메뉴 건너뛰기




Volumn 29, Issue 4, 2015, Pages 329-337

Beyond Manual Tuning of Hyperparameters

Author keywords

Automatic machine learning; Autonomous learning; Deep learning; Hyperparameter optimization

Indexed keywords

LEARNING ALGORITHMS;

EID: 84961754111     PISSN: 09331875     EISSN: 16101987     Source Type: Journal    
DOI: 10.1007/s13218-015-0381-0     Document Type: Article
Times cited : (178)

References (73)
  • 2
    • 85152577740 scopus 로고
    • Generalizing from case studies: A case study
    • Aha DW (1992) Generalizing from case studies: a case study. In: ML, pp 1–10
    • (1992) ML , pp. 1-10
    • Aha, D.W.1
  • 4
    • 0034241361 scopus 로고    scopus 로고
    • Gradient-based optimization of hyperparameters
    • Bengio Y (2000) Gradient-based optimization of hyperparameters. Neural Comput 12(8):1889–1900 DOI: 10.1162/089976600300015187
    • (2000) Neural Comput , vol.12 , Issue.8 , pp. 1889-1900
    • Bengio, Y.1
  • 6
    • 84857855190 scopus 로고    scopus 로고
    • Random search for hyper-parameter optimization
    • Bergstra J, Bengio Y (2012) Random search for hyper-parameter optimization. JMLR 13:281–305
    • (2012) JMLR , vol.13 , pp. 281-305
    • Bergstra, J.1    Bengio, Y.2
  • 8
    • 84897558007 scopus 로고    scopus 로고
    • Making a science of model search: Hyperparameter optimization in hundreds of dimensions for vision architectures
    • Bergstra J, Yamins D, Cox DD (2013) Making a science of model search: Hyperparameter optimization in hundreds of dimensions for vision architectures. In: Proceedings of ICML’13
    • (2013) Proceedings of ICML’13
    • Bergstra, J.1    Yamins, D.2    Cox, D.D.3
  • 10
    • 33745780108 scopus 로고    scopus 로고
    • Experiment databases: A novel methodology for experimental research
    • Springer
    • Blockeel H (2006) Experiment databases: a novel methodology for experimental research. In: Knowledge discovery in inductive databases, pp 72–85. Springer
    • (2006) Knowledge Discovery in Inductive Databases , pp. 72-85
    • Blockeel, H.1
  • 11
    • 84958528434 scopus 로고
    • Characterizing the applicability of classification algorithms using meta-level learning
    • Brazdil P, Gama J, Henery B (1994) Characterizing the applicability of classification algorithms using meta-level learning. In: Proceedings of ECML’94, pp 83–102
    • (1994) Proceedings of ECML’94 , pp. 83-102
    • Brazdil, P.1    Gama, J.2    Henery, B.3
  • 14
    • 84866714584 scopus 로고    scopus 로고
    • Multi-column deep neural networks for image classification
    • IEEE
    • Ciresan D, Meier U, Schmidhuber J (2012) Multi-column deep neural networks for image classification. In: Proceedings of CVPR’12, pp 3642–3649. IEEE
    • (2012) Proceedings of CVPR’12 , pp. 3642-3649
    • Ciresan, D.1    Meier, U.2    Schmidhuber, J.3
  • 18
    • 33747185668 scopus 로고    scopus 로고
    • Using a data metric for preprocessing advice for data mining applications
    • Engels R, Theusinger C (1998) Using a data metric for preprocessing advice for data mining applications. In: Proceedings of ECAI’98, pp 430–434
    • (1998) Proceedings of ECAI’98 , pp. 430-434
    • Engels, R.1    Theusinger, C.2
  • 19
    • 84905846583 scopus 로고    scopus 로고
    • Analysing differences between algorithm configurations through ablation
    • Fawcett C, Hoos H (2013) Analysing differences between algorithm configurations through ablation. In: Proceedings of MIC’13, pp 123–132
    • (2013) Proceedings of MIC’13 , pp. 123-132
    • Fawcett, C.1    Hoos, H.2
  • 21
    • 82455210873 scopus 로고    scopus 로고
    • Carvalho, A.C.P.L.F.: combining meta-learning and search techniques to select parameters for support vector machines
    • Gomes TAF, Prudêncio RBC, Soares C, Rossi ALD (2012) Carvalho, A.C.P.L.F.: combining meta-learning and search techniques to select parameters for support vector machines. Neurocomputing 75(1):3–13 DOI: 10.1016/j.neucom.2011.07.005
    • (2012) Neurocomputing , vol.75 , Issue.1 , pp. 3-13
    • Gomes, T.A.F.1    Prudêncio, R.B.C.2    Soares, C.3    Rossi, A.L.D.4
  • 24
    • 84885202726 scopus 로고    scopus 로고
    • Feedback provision strategies in intelligent tutoring systems based on clustered solution spaces
    • Desel J, Haake JM, Spannagel C, Köllen, Hagen, Germany
    • Gross S, Mokbel B, Hammer B, Pinkwart N (2012) Feedback provision strategies in intelligent tutoring systems based on clustered solution spaces. In: Desel J, Haake JM, Spannagel C (eds) DeLFI 2012: Die 10. e-Learning Fachtagung Informatik, pp 27–38. Köllen, Hagen, Germany
    • (2012) Delfi 2012: Die 10. E-Learning Fachtagung Informatik , pp. 27-38
    • Gross, S.1    Mokbel, B.2    Hammer, B.3    Pinkwart, N.4
  • 25
    • 58849118133 scopus 로고    scopus 로고
    • Predicting the performance of learning algorithms using support vector machines as meta-regressors
    • Guerra SB, Prudłncio RB, Ludermir TB (2008) Predicting the performance of learning algorithms using support vector machines as meta-regressors. In: Proceedings of ICANN’08, pp 523–532
    • (2008) Proceedings of ICANN’08 , pp. 523-532
    • Guerra, S.B.1    Prudłncio, R.B.2    Ludermir, T.B.3
  • 26
    • 56549111881 scopus 로고    scopus 로고
    • A novel LS-SVMs hyper-parameter selection based on particle swarm optimization
    • Guo X, Yang J, Wu C, Wang C, Liang Y (2008) A novel LS-SVMs hyper-parameter selection based on particle swarm optimization. Neurocomputing 71(16):3211–3215 DOI: 10.1016/j.neucom.2008.04.027
    • (2008) Neurocomputing , vol.71 , Issue.16 , pp. 3211-3215
    • Guo, X.1    Yang, J.2    Wu, C.3    Wang, C.4    Liang, Y.5
  • 27
    • 0001777104 scopus 로고
    • Methods for comparison
    • Michie D, Spiegelhalter DJ, Taylor CC, Ellis Horwood, New York
    • Henery RJ (1994) Methods for comparison. In: Michie D, Spiegelhalter DJ, Taylor CC (eds) Machine learning, neural and statistical classification. Ellis Horwood, New York
    • (1994) Machine Learning, Neural and Statistical Classification
    • Henery, R.J.1
  • 28
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • Hinton GE, Osindero S, Teh Y (2006) A fast learning algorithm for deep belief nets. Neural Comput 18(7)
    • (2006) Neural Comput , vol.18 , Issue.7
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.3
  • 29
    • 0036522441 scopus 로고    scopus 로고
    • Complexity measures of supervised classification problems
    • Ho TK, Basu M (2002) Complexity measures of supervised classification problems. IEEE Trans Pattern Anal Mach Intell 24(3):289–300 DOI: 10.1109/34.990132
    • (2002) IEEE Trans Pattern Anal Mach Intell , vol.24 , Issue.3 , pp. 289-300
    • Ho, T.K.1    Basu, M.2
  • 30
    • 84942412216 scopus 로고    scopus 로고
    • An efficient approach for assessing hyperparameter importance
    • Hutter F, Hoos H, Leyton-Brown K (2014) An efficient approach for assessing hyperparameter importance. In: Proceeding of ICML’14, pp 754–762
    • (2014) Proceeding of ICML’14 , pp. 754-762
    • Hutter, F.1    Hoos, H.2    Leyton-Brown, K.3
  • 31
    • 73649115991 scopus 로고    scopus 로고
    • ParamILS: an automatic algorithm configuration framework
    • Hutter F, Hoos H, Leyton-Brown K, Stützle T (2009) ParamILS: an automatic algorithm configuration framework. JAIR 36(1):267–306
    • (2009) JAIR , vol.36 , Issue.1 , pp. 267-306
    • Hutter, F.1    Hoos, H.2    Leyton-Brown, K.3    Stützle, T.4
  • 32
    • 84856930049 scopus 로고    scopus 로고
    • Sequential model-based optimization for general algorithm configuration
    • Hutter F, Hoos HH, Leyton-Brown K (2011) Sequential model-based optimization for general algorithm configuration. In: Proceeidngs of LION-5
    • (2011) Proceeidngs of LION-5
    • Hutter, F.1    Hoos, H.H.2    Leyton-Brown, K.3
  • 33
    • 84896062698 scopus 로고    scopus 로고
    • Identifying key algorithm parameters and instance features using forward selection
    • Hutter F, Hoos HH, Leyton-Brown K (2013) Identifying key algorithm parameters and instance features using forward selection. In: Proceedings of LION-7
    • (2013) Proceedings of LION-7
    • Hutter, F.1    Hoos, H.H.2    Leyton-Brown, K.3
  • 34
    • 0000561424 scopus 로고    scopus 로고
    • Efficient global optimization of expensive black box functions
    • Jones DR, Schonlau M, Welch WJ (1998) Efficient global optimization of expensive black box functions. Journal of Global Optim 13:455–492 DOI: 10.1023/A:1008306431147
    • (1998) J Global Optim , vol.13 , pp. 455-492
    • Jones, D.R.1    Schonlau, M.2    Welch, W.J.3
  • 35
    • 0029306995 scopus 로고
    • Statlog: comparison of classification algorithms on large real-world problems
    • King RD, Feng C, Sutherland A (1995) Statlog: comparison of classification algorithms on large real-world problems. Appl Artif Intell 9(3):289–333 DOI: 10.1080/08839519508945477
    • (1995) Appl Artif Intell , vol.9 , Issue.3 , pp. 289-333
    • King, R.D.1    Feng, C.2    Sutherland, A.3
  • 38
    • 0002263996 scopus 로고
    • Convolutional networks for images, speech, and time series
    • LeCun Y, Bengio Y (1995) Convolutional networks for images, speech, and time series. Handb Brain Theory Neural Netw 3361:310
    • (1995) Handb Brain Theory Neural Netw , vol.3361 , pp. 310
    • LeCun, Y.1    Bengio, Y.2
  • 41
    • 0042565834 scopus 로고    scopus 로고
    • Hierarchical Bayesian inference in the visual cortex
    • Lee TS, Mumford D (2003) Hierarchical Bayesian inference in the visual cortex. J Opt Soc Am A Opt Image Sci Vis 20(7):1434–1448 DOI: 10.1364/JOSAA.20.001434
    • (2003) J Opt Soc Am A Opt Image Sci Vis , vol.20 , Issue.7 , pp. 1434-1448
    • Lee, T.S.1    Mumford, D.2
  • 42
    • 85087944254 scopus 로고    scopus 로고
    • Metalearning: A survey of trends and technologies
    • Lemke C, Budka M, Gabrys B (2013) Metalearning: a survey of trends and technologies. Artif. Intell. Rev. pp 1–14
    • (2013) Artif. Intell. Rev. Pp , vol.1 , pp. 14
    • Lemke, C.1    Budka, M.2    Gabrys, B.3
  • 43
    • 46749096794 scopus 로고    scopus 로고
    • Maximal causes for non-linear component extraction
    • Lücke J, Sahani M (2008) Maximal causes for non-linear component extraction. JMLR 9:1227–67
    • (2008) JMLR , vol.9 , pp. 1227-1267
    • Lücke, J.1    Sahani, M.2
  • 44
    • 0001923944 scopus 로고
    • Hoeffding races: Accelerating model selection search for classification and function approximation
    • Maron O, Moore A (1994) Hoeffding races: accelerating model selection search for classification and function approximation. In: Proceeding of NIPS’94, pp 59–66
    • (1994) Proceeding of NIPS’94 , pp. 59-66
    • Maron, O.1    Moore, A.2
  • 45
    • 84878336340 scopus 로고    scopus 로고
    • Information driven self-organization of complex robotic behaviors
    • Martius G, Der R, Ay N (2013) Information driven self-organization of complex robotic behaviors. PLoS One 8(5), e63,400. DOI10.1371/journal.pone.0063400 DOI: 10.1371/journal.pone.0063400
    • (2013) Plos One , vol.8 , Issue.5
    • Martius, G.1    Der, R.2    Ay, N.3
  • 47
    • 85162070336 scopus 로고    scopus 로고
    • Slice sampling covariance hyperparameters of latent Gaussian models
    • Murray I, Adams RP (2010) Slice sampling covariance hyperparameters of latent Gaussian models. In: Proceedings of NIPS’10, pp 1723–1731
    • (2010) Proceedings of NIPS’10 , pp. 1723-1731
    • Murray, I.1    Adams, R.P.2
  • 48
    • 84880053630 scopus 로고    scopus 로고
    • Self-regulating neurons in the sensorimotor loop
    • Rojas I, Joya G, Gabestany J, (eds), Lecture Notes Computer Science, Springer, Berlin Heidelberg
    • Pasemann F (2013) Self-regulating neurons in the sensorimotor loop. In: Rojas I, Joya G, Gabestany J (eds) Advances in Computational Intelligence, vol 7902., Lecture Notes in Computer ScienceSpringer, Berlin Heidelberg, pp 481–491 DOI: 10.1007/978-3-642-38679-4_48
    • (2013) Advances in Computational Intelligence , vol.7902 , pp. 481-491
    • Pasemann, F.1
  • 52
    • 84862192698 scopus 로고    scopus 로고
    • A comprehensive dataset for evaluating approaches of various meta-learning tasks
    • Reif M (2012) A comprehensive dataset for evaluating approaches of various meta-learning tasks. In: Proceedings of ICPRAM’12, vol 1, pp 273–276
    • (2012) Proceedings of ICPRAM’12 , vol.1 , pp. 273-276
    • Reif, M.1
  • 53
    • 84862009037 scopus 로고    scopus 로고
    • Meta-learning for evolutionary parameter optimization of classifiers
    • Reif M, Shafait F, Dengel A (2012) Meta-learning for evolutionary parameter optimization of classifiers. Mach Learn 87(3):357–380 DOI: 10.1007/s10994-012-5286-7
    • (2012) Mach Learn , vol.87 , Issue.3 , pp. 357-380
    • Reif, M.1    Shafait, F.2    Dengel, A.3
  • 54
    • 84910651844 scopus 로고    scopus 로고
    • Deep learning in neural networks: an overview
    • Schmidhuber J (2015) Deep learning in neural networks: an overview. Neural Netw 61:85–117 DOI: 10.1016/j.neunet.2014.09.003
    • (2015) Neural Netw , vol.61 , pp. 85-117
    • Schmidhuber, J.1
  • 55
    • 0347131360 scopus 로고    scopus 로고
    • Global versus local search in constrained optimization of computer models
    • Institute of Mathematical Statistics, Hayward, California
    • Schonlau M, Welch WJ, Jones DR (1998) Global versus local search in constrained optimization of computer models. In: New developments and applications in experimental design, vol 34, pp 11–25. Institute of Mathematical Statistics, Hayward, California
    • (1998) New Developments and Applications in Experimental Design , vol.34 , pp. 11-25
    • Schonlau, M.1    Welch, W.J.2    Jones, D.R.3
  • 56
    • 84908179317 scopus 로고    scopus 로고
    • A truncated em approach for spike-and-slab sparse coding
    • Sheikh AS, Shelton JA, Lücke J (2014) A truncated em approach for spike-and-slab sparse coding. JMLR 15:2653–2687
    • (2014) JMLR , vol.15 , pp. 2653-2687
    • Sheikh, A.S.1    Shelton, J.A.2    Lücke, J.3
  • 60
    • 49749086726 scopus 로고    scopus 로고
    • Cross-disciplinary perspectives on meta-learning for algorithm selection
    • Smith-Miles K (2009) Cross-disciplinary perspectives on meta-learning for algorithm selection. ACM Computing Surveys 41(1), 6:1–6:25
    • (2009) ACM Computing Surveys , vol.41 , Issue.1 , pp. 1-6
    • Smith-Miles, K.1
  • 62
    • 77956501313 scopus 로고    scopus 로고
    • Gaussian process optimization in the bandit setting: No regret and experimental design
    • Srinivas N, Krause A, Kakade S, Seeger M (2010) Gaussian process optimization in the bandit setting: No regret and experimental design. In: Proceedings of ICML’10
    • (2010) Proceedings of ICML’10
    • Srinivas, N.1    Krause, A.2    Kakade, S.3    Seeger, M.4
  • 63
  • 67
    • 85018371540 scopus 로고    scopus 로고
    • Auto-WEKA: Combined selection and hyperparameter optimization of classification algorithms
    • Thornton C, Hutter F, Hoos HH, Leyton-Brown K (2013) Auto-WEKA: combined selection and hyperparameter optimization of classification algorithms. In: Proceedings of KDD’13
    • (2013) Proceedings of KDD’13
    • Thornton, C.1    Hutter, F.2    Hoos, H.H.3    Leyton-Brown, K.4
  • 68
    • 84862023028 scopus 로고    scopus 로고
    • Experiment databases: a new way to share, organize and learn from experiments
    • Vanschoren J, Blockeel H, Pfahringer B, Holmes G (2012) Experiment databases: a new way to share, organize and learn from experiments. Machine Learning 87(2):127–158 DOI: 10.1007/s10994-011-5277-0
    • (2012) Mach Learn , vol.87 , Issue.2 , pp. 127-158
    • Vanschoren, J.1    Blockeel, H.2    Pfahringer, B.3    Holmes, G.4
  • 69
    • 0036791948 scopus 로고    scopus 로고
    • A perspective view and survey of meta-learning
    • Vilalta R, Drissi Y (2002) A perspective view and survey of meta-learning. Artif Intell Rev 18(2):77–95 DOI: 10.1023/A:1019956318069
    • (2002) Artif Intell Rev , vol.18 , Issue.2 , pp. 77-95
    • Vilalta, R.1    Drissi, Y.2
  • 70
    • 79551480483 scopus 로고    scopus 로고
    • Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion
    • Vincent P, Larochelle H, Lajoie I, Bengio Y, Manzagol P (2010) Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. JMLR 11:3371–3408
    • (2010) JMLR , vol.11 , pp. 3371-3408
    • Vincent, P.1    Larochelle, H.2    Lajoie, I.3    Bengio, Y.4    Manzagol, P.5
  • 73
    • 84955448572 scopus 로고    scopus 로고
    • Efficient transfer learning method for automatic hyperparameter tuning
    • Yogatama D, Mann G (2014) Efficient transfer learning method for automatic hyperparameter tuning. In: Proceedings of AISTATS’14, pp 1077–1085
    • (2014) Proceedings of AISTATS’14 , pp. 1077-1085
    • Yogatama, D.1    Mann, G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.