C.M.1    Kelly, V.A.2    Bird, M.I.3    Britten, C.J.4
  • 29
    • 84883471400 scopus 로고    scopus 로고
    • Biophysical characterization of membrane proteins in nanodiscs
    • Inagaki, S., Ghirlandob, R., and Grisshamme, R. (2013). Biophysical characterization of membrane proteins in nanodiscs. Methods 59, 287-300. doi: 10.1016/j.ymeth.2012.11.006
    • (2013) Methods , vol.59 , pp. 287-300
    • Inagaki, S.1    Ghirlandob, R.2    Grisshamme, R.3
  • 30
    • 33947260554 scopus 로고    scopus 로고
    • Rho-glucosylating Clostridium difficile toxins A and B: new insights into structure and function
    • Jank, T., Giesemann, T., and Aktories, K. (2007). Rho-glucosylating Clostridium difficile toxins A and B: new insights into structure and function. Glycobiology 17, 15R-22R. doi: 10.1093/glycob/cwm004
    • (2007) Glycobiology , vol.17 , pp. 15R-22R
    • Jank, T.1    Giesemann, T.2    Aktories, K.3
  • 31
    • 84874039506 scopus 로고    scopus 로고
    • A new approach to inhibit human [small beta]-tryptase by protein surface binding of four-armed peptide ligands with two different sets of arms
    • Jiang, Q.-Q., Bartsch, L., Sicking, W., Wich, P. R., Heider, D., Hoffmann, D., et al. (2013). A new approach to inhibit human [small beta]-tryptase by protein surface binding of four-armed peptide ligands with two different sets of arms. Organ. Biomol. Chem. 11, 1631-1639. doi: 10.1039/c3ob27302d
    • (2013) Organ. Biomol. Chem , vol.11 , pp. 1631-1639
    • Jiang, Q.-Q.1    Bartsch, L.2    Sicking, W.3    Wich, P.R.4    Heider, D.5    Hoffmann, D.6
  • 32
    • 33846815083 scopus 로고    scopus 로고
    • Characterization and engineering of glycosyltransferases responsible for steroid saponin biosynthesis in Solanaceous plants
    • Kohara, A., Nakajima, C., Yoshida, S., and Muranaka, T. (2007). Characterization and engineering of glycosyltransferases responsible for steroid saponin biosynthesis in Solanaceous plants. Phytochemistry 68, 478-486. doi: 10.1016/j.phytochem.2006.11.020
    • (2007) Phytochemistry , vol.68 , pp. 478-486
    • Kohara, A.1    Nakajima, C.2    Yoshida, S.3    Muranaka, T.4
  • 33
    • 0034521981 scopus 로고    scopus 로고
    • Calculating structures and free energies of complex molecules:?. combining molecular mechanics and continuum models
    • Kollman, P. A., Massova, I., Reyes, C., Kuhn, B., Huo, S., Chong, L., et al. (2000). Calculating structures and free energies of complex molecules:? combining molecular mechanics and continuum models. Acc. Chem. Res. 33, 889-897. doi: 10.1021/ar000033j
    • (2000) Acc. Chem. Res , vol.33 , pp. 889-897
    • Kollman, P.A.1    Massova, I.2    Reyes, C.3    Kuhn, B.4    Huo, S.5    Chong, L.6
  • 35
    • 84891524320 scopus 로고    scopus 로고
    • Development of a highly sensitive, high-throughput assay for glycosyltransferases using enzyme-coupled fluorescence detection
    • Kumagai, K., Kojima, H., Okabe, T., and Nagano, T. (2014). Development of a highly sensitive, high-throughput assay for glycosyltransferases using enzyme-coupled fluorescence detection. Anal. Biochem. 447, 146-155. doi: 10.1016/j.ab.2013.11.025
    • (2014) Anal. Biochem , vol.447 , pp. 146-155
    • Kumagai, K.1    Kojima, H.2    Okabe, T.3    Nagano, T.4
  • 36
    • 49449087287 scopus 로고    scopus 로고
    • Glycosyltransferases: structures, functions, and mechanisms
    • Lairson, L. L., Henrissat, B., Davies, G. J., and Withers, S. G. (2008). Glycosyltransferases: structures, functions, and mechanisms. Annu. Rev. Biochem. 77, 521-555. doi: 10.1146/annurev.biochem.76.061005.092322
    • (2008) Annu. Rev. Biochem , vol.77 , pp. 521-555
    • Lairson, L.L.1    Henrissat, B.2    Davies, G.J.3    Withers, S.G.4
  • 37
    • 84924064692 scopus 로고    scopus 로고
    • Expression of the functional recombinant human glycosyltransferase GalNAcT2 in Escherichia coli
    • Lauber, J., Handrick, R., Leptihn, S., Durre, P., and Gaisser, S. (2015). Expression of the functional recombinant human glycosyltransferase GalNAcT2 in Escherichia coli. Microb. Cell Fact. 14:3. doi: 10.1186/s12934-014-0186-0
    • (2015) Microb. Cell Fact , vol.14 , pp. 3
    • Lauber, J.1    Handrick, R.2    Leptihn, S.3    Durre, P.4    Gaisser, S.5
  • 39
    • 0038309565 scopus 로고    scopus 로고
    • Three monophyletic superfamilies account for the majority of the known glycosyltransferases
    • Liu, J., and Mushegian, A. (2003). Three monophyletic superfamilies account for the majority of the known glycosyltransferases. Protein Sci. 12, 1418-1431. doi: 10.1110/ps.0302103
    • (2003) Protein Sci , vol.12 , pp. 1418-1431
    • Liu, J.1    Mushegian, A.2
  • 40
    • 33144487285 scopus 로고    scopus 로고
    • Transcreener: screening enzymes involved in covalent regulation
    • Lowery, R. G., and Kleman-Leyer, K. (2006). Transcreener: screening enzymes involved in covalent regulation. Expert Opin. Ther. Targets 10, 179-190. doi: 10.1517/14728222.10.1.179
    • (2006) Expert Opin. Ther. Targets , vol.10 , pp. 179-190
    • Lowery, R.G.1    Kleman-Leyer, K.2
  • 41
    • 53249100304 scopus 로고    scopus 로고
    • Features and applications of bacterial glycosyltransferases: current state and prospects
    • Luzhetskyy, A., and Bechthold, A. (2008). Features and applications of bacterial glycosyltransferases: current state and prospects. Appl. Microbiol. Biotechnol. 80, 945-952. doi: 10.1007/s00253-008-1672-2
    • (2008) Appl. Microbiol. Biotechnol , vol.80 , pp. 945-952
    • Luzhetskyy, A.1    Bechthold, A.2
  • 42
    • 84863797329 scopus 로고    scopus 로고
    • Identification of residues that confer sugar selectivity to UDP glycosyltransferase 3A (UGT3A) enzymes
    • Meech, R., Rogers, A., Zhuang, L., Lewis, B. C., Miners, J. O., and Mackenzie, P. I. (2012). Identification of residues that confer sugar selectivity to UDP glycosyltransferase 3A (UGT3A) enzymes. J. Biol. Chem. 287, 24122-24130. doi: 10.1074/jbc.M112.343608
    • (2012) J. Biol. Chem , vol.287 , pp. 24122-24130
    • Meech, R.1    Rogers, A.2    Zhuang, L.3    Lewis, B.C.4    Miners, J.O.5    Mackenzie, P.I.6
  • 43
    • 34547651180 scopus 로고    scopus 로고
    • Structure and action of the C-C bond-forming glycosyltransferase UrdGT2 involved in the biosynthesis of the antibiotic urdamycin
    • Mittler, M., Bechthold, A., and Schulz, G. E. (2007). Structure and action of the C-C bond-forming glycosyltransferase UrdGT2 involved in the biosynthesis of the antibiotic urdamycin. J. Mol. Biol. 372, 67-76. doi: 10.1016/j.jmb.2007.06.005
    • (2007) J. Mol. Biol , vol.372 , pp. 67-76
    • Mittler, M.1    Bechthold, A.2    Schulz, G.E.3
  • 44
    • 13644270326 scopus 로고    scopus 로고
    • A high-throughput screening system for a1-3 fucosyltransferase-VII inhibitor utilizing scintillation proximity assay
    • Miyashiro, M., Furuya, S., and Sugita, T. (2005). A high-throughput screening system for a1-3 fucosyltransferase-VII inhibitor utilizing scintillation proximity assay. Anal. Biochem. 338, 168-170. doi: 10.1016/j.ab.2004.11.028
    • (2005) Anal. Biochem , vol.338 , pp. 168-170
    • Miyashiro, M.1    Furuya, S.2    Sugita, T.3
  • 45
    • 84906875240 scopus 로고    scopus 로고
    • Substrate specificity of cytoplasmic N-glycosyltransferase
    • Naegeli, A., Michaud, G., Schubert, M., Lin, C.-W., Lizak, C., Darbre, T., et al. (2014). Substrate specificity of cytoplasmic N-glycosyltransferase. J. Biol. Chem. 289, 24521-24532. doi: 10.1074/jbc.M114.579326
    • (2014) J. Biol. Chem , vol.289 , pp. 24521-24532
    • Naegeli, A.1    Michaud, G.2    Schubert, M.3    Lin, C.-W.4    Lizak, C.5    Darbre, T.6
  • 46
    • 0035799359 scopus 로고    scopus 로고
    • Analysis of enzyme kinetics using electrospray ionization mass spectrometry and multiple reaction monitoring: fucosyltransferase V
    • Norris, A. J., Whitelegge, J. P., Faull, K. F., and Toyokuni, T. (2001). Analysis of enzyme kinetics using electrospray ionization mass spectrometry and multiple reaction monitoring: fucosyltransferase V. Biochemistry 40, 3774-3779. doi: 10.1021/bi010029v
    • (2001) Biochemistry , vol.40 , pp. 3774-3779
    • Norris, A.J.1    Whitelegge, J.P.2    Faull, K.F.3    Toyokuni, T.4
  • 47
    • 62349122684 scopus 로고    scopus 로고
    • Substrate specificity of plant UDP-dependent glycosyltransferases predicted from crystal structures and homology modeling
    • Osmani, S. A., Bak, S., and Møller, B. L. (2009). Substrate specificity of plant UDP-dependent glycosyltransferases predicted from crystal structures and homology modeling. Phytochemistry 70, 325-347. doi: 10.1016/j.phytochem.2008.12.009
    • (2009) Phytochemistry , vol.70 , pp. 325-347
    • Osmani, S.A.1    Bak, S.2    Møller, B.L.3
  • 48
    • 0035646703 scopus 로고    scopus 로고
    • Assays for Glycosyltransferases
    • Palcic, M. M., and Sujino, K. (2001). Assays for Glycosyltransferases. Trends Glycosci. Glycotechnol. 13, 361-370. doi: 10.4052/tigg.13.361
    • (2001) Trends Glycosci. Glycotechnol , vol.13 , pp. 361-370
    • Palcic, M.M.1    Sujino, K.2
  • 49
    • 84928550020 scopus 로고    scopus 로고
    • Comparative interactions of withanolides and sterols with two members of sterol glycosyltransferases from Withania somnifera
    • Pandey, V., Dhar, Y., Gupta, P., Bag, S., Atri, N., Asif, M., et al. (2015). Comparative interactions of withanolides and sterols with two members of sterol glycosyltransferases from Withania somnifera. BMC Bioinformatics 16:120. doi: 10.1186/s12859-015-0563-7
    • (2015) BMC Bioinformatics , vol.16 , pp. 120
    • Pandey, V.1    Dhar, Y.2    Gupta, P.3    Bag, S.4    Atri, N.5    Asif, M.6
  • 50
    • 58549102566 scopus 로고    scopus 로고
    • Expanding substrate specificity of GT-B fold glycosyltransferase via domain swapping and high-throughput screening
    • Park, S.-H., Park, H.-Y., Sohng, J. K., Lee, H. C., Liou, K., Yoon, Y. J., et al. (2009). Expanding substrate specificity of GT-B fold glycosyltransferase via domain swapping and high-throughput screening. Biotechnol. Bioeng. 102, 988-994. doi: 10.1002/bit.22150
    • (2009) Biotechnol. Bioeng , vol.102 , pp. 988-994
    • Park, S.-H.1    Park, H.-Y.2    Sohng, J.K.3    Lee, H.C.4    Liou, K.5    Yoon, Y.J.6
  • 51
    • 0035151023 scopus 로고    scopus 로고
    • Crystal structure of the retaining galactosyltransferase LgtC from Neisseria meningitidis in complex with donor and acceptor sugar analogs
    • Persson, K., Ly, H. D., Dieckelmann, M., Wakarchuk, W. W., Withers, S. G., and Strynadka, N. C. J. (2001). Crystal structure of the retaining galactosyltransferase LgtC from Neisseria meningitidis in complex with donor and acceptor sugar analogs. Nat. Struct. Mol. Biol. 8, 166-175. doi: 10.1038/84168
    • (2001) Nat. Struct. Mol. Biol , vol.8 , pp. 166-175
    • Persson, K.1    Ly, H.D.2    Dieckelmann, M.3    Wakarchuk, W.W.4    Withers, S.G.5    Strynadka, N.C.J.6
  • 52
    • 43849103990 scopus 로고    scopus 로고
    • A high-throughput pH indicator assay for screening glycosyltransferase saturation mutagenesis libraries
    • Persson, M., and Palcic, M. M. (2008). A high-throughput pH indicator assay for screening glycosyltransferase saturation mutagenesis libraries. Anal. Biochem. 378, 1-7. doi: 10.1016/j.ab.2008.03.006
    • (2008) Anal. Biochem , vol.378 , pp. 1-7
    • Persson, M.1    Palcic, M.M.2
  • 53
    • 0042357447 scopus 로고    scopus 로고
    • Potential energy hypersurfaces of nucleotide-sugars: Ab initio calculations, force-field parametrization, and exploration of the flexibility
    • Petrova, P., Koca, J., and Imberty, A. (1999). Potential energy hypersurfaces of nucleotide-sugars: Ab initio calculations, force-field parametrization, and exploration of the flexibility. J. Am. Chem. Soc. 121, 5535-5547. doi: 10.1021/ja983854g
    • (1999) J. Am. Chem. Soc , vol.121 , pp. 5535-5547
    • Petrova, P.1    Koca, J.2    Imberty, A.3
  • 54
    • 11844280851 scopus 로고    scopus 로고
    • Substrate-induced conformational changes in glycosyltransferases
    • Qasba, P. K., Ramakrishnan, B., and Boeggeman, E. (2002). Substrate-induced conformational changes in glycosyltransferases. Trends Biochem. Sci. 30, 53-62. doi: 10.1016/j.tibs.2004.11.005
    • (2002) Trends Biochem. Sci , vol.30 , pp. 53-62
    • Qasba, P.K.1    Ramakrishnan, B.2    Boeggeman, E.3
  • 55
    • 0036019552 scopus 로고    scopus 로고
    • Crystal structure of β1, 4-galactosyltransferase complex with UDP-Gal reveals an oligosaccharide acceptor binding site
    • Ramakrishnan, B., Balaji, P. V., and Qasba, P. K. (2002). Crystal structure of β1, 4-galactosyltransferase complex with UDP-Gal reveals an oligosaccharide acceptor binding site. J. Mol. Biol. 318, 491-502. doi: 10.1016/S0022-2836(02)00020-7
    • (2002) J. Mol. Biol , vol.318 , pp. 491-502
    • Ramakrishnan, B.1    Balaji, P.V.2    Qasba, P.K.3
  • 56
    • 0035967864 scopus 로고    scopus 로고
    • Crystal structure of lactose synthase reveals a large conformational change in its catalytic component, the β1, 4-galactosyltransferase-I1
    • Ramakrishnan, B., and Qasba, P. K. (2001). Crystal structure of lactose synthase reveals a large conformational change in its catalytic component, the β1, 4-galactosyltransferase-I1. J. Mol. Biol. 310, 205-218. doi: 10.1006/jmbi.2001.4757
    • (2001) J. Mol. Biol , vol.310 , pp. 205-218
    • Ramakrishnan, B.1    Qasba, P.K.2
  • 57
    • 84887175860 scopus 로고    scopus 로고
    • Formation of a covalent glycosyl-enzyme species in a retaining glycosyltransferase
    • Rojas-Cervellera, V., Ardèvol, A., Boero, M., Planas, A., and Rovira, C. (2013). Formation of a covalent glycosyl-enzyme species in a retaining glycosyltransferase. Chem. A Eur. J. 19, 14018-14023. doi: 10.1002/chem.201302898
    • (2013) Chem. A Eur. J , vol.19 , pp. 14018-14023
    • Rojas-Cervellera, V.1    Ardèvol, A.2    Boero, M.3    Planas, A.4    Rovira, C.5
  • 58
    • 4644354102 scopus 로고    scopus 로고
    • Recognition of fold and sugar linkage for glycosyltransferases by multivariate sequence analysis
    • Rosén, M. L., Edman, M., Sjöström, M., and Wieslander, Å (2004). Recognition of fold and sugar linkage for glycosyltransferases by multivariate sequence analysis. J. Biol. Chem. 279, 38683-38692. doi: 10.1074/jbc.M402925200
    • (2004) J. Biol. Chem , vol.279 , pp. 38683-38692
    • Rosén, M.L.1    Edman, M.2    Sjöström, M.3    Wieslander, Å4
  • 59
    • 84901827541 scopus 로고    scopus 로고
    • Fast carbohydrate analysis via liquid chromatography coupled with ultra violet and electrospray ionization ion trap detection in 96-well format
    • Rühmann, B., Schmid, J., and Sieber, V. (2014). Fast carbohydrate analysis via liquid chromatography coupled with ultra violet and electrospray ionization ion trap detection in 96-well format. J. Chromatogr. A 1350, 44-50. doi: 10.1016/j.chroma.2014.05.014
    • (2014) J. Chromatogr. A , vol.1350 , pp. 44-50
    • Rühmann, B.1    Schmid, J.2    Sieber, V.3
  • 61
    • 84881007618 scopus 로고    scopus 로고
    • Geometric attributes of retaining glycosyltransferase enzymes favor an orthogonal mechanism
    • Schuman, B., Evans, S. V., and Fyles, T. M. (2013). Geometric attributes of retaining glycosyltransferase enzymes favor an orthogonal mechanism. PLoS ONE 8:e71077. doi: 10.1371/journal.pone.0071077
    • (2013) PLoS ONE , vol.8
    • Schuman, B.1    Evans, S.V.2    Fyles, T.M.3
  • 62
    • 77955525429 scopus 로고    scopus 로고
    • An easy colorimetric assay for glycosyltransferases
    • Shen, R., Wang, S., Ma, X., Xian, J., Li, J., Zhang, L., et al. (2010). An easy colorimetric assay for glycosyltransferases. Biochemistry (Mosc) 75, 944-950. doi: 10.1134/S0006297910070187
    • (2010) Biochemistry (Mosc) , vol.75 , pp. 944-950
    • Shen, R.1    Wang, S.2    Ma, X.3    Xian, J.4    Li, J.5    Zhang, L.6
  • 63
    • 1542268953 scopus 로고    scopus 로고
    • Molecular dynamics simulations of glycosyltransferase LgtC
    • Šnajdrová, L., Kulhánek, P., Imberty, A., and Koca, J. (2004). Molecular dynamics simulations of glycosyltransferase LgtC. Carbohydr. Res. 339, 995-1006. doi: 10.1016/j.carres.2003.12.024
    • (2004) Carbohydr. Res , vol.339 , pp. 995-1006
    • Šnajdrová, L.1    Kulhánek, P.2    Imberty, A.3    Koca, J.4
  • 65
    • 77957201940 scopus 로고    scopus 로고
    • Glycosyltransferases and their assays
    • Wagner, G. K., and Pesnot, T. (2010). Glycosyltransferases and their assays. Chembiochem 11, 1939-1949. doi: 10.1002/cbic.201000201
    • (2010) Chembiochem , vol.11 , pp. 1939-1949
    • Wagner, G.K.1    Pesnot, T.2
  • 66
    • 70349850632 scopus 로고    scopus 로고
    • Structure, mechanism and engineering of plant natural product glycosyltransferases
    • Wang, X. (2009). Structure, mechanism and engineering of plant natural product glycosyltransferases. FEBS Lett. 583, 3303-3309. doi: 10.1016/j.febslet.2009.09.042
    • (2009) FEBS Lett , vol.583 , pp. 3303-3309
    • Wang, X.1
  • 67
    • 54049149694 scopus 로고    scopus 로고
    • The impact of enzyme engineering upon natural product glycodiversification
    • Williams, G. J., Gantt, R. W., and Thorson, J. S. (2008a). The impact of enzyme engineering upon natural product glycodiversification. Curr. Opin. Chem. Biol. 12, 556-564. doi: 10.1016/j.cbpa.2008.07.013
    • (2008) Curr. Opin. Chem. Biol , vol.12 , pp. 556-564
    • Williams, G.J.1    Gantt, R.W.2    Thorson, J.S.3
  • 68
    • 41949101106 scopus 로고    scopus 로고
    • Optimizing glycosyltransferase specificity via "hot spot" saturation mutagenesis presents a catalyst for novobiocin glycorandomization
    • Williams, G. J., Goff, R. D., Zhang, C., and Thorson, J. S. (2008b). Optimizing glycosyltransferase specificity via "hot spot" saturation mutagenesis presents a catalyst for novobiocin glycorandomization. Chem. Biol. 15, 393-401. doi: 10.1016/j.chembiol.2008.02.017
    • (2008) Chem. Biol , vol.15 , pp. 393-401
    • Williams, G.J.1    Goff, R.D.2    Zhang, C.3    Thorson, J.S.4
  • 69
    • 40649092405 scopus 로고    scopus 로고
    • A high-throughput fluorescence-based glycosyltransferase screen and its application in directed evolution
    • Williams, G. J., and Thorson, J. S. (2008). A high-throughput fluorescence-based glycosyltransferase screen and its application in directed evolution. Nat. Protoc. 3, 357-362. doi: 10.1038/nprot.2007.538
    • (2008) Nat. Protoc , vol.3 , pp. 357-362
    • Williams, G.J.1    Thorson, J.S.2
  • 70
    • 34548685673 scopus 로고    scopus 로고
    • Expanding the promiscuity of a natural-product glycosyltransferase by directed evolution
    • Williams, G. J., Zhang, C., and Thorson, J. S. (2007). Expanding the promiscuity of a natural-product glycosyltransferase by directed evolution. Nat. Chem. Biol. 3, 657-662. doi: 10.1038/nchembio.2007.28
    • (2007) Nat. Chem. Biol , vol.3 , pp. 657-662
    • Williams, G.J.1    Zhang, C.2    Thorson, J.S.3
  • 71
    • 31044442787 scopus 로고    scopus 로고
    • Label-free, real-time glycosyltransferase assay based on a fluorescent artificial chemosensor
    • Wongkongkatep, J., Miyahara, Y., Ojida, A., and Hamachi, I. (2006). Label-free, real-time glycosyltransferase assay based on a fluorescent artificial chemosensor. Angew. Chem. Int. Ed. Engl. 45, 665-668. doi: 10.1002/anie.200503107
    • (2006) Angew. Chem. Int. Ed. Engl , vol.45 , pp. 665-668
    • Wongkongkatep, J.1    Miyahara, Y.2    Ojida, A.3    Hamachi, I.4
  • 72
    • 84868628568 scopus 로고    scopus 로고
    • Enzymatic glycosylation of nonbenzoquinone geldanamycin analogs via Bacillus UDP-glycosyltransferase
    • Wu, C.-Z., Jang, J.-K., Woo, M., Ahn, J. S., Kim, J. S., and Hong, Y.-S. (2012). Enzymatic glycosylation of nonbenzoquinone geldanamycin analogs via Bacillus UDP-glycosyltransferase. Appl. Environ. Microbiol. 78, 7680-7686. doi: 10.1128/AEM.02004-12
    • (2012) Appl. Environ. Microbiol , vol.78 , pp. 7680-7686
    • Wu, C.-Z.1    Jang, J.-K.2    Woo, M.3    Ahn, J.S.4    Kim, J.S.5    Hong, Y.-S.6
  • 73
    • 79956153138 scopus 로고    scopus 로고
    • Universal phosphatase-coupled glycosyltransferase assay
    • Wu, Z. L., Ethen, C. M., Prather, B., Machacek, M., and Jiang, W. (2011). Universal phosphatase-coupled glycosyltransferase assay. Glycobiology 21, 727-733. doi: 10.1093/glycob/cwq187
    • (2011) Glycobiology , vol.21 , pp. 727-733
    • Wu, Z.L.1    Ethen, C.M.2    Prather, B.3    Machacek, M.4    Jiang, W.5
  • 74
    • 84864037704 scopus 로고    scopus 로고
    • Chemico-genetic strategies to inhibit the leukemic potential of threonine aspartase-1
    • Wünsch, D., Fetz, V., Heider, D., Tenzer, S., Bier, C., Kunst, L., et al. (2012). Chemico-genetic strategies to inhibit the leukemic potential of threonine aspartase-1. Blood Cancer J. 2, e77. doi: 10.1038/bcj.2012.22
    • (2012) Blood Cancer J , vol.2
    • Wünsch, D.1    Fetz, V.2    Heider, D.3    Tenzer, S.4    Bier, C.5    Kunst, L.6
  • 75
    • 21144450850 scopus 로고    scopus 로고
    • High-throughput mass-spectrometry monitoring for multisubstrate enzymes: determining the kinetic parameters and catalytic activities of glycosyltransferases
    • Yang, M., Brazier, M., Edwards, R., and Davis, B. G. (2005). High-throughput mass-spectrometry monitoring for multisubstrate enzymes: determining the kinetic parameters and catalytic activities of glycosyltransferases. Chembiochem 6, 346-357. doi: 10.1002/cbic.200400100
    • (2005) Chembiochem , vol.6 , pp. 346-357
    • Yang, M.1    Brazier, M.2    Edwards, R.3    Davis, B.G.4
  • 76
    • 84929163765 scopus 로고    scopus 로고
    • Mechanism of the effect of glycosyltransferase GLT8D2 on fatty liver
    • Zhan, Y., Zhao, F., Xie, P., Zhong, L., Li, D., Gai, Q., et al. (2015). Mechanism of the effect of glycosyltransferase GLT8D2 on fatty liver. Lipids Health Dis. 14, 43. doi: 10.1186/s12944-015-0040-3
    • (2015) Lipids Health Dis , vol.14 , pp. 43
    • Zhan, Y.1    Zhao, F.2    Xie, P.3    Zhong, L.4    Li, D.5    Gai, Q.6
  • 77
    • 84904514340 scopus 로고    scopus 로고
    • The highly conserved domain of unknown function 1792 has a distinct glycosyltransferase fold
    • Zhang, H., Zhu, F., Yang, T., Ding, L., Zhou, M., Li, J., et al. (2014). The highly conserved domain of unknown function 1792 has a distinct glycosyltransferase fold. Nat. Commun. 5:4339. doi: 10.1038/ncomms5339
    • (2014) Nat. Commun , vol.5 , pp. 4339
    • Zhang, H.1    Zhu, F.2    Yang, T.3    Ding, L.4    Zhou, M.5    Li, J.6
  • 78
    • 84880467265 scopus 로고    scopus 로고
    • Structural and biochemical analysis of a bacterial glycosyltransferase
    • Zhu, F., Wu, R., Zhang, H., and Wu, H. (2013). Structural and biochemical analysis of a bacterial glycosyltransferase. Methods Mol. Biol. (Clifton, N.J.) 1022, 29-39. doi: 10.1007/978-1-62703-465-4_3
    • (2013) Methods Mol. Biol. (Clifton, N.J.) , vol.1022 , pp. 29-39
    • Zhu, F.1    Wu, R.2    Zhang, H.3    Wu, H.4
  • 79
    • 84953911391 scopus 로고    scopus 로고
    • Carbohydrate scaffolds as glycosyltransferase inhibitors with in vivo antibacterial activity
    • Zuegg, J., Muldoon, C., Adamson, G., Mckeveney, D., Le Thanh, G., Premraj, R., et al. (2015). Carbohydrate scaffolds as glycosyltransferase inhibitors with in vivo antibacterial activity. Nat. Commun. 6:7719. doi: 10.1038/ncomms8719
    • (2015) Nat. Commun , vol.6 , pp. 7719
    • Zuegg, J.1    Muldoon, C.2    Adamson, G.3    Mckeveney, D.4    Le Thanh, G.5    Premraj, R.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.