메뉴 건너뛰기




Volumn 9, Issue , 2008, Pages 1227-1267

Maximal causes for non-linear component extraction

Author keywords

Approximate EM; Competitive learning; Component extraction; Maximum likelihood; Neural networks

Indexed keywords

ACOUSTICS; ARTIFICIAL INTELLIGENCE; BLIND SOURCE SEPARATION; COMPETITION; EDUCATION; EIGENVALUES AND EIGENFUNCTIONS; EXTRACTION; FACTORIZATION; FUNCTION EVALUATION; INDEPENDENT COMPONENT ANALYSIS; INDUSTRIAL ECONOMICS; LEARNING SYSTEMS; MATRIX ALGEBRA; MAXIMUM LIKELIHOOD ESTIMATION; PARAMETER ESTIMATION; PHOTOACOUSTIC EFFECT; VEGETATION;

EID: 46749096794     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (53)

References (44)
  • 1
    • 0030832881 scopus 로고    scopus 로고
    • The "independent components" of natural scenes are edge filters
    • A. J. Bell and T. J. Sejnowski. The "independent components" of natural scenes are edge filters. Vision Research, 37(23):3327-3338, 1997.
    • (1997) Vision Research , vol.37 , Issue.23 , pp. 3327-3338
    • Bell, A.J.1    Sejnowski, T.J.2
  • 2
    • 33847391180 scopus 로고    scopus 로고
    • Learning sensory representations with intrinsic plasticity
    • N. J. Butko and J. Triesch. Learning sensory representations with intrinsic plasticity. Neurocomputing, 70(7-9): 1130-1138, 2007.
    • (2007) Neurocomputing , vol.70 , Issue.7-9 , pp. 1130-1138
    • Butko, N.J.1    Triesch, J.2
  • 3
    • 0005819124 scopus 로고    scopus 로고
    • Modelling multiple-cause structure using rectification constraints
    • D. Charles and C. Fyfe. Modelling multiple-cause structure using rectification constraints. Network: Computation in Neural Systems, 9:167-182, 1998.
    • (1998) Network: Computation in Neural Systems , vol.9 , pp. 167-182
    • Charles, D.1    Fyfe, C.2
  • 4
    • 0036707219 scopus 로고    scopus 로고
    • Unsupervised neural networks for the identification of minimum overcomplete basis in visual data
    • D. Charles, C. Fyfe, D. MacDonald, and J. Koetsier. Unsupervised neural networks for the identification of minimum overcomplete basis in visual data. Neurocomputing, 47(1-4):119-143, 2002.
    • (2002) Neurocomputing , vol.47 , Issue.1-4 , pp. 119-143
    • Charles, D.1    Fyfe, C.2    MacDonald, D.3    Koetsier, J.4
  • 5
    • 0028416938 scopus 로고
    • Independent component analysis, a new concept?
    • P. Comon. Independent component analysis, a new concept? Signal Processing, 36(3):287-314, 1994.
    • (1994) Signal Processing , vol.36 , Issue.3 , pp. 287-314
    • Comon, P.1
  • 7
    • 0001179408 scopus 로고
    • Competition and multiple cause models
    • P. Dayan and R. S. Zemel. Competition and multiple cause models. Neural Computation, 7:565-579, 1995.
    • (1995) Neural Computation , vol.7 , pp. 565-579
    • Dayan, P.1    Zemel, R.S.2
  • 10
    • 0025604930 scopus 로고
    • Forming sparse representations by local anti-Hebbian learning
    • P. Fòldiák. Forming sparse representations by local anti-Hebbian learning. Biological Cybernetics, 64:165-170, 1990.
    • (1990) Biological Cybernetics , vol.64 , pp. 165-170
    • Fòldiák, P.1
  • 11
    • 0031207174 scopus 로고    scopus 로고
    • A neural network for PCA and beyond
    • C. Fyfe. A neural network for PCA and beyond. Neural Processing Letters, 6:33-41, 1997.
    • (1997) Neural Processing Letters , vol.6 , pp. 33-41
    • Fyfe, C.1
  • 12
    • 0025218749 scopus 로고
    • A model for the estimate of local image velocity by cells in the visual cortex
    • N. M. Grzywacz and A. L. Yuille. A model for the estimate of local image velocity by cells in the visual cortex. Proceedings of the Royal Society of London B, 239:129-161, 1990.
    • (1990) Proceedings of the Royal Society of London B , vol.239 , pp. 129-161
    • Grzywacz, N.M.1    Yuille, A.L.2
  • 15
    • 0029652445 scopus 로고
    • The 'wake-sleep' algorithm for unsupervised neural networks
    • G. E. Hinton, P Dayan, B. J. Frey, and R. M. Neal. The 'wake-sleep' algorithm for unsupervised neural networks. Science, 268:1158-1161, 1995.
    • (1995) Science , vol.268 , pp. 1158-1161
    • Hinton, G.E.1    Dayan, P.2    Frey, B.J.3    Neal, R.M.4
  • 18
    • 84900510076 scopus 로고    scopus 로고
    • Non-negative matrix factorization with sparseness constraints
    • P. O. Hoyer. Non-negative matrix factorization with sparseness constraints. Journal of Machine Learning Research, 5:1457-1469, 2004.
    • (2004) Journal of Machine Learning Research , vol.5 , pp. 1457-1469
    • Hoyer, P.O.1
  • 19
    • 0033225865 scopus 로고    scopus 로고
    • An introduction to variational methods for graphical models
    • M. I. Jordan, Z. Ghahramani, T. Jaakkola, and L. K. Saul. An introduction to variational methods for graphical models. Machine Learning, 37(2): 183-233, 1999.
    • (1999) Machine Learning , vol.37 , Issue.2 , pp. 183-233
    • Jordan, M.I.1    Ghahramani, Z.2    Jaakkola, T.3    Saul, L.K.4
  • 20
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by non-negative matrix factorization
    • D. D. Lee and H. S. Seung. Learning the parts of objects by non-negative matrix factorization. Nature, 401:788-791, 1999.
    • (1999) Nature , vol.401 , pp. 788-791
    • Lee, D.D.1    Seung, H.S.2
  • 22
    • 9144241266 scopus 로고    scopus 로고
    • Hierarchical self-organization of minicolumnar receptive fields
    • J. Lücke. Hierarchical self-organization of minicolumnar receptive fields. Neural Networks, 17/8-9: 1377-1389, 2004.
    • (2004) Neural Networks , vol.17 , Issue.8-9 , pp. 1377-1389
    • Lücke, J.1
  • 23
    • 38149100169 scopus 로고    scopus 로고
    • A dynamical model for receptive field self-organization in V1 cortical columns
    • Proceedings of the International Conference on Artificial Neural Networks, Springer
    • J. Lücke. A dynamical model for receptive field self-organization in V1 cortical columns. In Proceedings of the International Conference on Artificial Neural Networks, LNCS 4669, pages 389-398. Springer, 2007.
    • (2007) LNCS , vol.4669 , pp. 389-398
    • Lücke, J.1
  • 24
    • 33646204837 scopus 로고    scopus 로고
    • Dynamics of cortical columns - self-organization of receptive fields
    • Proceedings of the International Conference on Artificial Neural Networks, Springer
    • J. Lücke and J. D. Bouecke. Dynamics of cortical columns - self-organization of receptive fields. In Proceedings of the International Conference on Artificial Neural Networks, LNCS 3696, pages 31-37. Springer, 2005.
    • (2005) LNCS , vol.3696 , pp. 31-37
    • Lücke, J.1    Bouecke, J.D.2
  • 25
    • 38149004503 scopus 로고    scopus 로고
    • Generalized softmax networks for non-linear component extraction
    • Proceedings of the International Conference on Artificial Neural Networks, Springer
    • J. Lücke and M. Sahani. Generalized softmax networks for non-linear component extraction. In Proceedings of the International Conference on Artificial Neural Networks, LNCS 4668, pages 657-667. Springer, 2007.
    • (2007) LNCS , vol.4668 , pp. 657-667
    • Lücke, J.1    Sahani, M.2
  • 26
    • 10744227912 scopus 로고    scopus 로고
    • Rapid processing and unsupervised learning in a model of the cortical macrocolumn
    • J. Lücke and C. von der Malsburg. Rapid processing and unsupervised learning in a model of the cortical macrocolumn. Neural Computation, 16:501-533, 2004.
    • (2004) Neural Computation , vol.16 , pp. 501-533
    • Lücke, J.1    von der Malsburg, C.2
  • 28
    • 0002788893 scopus 로고    scopus 로고
    • A view of the EM algorithm that justifies incremental, sparse, and other variants
    • M. I. Jordan, editor, Kluwer
    • R. Neal and G. Hinton. A view of the EM algorithm that justifies incremental, sparse, and other variants. In M. I. Jordan, editor, Learning in Graphical Models. Kluwer, 1998.
    • (1998) Learning in Graphical Models
    • Neal, R.1    Hinton, G.2
  • 30
    • 0029938380 scopus 로고    scopus 로고
    • Emergence of simple-cell receptive field properties by learning a sparse code for natural images
    • B. A. Olshausen and D. J. Field. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 381:607-609, 1996.
    • (1996) Nature , vol.381 , pp. 607-609
    • Olshausen, B.A.1    Field, D.J.2
  • 31
    • 0035380627 scopus 로고    scopus 로고
    • Generalization in interactive networks: The benefits of inhibitory competition and Hebbian learning
    • R. C. O'Reilly. Generalization in interactive networks: The benefits of inhibitory competition and Hebbian learning. Neural Computation, 13:1199-1241, 2001.
    • (2001) Neural Computation , vol.13 , pp. 1199-1241
    • O'Reilly, R.C.1
  • 32
    • 0012586376 scopus 로고    scopus 로고
    • R. P. N. Rao, B. A. Olshausen, and M. S. Lewicki, editors, Neural Information Processing. The MIT Press, Cambridge, MA
    • R. P. N. Rao, B. A. Olshausen, and M. S. Lewicki, editors. Probabilistic Models of the Brain: Perception and Neural Function. Neural Information Processing. The MIT Press, Cambridge, MA, 2002.
    • (2002) Probabilistic Models of the Brain: Perception and Neural Function
  • 33
    • 0033316361 scopus 로고    scopus 로고
    • Hierarchical models of object recognition in cortex
    • M. Riesenhuber and T. Poggio. Hierarchical models of object recognition in cortex. Nature Neuroscience, 2(11): 1019-1025, 1999.
    • (1999) Nature Neuroscience , vol.2 , Issue.11 , pp. 1019-1025
    • Riesenhuber, M.1    Poggio, T.2
  • 34
    • 85009230793 scopus 로고    scopus 로고
    • Factorial models and refiltering for speech separation and denoising
    • S. T. Roweis. Factorial models and refiltering for speech separation and denoising. In Proceedings Eurospeech, volume 7, pages 1009-1012, 2003.
    • (2003) Proceedings Eurospeech , vol.7 , pp. 1009-1012
    • Roweis, S.T.1
  • 35
    • 0003524533 scopus 로고    scopus 로고
    • PhD thesis, California Institute of Technology, Pasadena, California, URL
    • M. Sahani. Latent Variable Models for Neural Data Analysis. PhD thesis, California Institute of Technology, Pasadena, California, 1999. URL http://www.gatsby.ucl.ac.uk/~maneesh/thesis/.
    • (1999) Latent Variable Models for Neural Data Analysis
    • Sahani, M.1
  • 36
    • 0003040479 scopus 로고
    • A multiple cause mixture model for unsupervised learning
    • E. Saund. A multiple cause mixture model for unsupervised learning. Neural Computation, 7: 51-71, 1995.
    • (1995) Neural Computation , vol.7 , pp. 51-71
    • Saund, E.1
  • 37
    • 33646697510 scopus 로고    scopus 로고
    • Learning image components for object recognition
    • M. W. Spratling. Learning image components for object recognition. Journal of Machine Learning Research, 7:793-815, 2006.
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 793-815
    • Spratling, M.W.1
  • 38
    • 0036717024 scopus 로고    scopus 로고
    • Preintegration lateral inhibition enhances unsupervised learning
    • M. W. Spratling and M. H. Johnson. Preintegration lateral inhibition enhances unsupervised learning. Neural Computation, 14:2157-2179, 2002.
    • (2002) Neural Computation , vol.14 , pp. 2157-2179
    • Spratling, M.W.1    Johnson, M.H.2
  • 39
    • 46749128433 scopus 로고    scopus 로고
    • Sun-sounds: Phonemes. Data retrieved in
    • through ibiblio.org from
    • Sunsite. Sun-sounds: Phonemes. Data retrieved in 2007 through ibiblio.org from ftp://sunsite.unc.edu/pub/multimedia/suri-sounds/phonemes/, 1997.
    • (1997)
  • 40
    • 0032029288 scopus 로고    scopus 로고
    • Deterministic annealing EM algorithm
    • N. Ueda and R. Nakano. Deterministic annealing EM algorithm. Neural Networks, 11(2):271-282, 1998.
    • (1998) Neural Networks , vol.11 , Issue.2 , pp. 271-282
    • Ueda, N.1    Nakano, R.2
  • 41
    • 0032492432 scopus 로고    scopus 로고
    • Independent component filters of natural images compared with simple cells in primary visual cortex
    • J. H. van Hateren and A. van der Schaaf. Independent component filters of natural images compared with simple cells in primary visual cortex. Proceedings of the Royal Society of London B, 265: 359-366, 1998.
    • (1998) Proceedings of the Royal Society of London B , vol.265 , pp. 359-366
    • van Hateren, J.H.1    van der Schaaf, A.2
  • 42
    • 0040281371 scopus 로고    scopus 로고
    • Phase transitions and the perceptual organization of video sequences
    • Y. Weiss. Phase transitions and the perceptual organization of video sequences. In Advances in Neural Information Processing Systems 10, pages 850-856, 1998.
    • (1998) Advances in Neural Information Processing Systems , vol.10 , pp. 850-856
    • Weiss, Y.1
  • 43
    • 0038159929 scopus 로고    scopus 로고
    • Learning optimized features for hierarchical models of invariant object recognition
    • H. Wersing and E. Körner. Learning optimized features for hierarchical models of invariant object recognition. Neural Computation, 15(7): 1559-1588, 2003.
    • (2003) Neural Computation , vol.15 , Issue.7 , pp. 1559-1588
    • Wersing, H.1    Körner, E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.